用户名: 密码: 验证码:
有序TiO_2薄膜材料制备及沉积CdS的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序纳米介孔材料具有规则连续可调的纳米级孔道结构,具有量子限制效应,小尺寸效应,表面效应,宏观量子隧道效应,以及介电限域效应,在石油化工、生物催化、光催化、环境保护、医药分离、微型电磁装置、光致发光材料、电极材料、信息储存等领域存在诱人的应用前景,引起国际物理学、化学及材料学界的高度关注,成为跨学科的研究热点之一。对于介孔材料,目前的发展主要集中在介孔材料的制备、功能化及其应用方面。其中有序的TiO_2介孔材料为在其孔道内负荷半导体,功能染料、贵金属、碳纳米管等异质组分以提高介孔TiO_2在光催化、亲水性等领域的效率提供了理想的宿主材料。
     本文采用溶剂蒸发诱导自组装法,在不同条件下分别制备了蠕虫状介孔TiO_2和粒子规整排列的纳米TiO_2薄膜和粉体材料。利用TG-DSC、XRD、FT-IR、Raman、AFM、SEM、TEM等测试技术对所制备的样品进行了表征,发现蠕虫状介孔TiO_2经350℃焙烧后,模板被完全去除,而且为有序的蠕虫状介孔结构,晶相为锐钛矿;而粒子规整排列的纳米TiO_2经400℃焙烧后为粒子均匀排列的球状结构,晶相为锐钛矿。对不同焙烧温度的样品进行光催化降解罗丹明B的性能研究,发现400℃焙烧的蠕虫状介孔TiO_2和500℃焙烧的粒子规整排列的纳米TiO_2具有最高的光催化活性。通过测量不同焙烧温度下TiO_2薄膜的接触角,发现蠕虫状介孔TiO_2薄膜的亲水性优于粒子规整排列的纳米TiO_2薄膜,这与介孔TiO_2的多孔结构有关。经高压汞灯照射后二者亲水性均有显著提高,蠕虫状介孔TiO_2具有多孔结构和大的比表面积,经紫外光照射后产生了光诱导超亲水性。在蠕虫状介孔TiO_2薄膜电极上利用电沉积法沉积了CdS,通过测定ITO/TiO_2/CdS复合薄膜的光电流响应谱,判定CdS被沉积在了介孔TiO_2孔道及其表面上,而且其光电响应范围被拓宽至可见光区,光电流显著增强。通过测定薄膜的吸收光谱,发现ITO/TiO_2/CdS复合薄膜的吸收强度大大增加,且吸收显著红移,由此判定形成了TiO_2-CdS异质结,从而使可激发光波长拓展到可见光部分,提高了对太阳光的利用率。
In reeent years, Periodic mesoporous materials with uniform pore diameters and high specific surface area have been widely used as catalysts, catalyst supports, chemical sensors, electrical and optical devices, and shape/size selective adsorbents for environmentally hazardous chemicals. Although the synthesis and application of ordered microporous solids have been well established , uumerous attempts to obtain geometrically regular mesoporous materials were unsuccessful until in the early 1990s. For mesoporous materials, the investigation focus on the preparing, function, and application. Among these, the large pore meso-nc-TiO2 materials present good host porous structure to form novel heterojunction through growing a variety of wide hand-gap semiconductors and assembling functional polymers, noble metals, carbon nanotubes, and other components in the large mesopore channels, which could be useful for the development of improved efficiency in photocatalysis, photoelectric conversion, and hydrophilic coating materials applications.
     Wormhole-like mesoporous titania and uniformed nanocrystalline titania have been successfully synthesized through evaporate-induced self-assembly (EISA) method. The obtained samples were characterized in detail by TG-DSC, XRD, Raman, AFM, SEM and TEM. As for wormhole-like mesoporous TiO_2, the template can be removed completely and ordered wormhole-like mesoporous titania structure was formed after being calcinated at 350℃. As for uniformed nanocrystalline titania thin film, uniformed and spheric titania structure was formed after being calcinated at 400℃. The photocatalytic activity experiments of TiO_2 powders with different calcination temperatures were also presented in this thesis. The highest photoactivity of wormhole-like mesoporous titania and uniformed nanocrystalline titania were presented at 400℃and 500℃, respectively. The hydrophilicity of wormhole-like mesoporous titania thin film was higher than that of uniformed nanocrystalline titania thin film, which can be ascribed to the structure of its porous nature. Both obtained samples presented higher hydrophilicity after being irradiated by high press Hg lamp. Furthermore, the wormhole-like mesoporous titania thin film produced photo-induced super hydrophilicity because of its porous structure and large surface area. CdS was deposited on the wormhole-like mesoporous titania thin film electrode through electrodeposition method. The photocurrent action spectra of ITO/TiO_2/CdS composites thin film demonstrated that CdS was successfully deposited on the surface and in the hole of mesoporous titania thin film. Furthermore, the range of photoelectricity response extended to visible light region and photocurrent increased obviously. The absorption intensity of ITO/TiO_2/CdS composites thin film increased and the absorption edge showed red shift obviously, the results demonstrated the formation of TiO_2-CdS heterojunction. In conclusion, the exciting wavelength was extended to visible light region and the utilization efficiency of sun light was enhanced.
