用户名: 密码: 验证码:
纳米结构光催化剂的设计合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以半导体材料做为催化剂的太阳能光电化学转换技术的开发和利用以其无二次污染、能耗低、适用范围广等优点成为目前解决环境问题的重要途径之一。由于目前广泛使用的二氧化钛光催化剂在可见光吸收、光催化效率等方面受到限制,因此设计开发具有高光催化活性新结构、新材料具有重要的科学意义。本论文围绕纳米结构光催化剂的设计合成与性质研究展开工作。发展了贵金属复合二氧化钛纳米结构的控制合成和组装技术,构建了具有多孔、大比表面的二氧化钛介孔球,探讨了介孔结构及贵金属复合二氧化钛对提高可见光光催化效率的作用;将材料的选择性吸附和光催化相结合,利用复合结构中碳组分对目标分子的选择性吸附作用,设计制备了一种选择性光催化剂,使其能够应用于降解分离高浓度混合型污水。此外在新型光催化剂方面,研究了钒酸铋的控制合成及其光催化性能测试。主要的研究工作及结果如下:
     1、利用非水溶剂热法合成了单分散的TiO_2和Au纳米颗粒,通过微乳体系使单分散的TiO_2和Au纳米晶组装成胶体球,通过煅烧形成具有特殊结构的Au/TiO_2介孔纳米复合微球,实现了Au纳米粒子在TiO_2基底中的高分散负载。该介孔球的比表面积可以达到270m~2·g~(-1)以上并且具有高度开放的介孔,因此可以浓缩溶液中在其表面附近的有机物分子,从而提高其光催化活性。同时,纳米Au颗粒具有很强的表面等离子体共振(SPR)吸收,使Au/TiO_2介孔球能够在可见光区有很强的光响应,显著的提高了Au/TiO_2纳米复合微球的可见光光催化性能。
     2、利用隔绝氧气煅烧使纳米颗粒表面有机基团碳化,合成一系列具有高吸附量的Au/C/TiO_2复合介孔球。由于材料本身的负电性,对正电性分子有很强的吸附能力,展现了良好的选择性吸附能力。由于吸附可以起到浓缩反应物的作用,从而提高光催化反应的效率,所以Au/C/TiO_2介孔球材料可以使选择性吸附和光催化很好的结合起来利用其协同作用,达到循环处理大量高浓度废水的目的,为实现选择性光催化降解和分离污水提供可行性依据。
     3、发展了旋转液膜法和水热反应相结合的方法制备可见光光催化剂BiVO_4微纳米粒子。通过对反应参数的调节,探讨合成具有新颖形貌和小尺寸、高比表面的钒酸铋微纳米粒子的方法,并对其可见光光催化活性进行了研究。
The exploration of photoelectrochemical conversion technologyusing solar cell semiconductor as catalyst, is one of the importantresearch directions in wastewater processing, benefited from itshigh-energy efficiency, environmental compatibility and wideapplications. The current widely used photocatalyst titanium oxide has anarrow range of visible light absorption and low photoelectric conversion;therefore, it is of great scientific significance to design new structuralmaterial with promising photocatalytic activity. This thesis describes ourcurrent research of the design, synthesis and applications ofphotocatalytic nanomaterials. We developed the controllable synthesisand assembly of noble metal and titanium oxide compositenanocomposite material; made a new titanium oxide mesoporousnanocomposite with high porosity and large surface area; and furtherexplored the effects of mesoporous structure and noble metal dopet to theimprovement of photocatalytic activity under visible light. We invented anew method for synthesizing photocatalyst which has carbon component capable of selective adsorption and thus to achieve dual function ofselective adsorption and photocatalysis. Such catalyst can degrade andseparate high concentration of mixed wastewater. In addition to newphotocatalyst research, we investigated the controllable synthesis andphotocatalytic activity of BiVO4materials. Our work and results are listedas follows,
     1. Using solvothermal method, we can obtain monodispersed TiO2nanorods and Au nanoparticles. They can self-assemble into spheresthrough micro emulsion system, and form Au/TiO2mesoporous spheresafter calcination. Such mesoporous spheres can reach a surface area ofabove270m2·g-1with highly opened pores that can pre-concentrate theorganic molecules around the surface. Benefited from the SPR absorptionof Au nanoparticles, Au/TiO2responses strongly to the visible light. Theirvisible light photocatalytic activity of organics was tested.
