用户名: 密码: 验证码:
CAN协议车载网络若干关键理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全、节能、环保以及汽车智能化的需求推动了汽车电子技术飞速发展,网络化成为近年来汽车电子领域最为重要的发展趋势。车载网络是基于分布式控制理念采用数字化网络作为汽车电子系统互连的手段,实现汽车控制系统的高效集成、实时协作以及可靠的综合性能监控,是汽车电子系统网络化设计的平台、汽车智能化的关键。控制器局域网络CAN协议是最先被国际ISO组织标准化的车载网络协议,是汽车电子系统互连最为有效的手段之一。因此深入研究CAN协议车载网络的关键理论及其应用对于汽车进一步电子化、网络化、智能化具有十分重要的技术意义和经济意义。
     CAN总线已经成为当今最成功的车载网络标准,被广泛应用于现代汽车控制中,但由于汽车应用环境的复杂性,CAN协议车载网络的安全(容错)性、实时性、可靠性以及带宽资源利用能力至今仍未能满足实际要求与发展需要。因此,除解决汽车强电磁干扰问题和网络本身电气故障外,如何提高网络的高效集成、如何针对不同应用设计网络调度算法提高网络实时性与灵活性、如何分析网络性能以保证网络可调度性与可靠性、如何提高带宽资源利用率,以及如何实现网络分析方法的可视化等问题都是CAN协议车载网络有待深入研究和解决的关键理论问题。
     本文开展了CAN协议车载网络若干关键理论及其应用的研究,取得了一下成果:
     1.车载网络系统的开发是一个分布式系统工程问题,涉及到节点开发、系统集成,信息交换、时间同步、功能协作和成本等多方面的因素,而且这些因素之间互相影响和制约。本文在分析现场总线集成理论基础上,提出了基于CAN协议的多层次车载网络集成策略,并在文献所提的总线级系统开发流程基础上,进一步提出了CAN协议车载网络级系统V字型系统工程开发方法,完善了整车网络级系统的系统集成策略。
     2.面对汽车车身电子系统网络要求高扩展灵活性,高带宽资源利用效率和软实时特性,对比研究了单信号帧装载与组合信号帧装载RM调度算法方案,并针对经典RMA分析指标不具备评价网络扩展灵活性指标问题,提出扩展灵活性因子,理论分析和仿真实验证明了组合信号帧装载RM调度可扩展灵活性、带宽资源可利用裕度、信息实时性均优于单信号帧装载方案。
     3.面对汽车动力传动系统网络要求严格实时协同、闭环时间触发以及高速容错特性,针对经典CAN方案不具备时间触发功能导致的信息协同能力差、传输不具有确定性、容错性差等问题,研究了时间触发的CAN (TTCAN)方案,并针对TTCAN系统矩阵构建多维复杂性问题,提出基于调度表的AL调度算法;进一步针对闭环时间触发应用,提出周期最糟糕抖动评价指标,经对比验证了所提方案在周期性信息传输确定性、实时性、容错性以及带宽资源利用方面优于经典CAN方案。
     4.在3、4研究工作基础上,面对汽车整车网络不同应用,分别研究了单一TTCAN网络方案和CAN-TTCAN双网组网方案,针对前者提出混合调度算法及相应分析理论,针对后者提出分网调度策略,并导出了相应性能分析方案,理论分析结果表明单一TTCAN网络调度能力强,资源利用率高,集成度好;双网方案结构信息间冲突机率小、成本较低。
     5.针对经典CAN协议扩展灵活性好、传输确定性差,TTCAN传输确定性强、灵活性差此类不平衡问题,为结合两方案优点,本文深入研究了柔性时间触发CAN(FTTCAN)协议原理,引入动态规划概念,设计了基于规划的调度策略,通过理论分析和实验验证了该方案在保证信息传输实时性能的前提下,具有扩展灵活性和确定性兼顾的平衡性、综合性特点。
     6.针对调度算法及性能分析理论过于复杂、难以应用问题,本文采用了可视化技术,针对经典RMA递推复杂性问题,推导出等效单步递推关系式,采用Matlab设计了可视化分析软件。汽车信息综合监控系统由于集成了多种信息的采集、处理和传送,传统的分立系统很难实现。针对此情况,本文设计了基于CAN网络互联的分布式结构,并采用上诉可视化分析软件分析了基于DM算法的网络性能,并依据上诉所提V字型开发策略,设计了实验测试系统,通过仿真和实际实验系统运行验证了该方案的优越性。
Safety、energy conservation、environmental protection and automotive intelligentizing are the driving factors of automotive electronics development. Networked vehicle becomes the main trend of vehicle field in recent years. Automotive network is the platform of automotive electrical system and integration design, and also the key of automotive intelligentizing. Researches on automotive network theories based on CAN protocol have the aim of interlinking automotive electrical systems by the work, realizing the high efficiency integration of automotive electric controlling system、real-time cooperation and dependable comprehensive controlling. These researches have profound significances on technology and economy.