引文
[1]Everett D H.IUPAC:Manual of symbols and terminology.Appendix Ⅱ:Definitions,terminology and symbols in colloid and surface chemistry-part 1,Colloid and surface chemistry.Pure Appl Chem,1972,31:577-638P
    [2]Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature,1992,359(6397):710-712P
    [3]王连洲,施剑林,禹剑等.介孔氧化硅材料的研究进展.无机材料学报,1999,14(3):333-341页
    [4]Antonelli D M,Ying J Y.Synthesis of hexagonally packed mesoporous TiO_2 by a modified sol-gel method.Angew Chem Int Edit,34(18):2014-2017 P
    [5]Zhang Z,Han Y,Zhu L et al.Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure.Angew Chem Int Edit,2001,40(7):1258-1362P
    [6]Stucky G D,Leon R.Generalized synthesis of periodic surfacant/inorganic-composite material.Nature,1994,368:317-321P
    [7]Lin H P,Mou C Y.Tubules-in-tubule hierarchical order of mesoporous molecular sieves in MCM-41.Science,1998,282:1302-1305P
    [8]王彤文,陈旌蕾,戴乐蓉.混合表面活性剂模板法合成立方相介孔含钛氧化硅.物理化学学报,2000,16(5):385-388页
    [9]Edler K J,White J W.Room-temperature formation of molecular sieve MCM-41.J Chem Soc,Chem Commun,1995:155-156P
    [10]Chatterjee M,Iwasaki T,Hayashi H et al.Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41.Catal Lett,1998,52:21-23P
    [11]赵杉林,张扬健,孙桂大等.钛硅沸石分子筛Ti-MCM-41的微波合成与表征.催化学报,1999,20(1):139-141页
    [12]张扬健,赵杉林,孙桂大等.W-MCM-48中孔分子筛的微波合成与表征.催化学报,2000,21(4):345-349页
    [13]张迈生.XRD粉末衍射法研究全微波辐射法合成的MCM-41介孔分子筛.无机化学学报,2000,16(1):119-122页
    [14]Lin W,Chen J,Sun Y et al.Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel.J Chem Soc,Chem Commun,1995,2367-2369P
    [15]Fyfe C A,Fu G.Structure organization of silicate polyanions with surfactants:a new approach to the syntheses,structure transformations,and formation mechaniamsof mesostructural materials.J Am Chem Soc,1995,117:9709-9714P
    [16]Gallis K W,Landry C C.Synthesis of MCM-48 by a phase transformation process.Chem Mater,1997,9:2035-2038P
    [17]MacLachlan M J,Coombs N,Ozin G A.Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from(Ge_4S_(10))4-clusters.Nature,1999,397:681-684P
    [18]窦涛.杂原子B-ZSM-35沸石的干法合成、表征及CO+H_2反应性能的研究.燃料化学学报,1997,25(1):16-20页
    [19]Yang P,Zhao D,Margolese D I et al.Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks.Nature,1998,396:152-155P
    [20]Holland B T,Isbester P K,Blandford C F et al.Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate eluster/surfacant salts as precursors.J Am Chem Soc,1997,119:6796-6803P
    [21]李军,龙英才.一种气相合成Silicalite-1沸石膜的新方法.高等化学学报,2000,(2):179-181页
    [22]张雄福,王金渠,殷德宏等.多孔陶瓷基膜上合成ZSM-5沸石膜新方法.大连理工大学学报,2000,6(40):672-675页
    [23]周群.导向剂法合成的晶化机制研究.高等化学学报,2000,21(1):1-4页
    [24]Ulgappan N,Rao C N R.Mesoporous phases based on SnO2 and TiO_2.Chem Commun,1996:1685-1686P
    [25]Rouquerol F,Rouquerol J,Sing K.Adsorption by powders and porous solids,principles,methodology and applications.Academic Press,London,1999:205-207P
    [26]Srdanow V I,Alxneit I,Stucky G D et al.Optical properties of GaAs confined in the pores ofMCM-41.J Phys Chem B,1998,102:3341-3344P
    [27]Ciesla U,Schuth E Ordered mesoporous materials,micro and meso mater,1999,27:131-142P
    [28]Chen C Y,Burkett S L,Li H X,Davis M E.Studies on mesoporous materials:Ⅰ,synthesis and characterization of MCM-41.Microporous Mater,1993,2:17-26P
    [29]Monnier A,Schuth F,Huo Q,Kumar D,Margolese D,Maxwell R S,Stucky G D,Krishnamurty M,Petroff P,Firouzi A,Janicke M,Chmelka B F.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures.Science,1993,261(5126):1299-1303P
    [30] Huo Q, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P, Leon R,Petroff P M, Schuth F, Stucky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater, 1994,6,1176-1181P
    [31] Chu C T, Husain A, Huss J A, Kresge C T, Roth W J. Isoparaffin-olefin alkylation process with zeolite MCM-36. 1993, USP No. 5258569
    [32] Mitsubishi I J. VOC Recovery Process, Mitsubishi Heavy Industries Ltd,1996, 33-36P
    [33] Beck J S, Calabro D C, McCullen S B, Pelrine B P, Schmitt K D, Vartuli J C. Sorption separation over modified synthetic mesoporous crystalline material. USP No. 5,220,101,1993: 104-105P
    [34] Lim M H. Comparative studies of grafting and direct synthesis of inorganic-organic hybrid mesoporous materials. Chem Mater, 1999,11(11): 3285-3295P
    [35] Zhao X S, Lu G. Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study. J Phys Chem B, 1998, 102:1556-1561P
    [36] Bambrough C M, Slade R C T, Williams R T, Burkett S L, Sims S D, Mann S. Sorption of nitrogen, water vapor, and benzene by a phenyl-modified MCM-41 sorbent. J Colloid Interace Sci, 1998,201: 220-223P
    [37] Claire M B, Robert C T S, Ruth T W. Synthesis of a large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption. J Mater Chem, 1998, 8 (3): 569-571P
    [38] Brieler F J, Grundmann P, Froba M, Chen L, Klar P J, Heimbrodt W, Krug von Nidda H A, Kurz T, Loidl A. Size Dependence of the magnetic and optical properties of Cd1-xMnxS nanostructures confined in mesoporous silica. Chem Mater, 2005,17(4): 795-803P
    [39] Anedda A, Carbonaro C M, Clemente F, Corpino R, Ricci P C. Time resolved ultraviolet photoluminescence of mesoporous silica. J Phys Chem B, 2005,109(3): 1239-1242P
    [40] Yang C M, Cho A T, Pan F M, Tsai T G, Chao K J. Spin-on mesoporous silica films with ultralow dielectric constants, Ordered pore structures, and hydrophobic surfaces. Adv Mater, 2001,13: 1099-1102P