     2. Calcinating the Au/TiO2sphere can transform the surface organicgroup into carbon and thus obtain Au/C/TiO2composite sphere with largeadsorption ability. Such material bearing negative charge on surface hasstrong affinity to molecules bearing positive charges. However, the poresize on the composite sphere enables selective adsorption of molecules.Therefore, Au/C/TiO2mesoporous composite sphere can incooperateselective adsorption and photocatalytic ability to process wastewater inmultiple cycles. Au/C/TiO2are the very important paradigm for selective photocatalysis.
     3. Making use of rotating liquid membrane method andhydrothermal method, we have synthesized a new type of BiVO4photocatalyst. Through the variation of experimental conditions, a seriesof new topological BiVO4nanocrystals were obtained and theirphotocatalytic activity was tested.
引文
[1] Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water-treatment[J]. Chem.Rev.1993,93,671-698.
    [2] Louie, S. G. Thermodynamics-Nanoparticles behaving oddly[J]. Nature1996,384,612-613.
    [3] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals asfluorescent biological labels[J]. Science1998,281,2013-2016.
    [4] Wang, Y.; Mahler, W. Degenerate4-wave-mixing of cds/polymer composite[J]. Opt. Commun.1987,61,233-236.
    [5] Hilinski, E. F.; Lucas, P. A.; Wang, Y. A Picosecond Bleaching Study of Quantum-confidedCadmiun-sulfide Microcrystallites in a Polymer Film[J]. J. Chem. Phys.1988,89,3435-3441.
    [6] Auer, S.; Frenkel, D. Suppression of crystal nucleation in polydisperse colloids due to increaseof the surface free energy[J]. Nature2001,413,711-713.
    [7] Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites-the size dependence of the lowest excited electronic state[J]. J. Chem. Phys.1984,80,4403-4409.
    [8] Chen, R. H.; Korotkov, A. N.; Likharev, K. K. Single-electron transistor logic[J]. Appl. Phys.Lett.1996,68,1954-1956.
    [9] Banfi, G.; Degiorgio, V.; Ricard, D. Nonlinear optical properties of semiconductornanocrystals[J]. Adv. Phys.1998,47,447-510.
    [10]张立德,解思深.纳米结构和纳米材料[M].第一版.科学工业出版社:2005.
    [11] Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly:nanostructures made easy[J]. Adv. Mater.1999,11,579-585.
    [12] Foster, E. J.; Jones, R. B.; Lavigueur, C.; Williams, V. E. Structural factors controlling theself-assembly of columnar liquid crystals[J]. J. Am. Chem. Soc.2006,128,8569-8574.
    [13] Xia, Y. N.; Gates, B.; Li, Z. Y. Self-assembly approaches to three-dimensional photoniccrystals[J]. Adv. Mater.2001,13,409-413.
    [14]Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electronde[J].Nature1972,238,37-38.
    [15]Garcia-Frutos, E. M.; Bottari, G.; Vazquez, P.; Barbera, J.; Torres, T. Unusual mesomorphicbehaviour of an ethynyl-substituted phthalocyanine[J]. Chem. Commun.2006,3107-3109.
    [16] Rao, N. N.; Dubey, A. K.; Mohanty, S.; Khare, P.; Jain, R.; Kau, S. N. Photocatalyticdegradation of2-chlorophenol: a study of kinetics, intermediates and biodegradability[J]. J.Hazard. Mater.2003,101,301-314.
    [17] Testino, A.; Bellobono, I. R.; Buscaglia, V.; Canevali, C.; D'Arienzo, M.; Polizzi, S.; Scotti, R.;Morazzoni, F. Optimizing the photocatalytic properties of hydrothermal TiO2by the control ofphase composition and particle morphology. A systematic approach[J]. J. Am. Chem. Soc.2007,129,3564-3575.