     Till now CAN have already become the most successful standard of automotive network. But concerning the complicated vehicle utilization environment, there remains demanding on security、real-time、reliability and bandwidth resources utilization ability of CAN protocol network. Besides vehicle high-electromagnetism interference environment and network fault, the problems need to coped with that how to efficiently integrate the network, how to design scheduling algorithm to improve real-time and flexible ability of various requirement, how to ensure dependability by real time analysis, how to improve bandwidth resource utilization,how to carry out visual software of analysis still exist.
     In this thesis, the research of certain key theories of CAN protocol for automotive network is developed and the engineering applications of those theories are explored. The works are as follows:
     1. Automotive network development is project of system engineering, relating factors including node design, system integration, communication, time synchronization, function cooperation and cost. In this thesis, after analyzing integrated theories of fieldbus, the integration policy of automotive integrated network based on CAN protocol is proposed, and'V'development model is improved for automotive network system.
     2. For higher flexible, more efficient and soft real time of automotive body electronic network system, comparing of single-signal frame and group-signal frame with RM scheduling algorithm is researched, and flexible factor is proposed to improve the flaw of RMA. The contrast analysis and simulation show that the group-signal frame is superior in flexibility, bandwidth utilizing margin and real time.
     3. For hard real time, closed loop time trigger and fault tolerate of automotive power drive network system, time-triggered CAN (TTCAN) is analyzed to instead of CAN that is not good at cooperating, determinism and fault tolerate because of inability to time trigger. Then schedule based AL scheduling algorithm is proposed to construct the system matrix of TTCAN, and the worst jitter criterion is proposed to apply to time trigger service. The contrast result shows TTCAN scheme is superior to CAN scheme for periodical messages in determinism, real time, fault tolerate and bandwidth resource utilization.
     4. For various applications of automotive whole networks, two schemes that single-TTCAN network and CAN-TTCAN based two-network network, are respectively researched. Mixed scheduling algorithm and analysis theories are proposed for the front, and two-network scheduling policy and relating analysis scheme are proposed for the latter. The analysis results show that the single-TTCAN network is superior in schedule ability, utilization, integration, and two-network network is superior in collision rate and cost.
     5. Aiming at imbalance question that CAN protocol is not determinate but flexible, TTCAN is not flexible but determinate, in this thesis, flexible time trigger CAN (FTTCAN) is researched, dynamic programming conception is imported. And scheduling plicy based on programming is designed. Analysis and experiment results show the scheme is not only real time but also flexible and determinate.
     6. for the question that CAN protocol based schedule algorithm and analyzing theory are too complicated to apply, visual technology is adopted to design visual analysis software, and single-step-recurrence relation (SSRR) expressions are deduced to simple the complicacy of RMA recurrence algorithm. And because automotive integration-message watch-control system implements various messages sampling, computing and interchanging, sporadic traditional system cannot support the reqiuement. In the thesis a distributing configuration based on CAN protocol is designed, DM scheduling algorithm is used to schedule network and analyzed by the designed analysis software. And an experiment and test system is designed according to V development model. The simulation and experiment results testify the superiority of the scheme.