    [41] Baskaran S, Liu J, Domansky K, Kohler N, Li X, Coyle C, Fryxell G. E,Thevuthasan S, Williford R E. Low dielectric constant mesoporous silica films through molecularly templated synthesis. Adv Mater, 2000, 12:291-294P
    [42] Wang Y Q, Chen S G, Tang X H, Palchik O, Zaban A, Koltypin Y,Gedanken A, Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells. J Mater Chem, 2001, 11:521-526P
    [43] Emons T T, Li J, Nazar L F. Synthesis and characterization of mesoporous indium tinoxide possessing an electronically conductive framework. J Am Chem Soc 2002,124: 8516-8517P
    [44] He X, Trudeau M, Antonelli D. Electronic properties of novel mixed oxidation-state bis-arene chromium nanowires supported by a mesoporous niobium oxide host. Adv Mater, 2000, 12: 1036-1040P
    [45] He X, Trudeau M, Antonelli D. Bis(cyclopentadienyl)chromium and bis-(cyclopentadienylvanadium) composites of mesoporous niobium oxide with pseudo-one-dimensional organometallic wires in the pores. Chem Mater, 2001, 13: 4808-4816P
    [46] Ye B, Trudeau M, Antonelli D. Synthesis and electronic properties of potassium fulleride nanowires in a mesoporous niobium oxide host. Adv Mater, 2001,13:29-33P
    [47] Ye B, Trudeau M, Antonelli D. Observation of a double maximum in the dependence of conductivity on oxidation state in potassium fulleride nanowires supported by a mesoporous niobium oxide host lattice. Adv Mater, 2001,13:561-565P
    [48] He X, Antonelli D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angew Chem Int Ed Engl,2002,41:214-229P
    [49] Han Y, Stucky G. D, Butter A. Mesoporous silicate sequestration and release of proteins. J Am Chem Soc, 1999,121: 9897-9898P
    [50] Zhao J, Gao F, Fu Y, Jin W, Yang P, Zhao D. Biomolecule separation using large pore mesoporous PTO-1 as a sunstrate in high performance liquid chromatography. Chem Commun, 2002: 752-753P
    [51] Gao F, Zhao J, Zhang S, Zhou F, Zhang X, Yang P, Zhao D Y. The application of mesoporous PTO-1 to separate thiol complexes as static phase in liquid chromatogram. Chem J Chin Univ, 2002,23: 1494-1599P
    [52] Balkus K J Jr, Sherry A D, Young S W. Zeolite-enclosed transition and rare earth metal ions as contrast agents for the gastrointestinal tract. USP, No.5122363,1992
    [53] Balkus K J Jr, Bresinska L, Kowalak S, Young S W. The application of molecular seives as magnetic resonance image contrast agents. Mater Res Soc Symp Ser Proc, 1991, 223: 225-230P
    [54] Mai N, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 2003, 421: 350-353P
    [55]Wang Z,Haasch R T,Lee G U.Mesoporous membrane device for asymmetric biosensing.Langmuir,2005,21(4):1153-1157P
    [56]Wang A,Suna W,Wahler R,Kasowski.PbS in polymers frorr molecules to bulk solids.J Chem Phys,1987,87:7315-7322P
    [57]Ills A,Morris S,Davies R.Photomineralization of 4-chlorophenol sensitized by titanium dioxide;a study of the intermediates.J Photochem Phctohicl A-Chem,1991,70:183-187P
    [58]Spanhel M,Hasse H,Weller et al.Photochemisry of colloidal semiconductors,20.Surface modification and stability of strong lunminescing US particles,J Am Chem Soc,1987,109:5649-5655P
    [59]天赤,路嫔,车丕智,辛显双,周百斌.纳米材料的特性及其在催化领域的应用.哈尔滨商业大学学报(自然科学版),2003,4期:45-47页
    [60]光焕竹,郝东凯,王安齐,杨陪霞,赵春梅.纳米材料的研究和进展.哈尔滨商业大学学报(自然科学版),2002,(04):104-105页
    [61]Ekimov A I,Efros A L,Onushchenko A A.Quantum size effect in semiconductor microcrystals.Solid State Commun,1985,56(11):921-930P
    [62]Niklasson G A.Optical properties of square lattices of gold nanoparticles.Nanostructured Mater,1999,11(12):725-729P
    [63]严东生,冯瑞,纳米新星—纳米材料科学,长沙,湖南科学技术出版社,1997,17:144-148页
    [64]Landau L D,Lifshits E M,Quantum Mechanics,Non-relativistic Theory,New York:Pergamon Press,1977:178-179P
    [65]王强,郑萍,李海燕,谢笑天.纳米材料的应用进展.山东化工,2003, (05):21-23页
    [66]刘兴芝,房大维,王鲁宁,关英寻,董志国,司伟,陈林,臧树良.纳米材料及其应用.辽宁大学学报(自然科学版),2004,(01):91-96页
    [67]郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展.化学通报,1996,(3):1-4页
    [68]张立德.我国纳米材料研究的现状.中国粉体技术,2001,7(5):1-5页
    [69]Linsebiger A L,Lu G,Yates J W.Photocatalysis on TiO2 Surface:Principles,mechanism and selected results.Chem Rev,1995,95(3):735-758P
    [70]Hoffmann M R,Martin S T et al.Environmental application of semiconductor photocatalysis.Chem Rev,1995,95(1):69-96P
    [71]Goswami D Y.A review of engineering developments of aqueous phase solar photocatalytic detoxifieation and disinfection processes.Solar Energy Eng,1997:119-123P
    [72]高善民,孙树声,刘兆明,纳米材料在化工生产中的应用,化工技术经济,2000,18(5):10-12页
    [73]Jimmy C Y,Lizhi Z,Jiaguo Y.Rapid synthesis of mesoporous TiO_2 with high photocatalytic activity by ultrasound-induced agglomeration.New J Chem,2002,26(4):416-420P
    [74]Saul C,Jamal E H.Generalised syntheses of ordered mesoporous oxides:the atrane route.Solid State Sciences,2000,2:405-420P
    [75]Antoneli D M,Ying J Y.Synthesis ofhexagonally packed mesoporous TiO_2by a modified sol-gel method.Angew Chem Int Ed Engl,1995,34(18):2014-2017P
    [76]Trong D.A simple route for the synthesis of mesostructured lamellar and hexagonal phosohorus-free titania(TiO_2).Langmuir,1999,15:8561-8564P
    [77]Yusuf M M,Imai H,Hirashima H.Preparation of mesoporous TiO_2 thin films by surfactant templating.J Non-Cryst Solids,2001,285:90-95P