    [18] Wu, B.; Guo, C.; Zheng, N.; Xie, Z.; Stucky, G. D. Nonaqueous Production of NanostructuredAnatase with High-Energy Facets[J]. J. Am. Chem. Soc.2008,130,17563-17567.
    [19] Chan, A. H. C.; Chan, C. K.; Barford, J. P.; Porter, J. F. Solar photocatalytic thin film cascadereactor for treatment of benzoic acid containing wastewater[J]. Water Res.2003,37,1125-1135.
    [20]戴树桂.环境化学进展[M].第一版.化学工业出版社:北京,2005.
    [21] Hirakawa, T.; Nakaoka, Y.; Nishino, J.; Nosaka, Y. Primary passages for various TiO2photocatalysts studied by means of luminol chemiluminescent probe[J]. J. Phys. Chem. B1999,103,4399-4403.
    [22] Du, W.; Xu, Y.; Wang, Y. Photoinduced degradation of orange II on different iron (Hydr)oxidesin aqueous suspension: Rate enhancement on addition of hydrogen peroxide, silver nitrate, andsodium fluoride[J]. Langmuir2008,24,175-181.
    [23] Matthews, R. W. Photooxidation of organic impurities in water using thin-films ofTitanium-dioxide[J]. J. Phys. Chem.1987,91,3328-3333.
    [24] Cant, N. W.; Cole, J. R. Photocatalysis of the reaction between ammonia and nitric-oxide onTiO2surfaces[J]. J. Catal.1992,134,317-330.
    [25]高濂.纳米氧化钛光催化材料及应用[M].第一版.化学工业出版社:北京,2002.
    [26] Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titaniumoxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl.Catal. B.2003,42,403-409.
    [27] Fernández-García, M.; Rodriguez, J. A. Metal Oxide Nanoparticles. Encyclopedia of Inorganicand Bioinorganic Chemistry[M]. John Wiley&Sons, Ltd.:2011.
    [28] Mo, S. D.; Ching, W. Y. Electronic and optical-properties of3phases of titanium-dioxide-rutile, anatase, and brookite[J]. Phys. Rev. B: Condens. Matter1995,51,13023-13032.
    [29]Bickley, R. I.; Gonzalezcarreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. A structuralinvestigation of titanium-dioxide photocatalysis[J]. J. Solid State Chem.1991,92,178-190.
    [30] Ao, Y.; Xu, J.; Fu, D.; Yuan, C. A simple method to prepare N-doped titania hollow sphereswith high photocatalytic activity under visible light[J]. J. Hazard. Mater.2009,167,413-417.
    [31] Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer,L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2nanosheets with nearly100%exposed (001) facets for fast reversible lithium storage[J]. J. Am.Chem. Soc.2010,132,6124-6130.
    [32] Burda, C.; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole, J. L. Enhanced nitrogendoping in TiO2nanoparticles[J]. Nano Lett.2003,3,1049-1051.
    [33] Cao, F.-F.; Wu, X.-L.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Facile synthesis of mesoporous TiO2-Cnanosphere as an improved anode material for superior high rate1.5V rechargeable Li ionbatteries containing LiFePO4-C cathode[J]. J. Phys. Chem. C2010,114,10308-10313.
    [34] Shang, G.; Fu, H.; Yang, S.; Xu, T. Mechanistic Study of Visible-Light-InducedPhotodegradation of4-Chlorophenol by TiO2-xNx with Low Nitrogen Concentration[J]. Int. J.Photoenergy2012, doi:10.1155/2012/759306.
    [35] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis innitrogen-doped titanium oxides[J]. Science2001,293,269-271.
    [36] Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo,W.; Li, Z.; Liu, Y.; Withers, R. L. An orthophosphate semiconductor with photooxidationproperties under visible-light irradiation[J]. Nat. Mater.2010,9,559-564.
    [37] Xi, G.; Ye, J. Synthesis of bismuth vanadate nanoplates with exposed {001} facets andenhanced visible-light photocatalytic properties[J]. Chem. Commun.2010,46,1893-1895.
    [38] Walsh, A.; Yan, Y.; Huda, M. N.; Al-Jassim, M. M.; Wei, S.-H. Band Edge Electronic Structureof BiVO4: Elucidating the Role of the Bi s and V d Orbitals[J]. Chem. Mater.2009,21,547-551.