引文
1. 黄家坚.汽车产销继续保持较快增长[J].证券导刊,,2007,(40):29-30.
    2. 赵振山.汽车产业要走“绿色之路”[J]. AUTO & SAFETY,2007,(10):10-11.
    3. 万仁君.电动汽车分布式控制系统的总线调度与整车控制策略的研究[D]:天津大学,2004.
    4. Schoner HPH-P. Automotive mechatronics[J]. Control Engineering Practice, 2004,12(11):1343-1351.
    5. 陈新成.汽车电子发展趋势及中国市场分析[J].电子测试,2007.07:1-7.
    6. Casier H. Trends in automotive electronics[C]. Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems,2004 EuroSimE 2004 Proceedings of the 5th International Conference on,2004:7.
    7. Leen G, Heffernan D, Dunne A. Digital networks in the automotive vehicle[J]. Computing & Control Engineering Journal,1999,10(6):257-266.
    8. Leen G, Heffernan D. Expanding automotive electronic systems[J]. Computer, 2002,35(1):88-93.
    9. 邵虞.迎接电子未来第二波发展——汽车电子[J].电子产品世界,2006.12:25-27.
    10. 李树翀.本土汽车电子产业期待腾飞[J].半导体行业,2006,(03):18-20.
    11. 黄涌.中国汽车电子市场现状与展望[J].电子与封装,2004.9,4(5):41-44.
    12. 钟勇,潭鹤良.世界汽车电子控制技术的发展态势[J].世界汽车,2000.12,(12):34-35.
    13. Casier H, Moens P, Appeltans K. Technology considerations for automotive [automotive electronics][C]. Solid-State Circuits Conference,2004 ESSCIRC 2004 Proceeding of the 30th European,2004:37-41.
    14. 刘苑.日新月异的汽车IT技术[J].科技咨询导报,2007,(23):3-5.
    15. 杨成旭.网络、智能与安全是汽车电子的未来[J].轻型汽车技术,2007,(02):40-41.
    16. 占强.汽车电子眼[J].世界汽车,2005,(01):87-88.
    17. Suryavanshi PV, Sharma VK, Sharma R. Advance Computer Communication Systems in Hybrid Vehicles[C]. Electric and Hybrid Vehicles,2006ICEHV'06 IEEE Conference on,2006:1-5.
    18. Nolte T, Hansson H, Bello LL. Automotive communications-past, current and future[C]. Emerging Technologies and Factory Automation,2005 ETFA 2005 10th IEEE Conference on,2005:8 pp.
    19. 20年后的智能汽车[J].轻型汽车技术,2007,(06).
    20. 建立更加智能化的汽车安全系统[J].轻型汽车技术,2006,(02):35-36.
    21. SAE J2056/1:SAE Vehicle Network for Multiplexing and Data Communications Standards Committee[S].SAE.1993.
    22. SO11519-2:Low-speed controller area network (CAN)[S].ISO.1994.
    23. 吕京建,张宏韬.CAN总线的浅析CANopen协议[J].电子产品世界,2002,(17):24-27.
    24. ROUCHE D.汽车车载网络(VAN/CAN/LIN)技术详解[M].北京:机械工业出版社,2006.6.
    25. 耿天文.基于CAN总线的汽车仪表系统[D]:吉林大学,2007.
    26. 钟勇.基于CVT的类菱形混合动力电动汽车系统研究与仿真[D]:湖南大学,2005.
    27. 张志.CAN/LIN混合车身网络在东风载货车上的开发及应用[D]:清华大学,2006.
    28. 罗峰,苏剑,袁大宏.汽车网络与总线标准[J].汽车工程,2003,(04):372-376.
    29. 宋国民,欧阳明高,杨福源,胡林峰,杭勇.TTCAN系统及其在分布式车辆网络中的应用[J].汽车工程,2005,(06):665-669.