    [78]Miyake Y,Kondo T.Mesoporous titania prepared in the presence of alkylamine.J Chem Eng Jpn,2001,34(3):319-325P
    [79]Kluson P,Kacer P.Preparation of titania mesoporous materials using surfactant-mediated sol-gel method.J Mater Chem,2001,11:644-651P
    [80]Stathatos E,Lianos P.Formation of TiO_2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates.Langmuir,1997,13(16):4295-4300P
    [81]Yinghong Y,Zi Gao.Synthesis of mesoporous TiO2 with a crystalline framework.Chem Commun,2000,18:1755-1756P
    [82]David G.,Galo J A A.Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels.Adv Mater,2001,13(14):1085-1090P
    [83]郑金玉,丘坤元,危岩.有机小分子模板法合成二氧化钛中孔材料.高等学校化学学报,2000,21(4):647-649页
    [84]Jinyu Z,Jiebin P.Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template.J Mater Chem,2001,11:3367-3372P
    [85]Soler-Illia G J,Louis A,Sanchez C.Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly.Chem Mater,2002,14(2):750-759P
    [86]Cabrera S,Haskouri J E.Enhanced surface area in thermally stable pure mesoporous TiO_2.Solid State Sciences,2000,2:513-518P
    [87]Wang Y Q,Chen S G.Mesoporous titanium dioxide:Sonochemical synthesis and application in dye-sensitized solar cells.J Mater Chem,2001, 11: 521-526P
    
    [88] Lianzhou W, Shinji T. Synthesis of mesoporous TiO_2 spheres under static condition. Chem Lett, 2000,12: 1414-1415P
    [89] Yoshitake H, Sugihara T, Tatsumi T. Preparation of wormhole-like mesoporous TiO_2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem Mater, 2002, 14(3):1023-1029P
    [90] Dai Q, He N, Guo Y. High photocatalytic activity of pure TiO_2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophenol. Chem Lett,1998,11:1113-1114P
    [91] Jimmy C Y, Jiaguo Y, Jincai Z. Enhanced photocatalytic activity of mesoporous and ordinary TiO_2 thin films by sulfuric acid treatment. Appl Catal B: Environ, 2002, 36(1): 31-37P
    [92] Elias S, Tatyana P, Panagiotis L. Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films. Langmuir, 2001,17(16): 5025-5036P
    [93] Hagfeldt A, Gratzel M. Molecular photovoltaics. Acc Chem Res, 2000,33(5): 269-277P
    [94] Gratzel M. Molecular photovoltaics that mimic photosynthesis. Pure Appl Chem, 2001, 73(3): 459-472P
    [95] Adachi M, Murata Y, Harada M, Yoshikawa S. Formation of titania nanotubes with high photo-catalytic activity. Chem Lett, 2000, 8: 942-943P
    [96] O'Regan B, Moser J, Anderson M, Gratzel M. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. Phys Chem 1990, 94:8720-8724P
    [97]Sinke W C,Wienk M M.Photochemistry-solid-state organic solar cells.Nature,1998,395:544-545P
    [98]Zhang Z B,Wang C C,Zakaria R,Ying J Y.Role of particle size in nanocrystalline TiO_2-based photocatalysts.Phys Chem,1998,102:10871-10878P
    [99]Subbian K,Dinesh P A,Koichi Y,Cathodic electrodeposition of TiO_2 thin films for dye-sensitized photoelectrochemical applications.Chem Lett,2001,1:78-80P
    [100]Peter S,Ralf M,Lorenz W.Liquid density response of a quartz crystal microbalance modified with mesoporous titanium dioxide,Anal Chem,1999,71(16):3305-3311P
    [101]Xun He,David A.Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves.Angew Chem Int Ed,2002,41:214-229P
    [102]陈国华,王光信.电化学方法应用.北京:化学工业出版社,2003:350-351页
    [103]熊毅,荆天辅,张春江等.喷射电沉积纳米晶镍的研究.电镀与精饰,2000,22(5):14-19页
    [104]周绍民.金属电沉积.上海:上海科技技术出版社,1987:156-168页
    [105]邓妹皓,龚竹青,陈文汩.电沉积纳米晶体材料的研究现状与发展.2001,20(4):35-41页
    [106]安茂忠,王文林,杨哲龙.电沉积法制备功能性金属化合物薄膜.功能材料,1999,30(6):585-587页
    [107]Knkamp R,Emst K,Fisher CH H,Lux-Steiner M C et al.Semiconductor growth and Junction formation within nano-porous oxides.Phys Stat Sol(a)2000,151:182-183P
    [108] Rost C, Sieber I, Fischer C et al. Semiconductor growth on porous substrates. Mater Sci Eng B, 2000, 69-70: 570-573P
    [109] Tennakone K, Kumara GR R A, Kottegoda I R M et al. Nanoporous n-TiO_2/selenium/p-CuCNS photovoltaic cell. J Phys D: Appl Phys 1998(31): 106-109P
    [110] Pacheco G, Zhao E, Garcia A. Mesoporous zirconia obtained by anionic templates. Chem Commun, 1997: 491-492P
    [111] Monnier A, Schuth F, Huo Q. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261:1299-1301P
    [112] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992,114: 10834-10836P
    [113] Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science, 1995,267: 865-869P
    [114] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature,1994, 368: 321-325P
    [115] Bagshaw S A, Pinnavaia T J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 1995, 268:1242-1246P
    [116] Huo Q S, Margolese D L, Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R,Petroff P M, Schuth F, Stucky G. D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994, 378: 317-319P
    [117] Huo Q S, Leon R, Petroff P M, Stucky G D. Mesostructure design with Gemini surfactants: supercage formation in a three-dimensional hexagonal structure. Science, 1995, 268: 1324-1326P
    [118] Hoffmann M R, Martin S T. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995,95: 69-96P
    [119] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995,95(1): 49-68P
    [120] Davidson A. Modifying the walls of mesoporous silicas prepared by supramolecular templating. Curr Opinion Colloid Interf Sci, 2002, 7:92-106P