    [39] Zhang, L.; Wang, W.; Zhou, L.; Xu, H. Bi2WO6nano-and microstructures: Shape control andassociated visible-light-driven photocatalytic activities[J]. Small2007,3,1618-1625.
    [40] Lin, X. P.; Huang, F. Q.; Wang, W. D.; Zhang, K. L. A novel photocatalyst BiSbO4fordegradation of methylene blue[J]. Appl. Catal., A2006,307,257-262.
    [41] Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. Shape-controlled synthesis of highlycrystalline titania nanocrystals[J]. ACS Nano2009,3,3737-3743.
    [42] Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Au/TiO2nanocomposites withenhanced photocatalytic activity[J]. J. Am. Chem. Soc.2007,129,4538-4539.Jena, A.; Vinu, R.; Shivashankar, S. A.; Madras, G. Microwave Assisted Synthesis of
    [43]Nanostructured Titanium Dioxide with High Photocatalytic Activity[J]. Ind. Eng. Chem. Res.2010,49,9636-9643.
    [44] Mao, Y. B.; Wong, S. S. Size-and shape-dependent transformation of nanosized titanate intoanalogous anatase titania nanostructures[J]. J. Am. Chem. Soc.2006,128,8217-8226.
    [45] Yao, S.; Jia, Y.; Shi, Z.; Zhao, S. Photocatalytic Oxidation of Arsenite by a Composite ofTitanium Dioxide and Activated Carbon Fiber[J]. Photochem. Photobiol.2010,86,1215-1221.
    [46] J Zhang, Q.; Joo, J.-B.; Lu, Z.; Dahl, M.; Oliveira, D. Q. L.; Ye, M.; Yin, Y. Self-Assembly andPhotocatalysis of Mesoporous TiO2Nanocrystal Clusters[J]. Nano Res.2011,4,103-114.
    [47] Chen, C.; Nan, C.; Wang, D.; Su, Q.; Duan, H.; Liu, X.; Zhang, L.; Chu, D.; Song, W.; Peng,Q.; Li, Y. Mesoporous multicomponent nanocomposite colloidal spheres: idealhigh-temperature stable model catalysts[J]. Angew. Chem., Int. Ed.2011,50,3725-3729.
    [48] Liu, C.; Yang, S. Synthesis of Angstrom-Scale Anatase Titania Atomic Wires[J]. ACS Nano2009,3,1025-1031.
    [49] Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of Titania Nanosheets with a HighPercentage of Exposed (001) Facets and Related Photocatalytic Properties[J]. J. Am. Chem.Soc.2009,131,3152-3153.
    [50] Primo, A.; Corma, A.; Garcia, H. Titania supported gold nanoparticles as photocatalyst[J].Phys. Chem. Chem. Phys.2011,13,886-910.
    [51] Hirakawa, T.; Kamat, P. V. Photoinduced electron storage and surface plasmon modulation inAg@TiO2clusters[J]. Langmuir2004,20,5645-5647.
    [52] Arabatzis, I. M.; Stergiopoulos, T.; Andreeva, D.; Kitova, S.; Neophytides, S. G.; Falaras, P.Characterization and photocatalytic activity of Au/TiO(2) thin films for azo-dye degradation[J].J. Catal.2003,220,127-135.
    [53] Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.;Watanabe, T. A plasmonic photocatalyst consisting of sliver nanoparticles embedded intitanium dioxide[J]. J. Am. Chem. Soc.2008,130,1676-1680.Ismail, A. A.; Bahnemann, D. W.; Bannat, I.; Wark, M. Gold Nanoparticles on Mesoporous
    [54]Interparticle Networks of Titanium Dioxide Nanocrystals for Enhanced PhotonicEfficiencies[J]. J. Phys. Chem. C2009,113,7429-7435.
    [55] Seery, M. K.; George, R.; Floris, P.; Pillai, S. C. Silver doped titanium dioxide nanomaterialsfor enhanced visible light photocatalysis[J]. J. Photochem. Photobiol., A2007,189,258-263.