    [121] Melosh N A, Lipic P, Bates F A, Wudl F, Stucky G D, Chmelka B F.Molecular and mesoscopic structures of transparent block copolymer-silica monoliths. Macromolecules, 1999, 32: 4332-1436P
    [122] Simon P F W, Ulrich R, Spiess H W, Wiesner U. Block copolymer ceramic hybrid materials from organically modified ceramic precursors. Chem Mater, 2001,13(10): 3464-3486P
    [123] Kruk M, Jaroniec M, Ko C H, Ryoo R. Characterization of the porous structure of SBA-15. Chem Mater, 2000,12(7): 1961-1968P
    [124] Yang P, Zhao D, Margolese D I, Chmelka B F, Stucky G D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater, 1999, 11:2813-2826P
    [125] Soler-Illia GJAA, Scolan E, Louis A, Albouy P A, Sanchez C. Design of mesostructured titanium oxo based hybrid organic. inorganic networks.New J Chem, 2001,25: 156-165P
    [126] Kriesel J W, Tilley T D. General route to homogeneous, mesoporous,multicomponent oxides based on the thermolytic transformation of molecular precursors in non-polar media. Adv Mater, 2001, 13: 331-335P
    [127] Grosso D, Soler-Illia GJAA, Babonneau F. Highly organised mesoporous titania thin flms showing monooriented 2D hexagonal channels. Adv Mater, 2001,13: 1085-1090P
    [128] Crepaldi E L, Soler-Illia GJAA, Grosso D, Albouy P A, Sanchez C. Design and post-functionalisation of highly ordered mesoporous zirconia thin films. Chem Commun, 2001,1582-1583P
    [129] Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem Commun, 2000,1661-1662P
    [130] Yu C, Tian B, Fan J, Stucky G D, Zhao D. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J Am Chem Soc, 2002,124: 4556-4557P
    [131] Liu Y, Pinnavaia T J. Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chem Mater, 2002,14: 3-5P
    [132] On D T, Kaliaguine S. Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates. Angew Chem Int Ed, 2002,41: 1036-1040P
    [133] Yang P, Deng T, Zhao D. Hierarchically ordered oxides. Science, 1998,282: 2244-2246P
    [134] Zhao D, Yang P, Chmelka B F, Stucky G D. Multiphase assembly of mesoporous-macroporous membranes. Chem Mater, 1999,11: 1174-1178P
    [135] Grosso D, Balkenende A R, Albouy P A, Ayral A, Amenitsch H,Babonneau F. Two-dimensional hexagonal mesoporous silica thin films prepared from block copolymers: detailed characterization and formation mechanism. Chem Mater, 2001,13: 1848-1856P
    [136] Patarin J, Lebeau B, Zana R. Recent advances in the formation mechanisms of organized mesoporous materials. Curr Opinion Colloid SrufXci,2002,7:107-115P
    [137] Suzuki H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and process for production thereof. US Patent No.4699892,1987
    [138] Seki K. Design of an absorbent with an ideal pore structure for methane adsorption using metal complexes. Chem Commun, 2001,1496-1497P
    [139] Forster S, Antonietti M. Amphiphilic block copolymers in structure controlled nanomaterial hybrids. Adv Mater, 1998,10: 195-198P
    [140] Matijevic E. Uniform inorganic colloid dispersions, achievements and challenges. Langmuir, 1994,10: 8-9P
    [141] Fendler J H, Meldrum F C. The colloid chemical approach to nanostructured materials. Adv Mater, 1995, 7: 607-608P
    [142] Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. Catal Commun, 2005, 6:119-120P
    [143] Kumar S, Fedorov A G, Gole J L. Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries. Appl Catal B-Envir, 2005, 57: 93-96P
    [144] Bakardjieva S, Subrt J, Stengl V, Dianez M J, Sayagues M J. Photoactivity of anatase-rutile TiO_2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B-Envir, 2005, 58:193-195P
    [145] Peiro A M, Peral J, Domingo C, Domenech X, Ayllon J A.Low-temperature deposition of TiO_2 thin films with photocatalytic activity from colloidal anatase aqueous solutions. Chem Mater, 2001, 13(8):2567-2573P
    [146] Guo Y G, Hu J S, Liang H P, Wan L J, Bai C L. TiO_2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater,2005,15: 196-199P
    [147] Caruso R A, Antonietti M, Giersig M, Hentze H P, Jia J G. Modification of TiO_2 network structures using a polymer gel coating technique. Chem Mater, 2001, 13: 1114-1116P
    [148] Gratzel M. Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid & Interface Science, 1999,4: 314-317P
    [149] Yuwono A H, Xue J M, Wang J, Elim H I, Ji W, Li Y, White T J.Transparent nanohybrids of nanocrystalline TiO_2 in PMMA with unique nonlinear optical behavior. J Mater Chem, 2003,13: 1475-1477P
    [150] Beck J S, Vartuli J C. The post-preparation of mesoporous Zr-MCM-41 via grafting reaction. Current Option in Solid State and Mater Sci, 1996, 1:76-78P
    [151] Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 1996, 271: 1267-1269P
    [152] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F,Stucky G D. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548-553P
    [153] Sayari A, Karra V R, Reddy J S, Moudrakovski J. Synthesis of mesostructured lamellar aluminophosphates. Chem Commun, 1996,411-414P
    [154] Kimura T, Sugahara Y, Kuroda K. Synthesis of a Hexagonal Mesostructured Aluminophosphate. Chem Lett, 1997: 983-986P
    [155] Feng P, Xia Y, Feng, J, Bu X, Stucky G D. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route. Chem Commun,1997: 949-953P