    [56] Zhang, F.; Pi, Y.; Cui, J.; Yang, Y.; Zhang, X.; Guan, N. Unexpected selective photocatalyticreduction of nitrite to nitrogen on silver-doped titanium dioxide[J]. J. Phys. Chem. C2007,111,3756-3761.
    [57] Xi, G.; Yue, B.; Cao, J.; Ye, J. Fe3O4/WO3Hierarchical Core-Shell Structure: High-Performanceand Recyclable Visible-Light Photocatalysis[J]. Chem. Eur. J.2011,17,5145-5154.
    [58] Ratanatawanate, C.; Tao, Y.; Balkus, K. J., Jr. Photocatalytic Activity of PbS QuantumDot/TiO2Nanotube Composites[J]. J. Phys. Chem. C2009,113,10755-10760.
    [59] Jaroenworaluck, A.; Sunsaneeyametha, W.; Kosachan, N.; Stevens, R. Characteristics ofsilica-coated TiO2and its UV absorption for sunscreen cosmetic applications[J]. Surf. InterfaceAnal.2006,38,473-477.
    [60] Zhao, J. C.; Wu, T. X.; Wu, K. Q.; Oikawa, K.; Hidaka, H.; Serpone, N. Photoassisteddegradation of dye pollutants.3. Degradation of the cationic dye rhodamine B in aqueousanionic surfactant/TiO2dispersions under visible light irradiation: Evidence for the need ofsubstrate adsorption on TiO2particles[J]. Environ. Sci. Technol.1998,32,2394-2400.
    [61] Hu, C.; Wang, Y. Z.; Tang, H. X. Preparation and characterization of surface bond-conjugatedTiO2/SiO2and photocatalysis for azo dyes[J]. Appl. Catal. B.2001,30,277-285.
    [62] Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme inCdS-Au-TiO2three-component nanojunction system[J]. Nat. Mater.2006,5,782-786.
    [63] Liu, L.; Wang, G.; Li, Y.; Li, Y.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2hybridmesoporous films and their enhanced photoelectrochemical performance[J]. Nano Res.2011,4,249-258.
    [64] Liu, L.; Hensel, J.; Fitzmorris, R. C.; Li, Y.; Zhang, J. Z. Preparation and PhotoelectrochemicalProperties of CdSe/TiO2Hybrid Mesoporous Structures[J]. J. Phys. Chem. Lett.2010,1,155-160.
    [65] Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Titanium-containing mesoporous molecular-sievesfor catalytic-oxidation of aromatic-compounds[J]. Nature1994,368,321-323.
    [66] Wu, Z. J.; Ahn, I. S.; Lee, C. H.; Kim, J. H.; Shul, Y. G.; Lee, K. T. Enhancing the organic dyeadsorption on porous xerogels[J]. Colloids Surf., A2004,240,157-164.
    [67] Xu, H.; Zhang, L. Selective Nonaqueous Synthesis of C-Cl-Codoped TiO2with Visible-LightPhotocatalytic Activity[J]. J. Phys. Chem. C2010,114,11534-11541.
    [68] Lee, Y.-F.; Chang, K.-H.; Hu, C.-C.; Lin, K.-M. Synthesis of activated carbon-surrounded andcarbon-doped anatase TiO2nanocomposites[J]. J. Mater. Chem.2010,20,5682-5688.
    [69] Kannan, N.; Sundaram, M. M. Kinetics and mechanism of removal of methylene blue byadsorption on various carbons-a comparative study[J]. Dyes Pigm.2001,51,25-40.
    [70] Ariga, K.; Vinu, A.; Miyahara, M.; Hill, J. P.; Mori, T. One-pot separation of tea componentsthrough selective adsorption on pore-engineered nanocarbon, carbon nanocage[J]. J. Am.Chem. Soc.2007,129,11022-11023.
    [71] Namasivayam, C.; Kavitha, D. Removal of Congo Red from water by adsorption onto activatedcarbon prepared from coir pith, an agricultural solid waste[J]. Dyes Pigm.2002,54,47-58.
    [72] Zhou, Y.; Vuille, K.; Heel, A.; Probst, B.; Kontic, R.; Patzke, G. R. An inorganic hydrothermalroute to photocatalytically active bismuth vanadate[J]. Appl. Catal., A2010,375,140-148.