    [156] Tiemann M, Fro¨ba, M, Rapp G, Funari S. Nonaqueous synthesis of mesostructured aluminophosphate/surfactant composites: Synthesis,characterization, and in-Situ SAXS studies. Chem Mater, 2000, 12:1342-1346P
    [157] Chakraborty B, Pulikottil A C, Das S, Viswanathan B. Synthesis and characterization of mesoporous SAPO. Chem.Commun, 1997: 911-915P
    [158] Zhao D, Luan Z, Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. Chem Commun, 1997:1009-1012P
    [159] Khimyak Y Z, Klinowski J. Synthesis of mesostructured aluminophosphates using cationic templating. Phys Chem Chem Phys,2000,2: 5275-5285P
    [160] Kimura T, Sugahara Y, Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents. Chem Mater, 1999, 11: 508-511P
    [161] Holland B T, Isbester P K, Blanford C F, Munson E J, Stein A. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors. J Am Chem Soc, 1997, 119(29):6796-6803P
    [162] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves.Angew Chem Int Ed, 1996, 35: 1102-1107P
    [163] Carbrera S, El Haskouri J, Alamo J, Beltran A, Beltran D, Mendioroz S,Dolores Marcos M, Amoros P. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. Adv Mater, 1999, 11:379-382P
    [164] Huo Q, Margolese D, Ciesla U, Demuth D, Feng P, Gier T, Sieger P,Firouzi A, Chmelka B, Schuth F, Stucky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater, 1994,61: 176-179P
    [165] Attard G S, Glyde J C, Goltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378: 366-371P
    [166] Che S, Garcia-Bennett A E, Yokoi T, Sakamoto K, Kunieda H, Terasaki O,Tatsumi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Mater, 2003, 2: 801-805P
    [167] Garcia-Bennett A E, Terasaki O, Che S, Tatsumi T. Structural investigations of AMS-n mesoporous materials by transmission electron microscopy. Chem Mater, 2004,16: 813-817P
    [168] Vaudry F, Khodabandeh S, Davis M E. Synthesis of pure alumina mesoporous materials. Chem Mater, 1996, 8: 1451-1454P
    [169] Yada M, Machida M, Kijima T. Sythesis and deorganization of an aluminium-base dodecyl sulfate mesoporous with a hexagonal structure.Chem Commun, 1996: 769-772P
    [170] Yada M, Ohya M, Machida M, Kijima T. Yttrium-based porous materials templated by anionic surfactant assemblies. Chem Commun, 1998:1941-1946P
    [171] Yada M, Ohya M, Ohe K, Machida M, Kijima T. Porous yttrium aluminum oxide templated by alkyl sulfate assemblies. Langmuir, 2000, 16:1535-1538P
    [172] Yada M, Ohya M, Machida M, Kijima T. Mesoporous gallium oxide structurally stabilized by yttrium oxide. Langmuir, 2000,16: 4752-4755P
    [173] Valange S, Guth J L, Kolenda F, Lacombe S, Gabelica Z. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Microporous Mesoporous Mater, 2000,35-36: 597-601P
    [174] Zhao D, Goldfarb D. Synthesis of lamellar mesostructures with nonamphiphilic mesogens as templates. Chem Mater, 1996, 8: 2571-2575P
    [175] Hatayama H, Misono M, Taguchi A, Mizuno N. Hydrothermal synthesis of cubic mesostructured vanadium-phosphorus oxide. Chem Lett 2000:884-887P
    [176] Shimojima A, Kuroda K. Direct formation of mesostructured silica-based hybrids from novel siloxane oligomers with long alkyl chains. Angew Chem Int Ed, 2003,42: 4057-4059P
    [177] Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O and Tatsumi T. Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429:281-285P
    [178] Farneth W E, Herron N, Wang Y. Bulk semiconductors from molecular solids: a mechanistic investigation. Chem Mater, 1992, 4(4): 916-922P
    [179] Brezesinski T, Erpen C, Iimura K I, Smarsly B. Mesostructured crystalline ceria with a bimodal pore system using block copolymers and ionic liquids as rational templates. Chem Mater, 2005,17(7): 1683-1690P
    [180] Blanchard J, Schuth F, Trens P, Hudson M. Synthesis of hexagonally packed porous titanium oxo-phosphate. Microporous Mesoporous Mater,2000, 39:163-167P
    [181] Romannikov V N, Fenelov V B, Paukshtis E A, Derevyankin A,Zaikovskii V I. esoporous basic zirconium sulfate: structure, acidic properties and catalytic behaviour. Microporous Mesoporous Mater, 1998,21:411-414P
    [182] Antonelli D M, Ying J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves. Chem Mater, 1996,8(4): 874-881P
    [183] Luo J, Suib S L. Formation and transformation of mesoporous and layered manganese oxides in the presence of long-chain ammonium hydroxides.Chem Commun, 1997: 1031-1035P
    [184] Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L.Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science, 1997, 276: 926-929P
    [185] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies. Nature, 1996, 380: 325-329P
    [186] Osenar P, Braun P V, Stupp S I. Lamellar semiconductor-organic nanostructures from self-assembled templates. Adv Mater, 1996, 8:1022-1025P
    [187] Tohver V, Braun P V, Pralle M U, Stupp S I. Counterion effects in liquid crystal templating of nanostructured CdS. Chem Mater, 1997, 9(7):1495-1498P
    [188] Rangan K K, Billinge S J L, Petkov V, Heising J, Kanatzidis M G.Aqueous mediated synthesis of mesostmctured manganese germanium sulfide with hexagonal order. Chem Mater, 1999,11(10): 2629-2632P
    [189] MacLachlan M J, Coombs N, Bedard R L, White S, Thompson L K, Ozin G A. Mesostructured metal germanium sulfides. J Am Chem Soc, 1999,121:12005-12009P
    [190] Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B,2000,104(19):4815-4820P
    [191] Yun H S, Miyazawa K, Zhou H S, Honma I, Kuwabara M. Synthesis of mesoporous thin TiO_2 films with hexagonal pore structures using triblock copolymer templates. Adv Mater, 2001,13(18): 1377-1380P
    [192] Wu L, Yu J C, Zhang L Z, Wang X C, Ho W K. Preparation of a highly active nanocrystalline TiO_2 photocatalyst from titanium oxo cluster precursor. J Solid State Chem, 2004,177(7): 2584-2590P
    [193] Bersani D, Lottici P P, Ding X Z. Phonon confinement effects in the Raman scattering by TiO_2 nanocrystals. Appl Phys Lett, 1998, 72(1):73-75P
    [194] Brioude A, Lequevre F, Mugnier J, Dumas J, Guiraud G, Plenet J C.Raman spectroscopy of sol-gel ultrathin films enhanced by surface plasmon polaritons. J Appl Phys, 2000, 88(11): 6187-6191P
    [195] Choi S Y, Mamak M, Coombs N, Chopra N, Ozin G A. Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase,meso-nc-TiO_2: Bulk and crack-free thin film morphologies. Adv Funct Mater, 2004,14(4): 335-344P
    [196] Djaoued Y, Badilescu S, Ashrit P V, Bersani D, Lottici P P, Robichaud J.Study of anatase to rutile phase transition in nanocrystalline titania films. J Sol-Gel Sci Technol, 2002, 24(3): 255-264P
    [197] Nagaveni K, Hegde M S, Ravishankar N, Subbanna G N, Madrao G.Synthesis and structure of nanocrystalline TiO_2 with lower band gap showing high photocatalytic activity. Langmuir, 2004,20(7): 2900-2907P
    
    [198] Peng T Y, Zhao D, Song H B, Yan C H. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. J Mol Catal A, 2005,238(1-2): 119-126P
    
    [199] Yu J C, Zhang L Z, Zheng Z, Zhao J C. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.Chem Mater, 2003,15(11): 2280-2286P
    
    [200] Crepaldi E, Soler-Illia G J A A and Sanchez C. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO_2. J Am Chem Soc, 2003, 125:9770-9776P
    
    [201] Cagnol F, Grosso D, Soler-Illia G J d A A, Crepaldi E L, Babonneau F,Amenitsch H and Sanchez C. Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J Mater Chem, 2003,13: 61-75P
    
    [202] Soler-Illia G J d A A and Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic-inorganic composites. New J Chem, 2000, 24: 493-495P
    
    [203] Soler-illia G J D, Sanchez C, Lebeau B and Patarin J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev, 2002 102:4093-4096P
    [204]Forster S,Antonietti M.Amphiphilic block copolymers in structure-controlled nanomaterial hybrids.Adv Mater,1998,10:195-199P
    [205]伍越寰.有机结构分析.合肥:中国科学技术大学出版社,1993,2:212-218页
    [206]Horikoshi S,Hidaka H.Serpone N.Environmental remediation by an integrated microwave/UV-illumination method.Microwave-assisted degradation of Rhodamine-B dye in aqueous TiO_2 dispersions.Environmental Science & Technology,2002,36(6):1357-1366P
    [207]高伟,吴凤清,罗臻,富菊霞,王德军,徐宝琨.TiO_2晶型与光催化活性关系的研究.高等学校化学学报,2001,22(4):660-662页
    [208]Bilmes S A,Mandelbaum P,Alvarez F,Victoria N M.Surface and Electronic Structure of Titanium Dioxide Photocatalysts,J Phys Chem B,2000,104:9851-9856P
    [209]Wang R,Hashimoto K,Fujishima A,Chikuni M,Kojima E,Kitamura A,Shimohigoshi M,Watanabe T.Light-induced amphiphilic surfaces.Nature 1997,388:431-436P
    [210]Wang R,Hashimoto K,Fujishima A,Chikuni M,Kojima E,Kitamura A,Shimohigoshi M,Watanabe T.Photogeneration of highly amphiphilic TiO_2surfaces.Adv Mater,1998,10:135-138P
    [211]Wang R,Sakai N,Fujishima A,Watanabe T,Hashimoto K.Studies of surface wettability conversion on TiO_2 single-crystal surfaces.J Phys Chem B,1999,103:2188-2191P
    [212]Sakai N,Wang R,Fujishima A,Watanabe T,Hashimoto K.Effect of ultrasonic treatment on highly hydrophilic TiO_2 surfaces.Langmuir,1998,14:5918-5921P
    [213] Fujishima A, Hahimoto K, Watanabe T. TiO_2 photocatalysis:fundamentals and applications, BKC Inc: Tokyo, Japan, 1999: 415-431P
    [214] Shibuchi S, Onda T, Satoh N, Tsuji K. Super water-repellent surfaces resulting from fractal structure. J Phys Chem, 1996,100: 19512-19517 P
    [215] Youngblood J P, McCarthy T. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. J Macromolecules,1999, 32: 6800-6806P
    [216] Wu Y, Sugimura H, Inoue Y, Takai O. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD. Chem Vap Deposition, 2002, 8: 47-50P
    [217] Coupe B, Evangelista M E, Yeung R M, Chen W. Surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) by adsorption of functional polymers. Langmuir, 2001,17: 1956-1960P
    [218] Tadanaga K, Katata N, Minami T. Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method. J Am Chem Soc, 1997, 80: 3213-3229P
    [219] Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A. Transparent superhydrophobic thin films with self-cleaning properties.Langmuir, 2000,16: 7044-7047P
    [220] Feng L, Li S H, Li H J, Zhai J, Song Y L, Jiang L, Zhu D B.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed, 2002,41: 1221-1225P
    [221] Wolansky G, Marmur A. The actual contact angle on a heterogeneous rough surface in three dimensions. Langmuir, 1998, 14: 5292-5296P
    [222]Swain P S,Lipowsky R.Contact angles on heterogeneous surfaces:A new look at Cassie's and Wenzel's laws.Langmuir,1998,14:5772-6778P