    [73] Xu, H.; Wu, C.; Li, H.; Chu, J.; Sun, G.; Xu, Y.; Yan, Y. Synthesis, characterization andphotocatalytic activities of rare earth-loaded BiVO4catalysts[J]. Appl. Surf. Sci.2009,256,597-602.
    [74] Bai, F.; Wang, D.; Huo, Z.; Chen, W.; Liu, L.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. Aversatile bottom-up assembly approach to colloidal spheres from nanocrystals[J]. Angew.Chem., Int. Ed.2007,46,6650-6653.
    [75] Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D. Magnetic monodisperse Fe3O4nanoparticles[J]. Cryst. Growth Des.2005,5,391-393.
    [76] Zhang, Y.; Li, Y. D. Synthesis and characterization of monodisperse doped ZnS nanosphereswith enhanced thermal stability[J]. J. Phys. Chem. B2004,108,17805-17811.
    [77]Li, X. L.; Peng, Q.; Yi, J. X.; Wang, X.; Li, Y. D. Near monodisperse TiO2nanoparticles andnanorods[J]. Chem. Eur. J.2006,12,2383-2391.
    [78]刘军枫.功能氧化物纳米材料的液相合成与性质研究[D].博士论文,清华大学,北京,2007.
    [79] Hsu, Y.-C.; Lin, H.-C.; Lue, C.-W.; Liao, Y.-T.; Yang, C.-M. A novel synthesis of carbon-coatedanatase nanocrystals showing high adsorption capacity and photocatalytic activity[J]. Appl.Catal. B.2009,89,309-314.
    [80] Liu, Y.; Liu, Z.; Gao, J.; Dai, J.; Han, J.; Wang, Y.; Xie, J.; Yan, Y. Selective adsorptionbehavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based onsurface molecularly imprinting technique[J]. J. Hazard. Mater.2011,186,197-205.
    [81] Harris, R. G.; Wells, J. D.; Johnson, B. B. Selective adsorption of dyes and other organicmolecules to kaolinite and oxide surfaces[J]. Colloids Surf., A2001,180,131-140.
    [82] Punyapalakul, P.; Takizawa, S. Selective adsorption of nonionic surfactant on hexagonalmesoporous silicates (HMSs) in the presence of ionic dyes[J]. Water Res.2006,40,3177-3184.
    [83] Guo, Z. B.; Zheng, S. R.; Zheng, Z.; Jiang, F.; Hu, W. Y.; Ni, L. X. Selective adsorption ofp-chloronitro benzene from aqueous mixture of p-chloronitrobenzene and o-chloronitrobenzeneusing HZSM-5zeolite[J]. Water Res.2005,39,1174-1182.
    [84] Ahn, C. K.; Woo, S. H.; Park, J. M. Selective adsorption of phenanthrene in nonionic-anionicsurfactant mixtures using activated carbon[J]. Chem. Eng. J.2010,158,115-119.
    [85] Annadurai, G.; Juang, R. S.; Lee, D. J. Use of cellulose-based wastes for adsorption of dyesfrom aqueous solutions[J]. J. Hazard. Mater.2002,92,263-274.
    [86] Miyauchi, M.; Ikezawa, A.; Tobimatsu, H.; Irie, H.; Hashimoto, K. Zeta potential andphotocatalytic activity of nitrogen doped TiO2thin films[J]. Phys. Chem. Chem. Phys.2004,6,865-870.
    [87] Gumy, D.; Morais, C.; Bowen, P.; Pulgarin, C.; Giraldo, S.; Hajdu, R.; Kiwi, J. Catalyticactivity of commercial of TiO2powders for the abatement of the bacteria (E-coli) under solarsimulated light: Influence of the isoelectric point[J]. Appl. Catal. B.2006,63,76-84.
    [88] Rodriguez-Llansola, F.; Escuder, B.; Miravet, J. F.; Hermida-Merino, D.; Hamley, I. W.;Cardin, C. J.; Hayes, W. Selective and highly efficient dye scavenging by a pH-responsivemolecular hydrogelator[J]. Chem. Commun.2010,46,7960-7962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700