    [223]Gu Z Z,Uetsuka H,Takahashi K,Nakajima R,Onishi H,Fujishima A,Sato O.Structural color and the lotus effect.Angew Chem Int Ed,2003,42:894-897P
    [224]Feng L,Song Y,Zhai J,Liu B,Xu J,Jiang L,Zhu D.Creation of a superhydrophobic surface from an amphiphilic polymer.Angew Chem Int Ed,2003,42:800-802P
    [225]Serpon N,Pelizzetti E.Photocatalysis fundamentals and applications,Wiley-Interscience:Amsterdam,1989:143-145P
    [226]Ollis D E,Al-Ekabi H.Photocatalytic purification and treatment of water and air,Elsevier:Amsterdam,1993:341-343P
    [227]O'Regan B,Gr(a|¨)tzel M.A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films.Nature,1991,353:737-739P
    [228]Barthlott W,Neinhuis C.Complex dewetting scenarios captured by thin-film models.Nat Mater,2003,2:301-305P
    [229]曾人杰,林仲华,方志敏.光诱导纳米二氧化钛超亲水薄膜SMP图像和氧空位理论探讨.电化学,2001,7(4):413-420页
    [230]Hugenschrnidt M B,Gamble L,Campbell C T.The interaction of H_2O with a TiO_2(110) surface.Surf Sci,1994,302:329-340P
    [231]Hattori A,Kawahara T,Uemoto T,Suzuki F,Tada H,Ito S.Ultrathin SiOx film coating effect on the wettability change of TiO_2 surfaces in the presence and absence of UV light illumination.J Colloid Interface Sci,2000,232:410-415P
    [232]O'Neill S A,Parkin I P,Clark R J H,Mills A,Elliott N.Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass. J Mater Chem, 2003,13: 56-59P
    [233] Fox H W, Zisman W A, The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. J Colloid Sci,1950, 5: 514-518P
    [234] CarrO A, Gastel J C, Shanahan M E R, Viscoelastic effects in the spreading of liquids. Nature, 1996,379: 432-435P
    [235] Onda T, Shibuichi S, Satoh N, Tsujii K. Super-water-repellent fractal surfaces. Langmuir, 1996,12: 2125-2129P
    [236] Linsebigler A L, Lu G, Yates J T, Jr. Photocatalysis on TiO_2 surfaces:Principles, mechanisms, and selected results. Chem Rev, 1995, 95:735-739P
    [237] Chen J G NEXAFS investigations of transition metal oxides, nitrides,carbides, sulfides and other interstitial compounds. Surf Sci Rep, 1997, 30:1-6P
    [238] Murray P W, Condon N G, Thornton G Na adsorption sites on TiO_2(110)-1x2 and its 2x2 superlattice. Surf Sci Lett, 1995, 323: 281-290P
    [239] Rohrer G S, Henrich V E, Bonnell D A. Structure of the reduced TiO_2 (110) surface determined by scanning tunneling microscopy. Science, 1990,250:1239-1242P
    [240] Rusu C N, Yates J T, Jr. Defect sites on TiO_2(110). detection by O_2 photodesorption. Langmuir, 1997,13: 4311-4314P
    [241] Lu G, Linsebigler A, Yates J T, Jr. Ti~(3+) defect sites on TiO_2(110):production and chemical detection of active sites. J Phys Chem, 1994, 98:11733-11736P
    [242] Engel T. Toward a strategic surface science: progress and pitfalls.Langmuir, 1996,12: 1428-1431P
    [243]Sakai N,Fujishima A,Watanabe T,Hashimoto K.Enhancement of the photoinduced hydrophilic conversion rate of TiO_2 film electrode surfaces by anodic polarization.J Phys Chem B,2001,105:3023-3025P
    [244]Sakai N,Fujishima A,Watanabe T,Hashimoto K.Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO_2 thin film surfaces by the reciprocal of contact angle.J Phys Chem B,2003,107:1028-1031P
    [245]沈钟.胶体与表面化学.第三版,化工出版社:1990:195-198页
    [246]Wenzel R N.Resistance of solid surfaces to wetting by water.Ing Chem 1936,28:988-991P
    [247]Highfield J G,Gr(a|¨)tzel M.Discovery of reversible photochromism in titanium dioxide using photoacoustic spectroscopy:implications for the investigation of light-induced charge-separation and surface redox processes in titanium dioxide.J Phys Chem,1988,92:464-470P
    [248]Hugenschmidt M B,Gamble L,Campbell C T.The interaction of H_2O with a TiO_2(110) surface.Surf Sci,1994,302:329-335P
    [249]Henderson M A.Structural sensitivity in the dissociation of water on TiO_2single-crystal surfaces.Langmuir,1996,12:5093-5096P
    [250]Henderson M A.An HREELS and TPD study of water on TiO_2(110):The extent of molecular versus dissociative adsorption.Surf Sci,1996,355:151-155P
    [251]Campet G.,Azaicz C,Levy F,Bourezc H,Claverie J.A 22%efficient semiconductor/liquid junction solar cell-the photoelectrochemical behavior of n-WSe/sub2/electrodes in the presence of I/sub2//I/sup-/in aqueous electrolyte.Act Passive Electron Compon(UK),1988,13(1):33-43P
    [252]刘守新,孙承林.光催化剂TiO_2改性的研究进展.东北林业大学学报,2003,31(1):53-56页
    [253]Tomkiewicz M.Scaling properties in photocatalysis.Catal Today,2000,58:151-159P
    [254]Martra G.Lewis acid and base sites at the surface ofmicrocrystalline TiO_2anatase:relationships between surface morphology and chemical behavior.Appl Catal A,2000,200(2):275-283P
    [255]Serrano B,De Lasa H.Photocatalytic degradation of water organic pollutants:pollutant reactivity and kinetic modeling.Chemical Engineering Science,1999,54:3063-3069P
    [256]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展.环境科学进展,1997,5(3):1-10页
    [257]刘鸿.氢处理提高TiO_2光催化活性研究.博士后工作报告,大连:中科院大连化学物理研究所,2001:22-25页
    [258]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望.物理化学学报,2003,16(5):339-349页
    [259]彭峰,任艳群.提高二氧化钛光催化性能的研究进展.现代化工,2002,22(10):6-9页
    [260]吴凤霞,殷海荣,杨勇等.CdS敏化TiO_2薄膜的制备和光电转换性质的研究.佛山陶瓷,2001,6:10-12页
    [261]黄蔚曾.电化学与电分析化学.北京:北京大学出版社,1983:55-58页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700