    30. 任重.汽车网络综合研究及基于CAN总线的汽车组合仪表的实现[D]:浙江大学,2003.
    31. 吕京建.现代汽车的核心技术——SAEJ1939[J].今日电子,2004,(01):37-38.
    32. 鲁植雄.汽车电脑控制器区域网数据总线[M].北京:人民交通出版社,2004.3.
    33.龚进峰,曹健,袁大宏.浅谈我国汽车电子产业现状及发展建议[J].汽车工程,2004,(03):363-366.
    34. 王昌文.“十一五”期间汽车零部件产业要在四个方面实现突破[J].中国汽摩配,2006,(06):39-40.
    35. 信息产业十一五规划将集中攻关13个重大项目[Z].世界电信.2006(09).
    36. 吕京建,何玉军,赵珀璋,杨建军,冯升波.汽车计算平台综述[J].电子技术应用,2007,(04).
    37. 中国汽车电子技术及产业‘十一五’专题发展规划概要[Z].China Auto & MotorbikeParts.2006.
    38. 杨维俊.汽车车载网络系统[M].北京:机械工业出版社,2006.7.
    39. Noble IE. Electromagnetic compatibility in the automotive environment[J]. Science, Measurement and Technology, IEE Proceedings-,1994,141(4):252-258.
    40. 杨广华.浅谈汽车电子设备抗干扰技术[J].今日科苑,2007,(18):96.
    41. 钟勇,钟志华,余群明,曾志伟.电动汽车CAN总线通用协议的应用研究[J].汽车工程,2006,(05):422-426&438.
    42. Hladik P-E, Deplanche A-M, Faucou S, Trinquet Y. Adequacy between AUTOSAR OS specification and real-time scheduling theory [C]. Industrial Embedded Systems,2007 SIES'07 International Symposium on,2007:225-233.
    43. 乔军.跨国汽车公司的中国发展战略及其对中国汽车产业的影响[D]:清华大学,2005.
    44. Tindell K, Burns A, Wellings AJ. Calculating controller area network (can) message response times[J]. Control Engineering Practice,1995,3(8):1163-1169.
    45. Tindell KW, Hansson H, Wellings AJ. Analysing real-time communications:controller area network (CAN)[C]. Hansson H. Real-Time Systems Symposium,1994, Proceedings,1994:259-263.
    46. Shin KG. Real-time communications in a computer-controlled workcell[J]. Robotics and Automation, IEEE Transactions on,1991,7(1):105-113.
    47. Zuberi KM, Shin KG. Scheduling messages on controller area network for real-time CIM applications[J]. Robotics and Automation, IEEE Transactions on,1997,13(2): 310-316.
    48. Zuberi KM, Shin KG. Non-preemptive scheduling of messages on controller area network for real-time control applications[C]. Shin KG. Real-Time Technology and Applications Symposium,1995 Proceedings,1995:240-249.
    49. Cena G, Valenzano A. Delay analysis of priority promotion systems[J]. Computer Communications,2000,23(13):1252-1262.
    50. Cena G, Valenzano A. An improved CAN fieldbus for industrial applications[J]. Industrial Electronics, IEEE Transactions on,1997,44(4):553-564.
    51. Ho S, Hong. Scheduling algorithm of data sampling times in the integrated communication and control systems[J]. Control Systems Technology, IEEE Transactions on,1995,3(2):225-230.
    52. Hong SH, Kim WH. Bandwidth allocation scheme in CAN protocol[J]. Control Theory and Applications, IEE Proceedings-,2000,147(1):37-44.
    53. Leen G, Heffernan D. TTCAN:a new time-triggered controller area network[J]. Microprocessors and Microsystems,2002,26(2):77-94.
    54. Almeida L, Pedreiras P, Fonseca JAG. The FTT-CAN protocol:why and how[J]. Industrial Electronics, IEEE Transactions on,2002,49(6):1189-1201.
    55. Nolte T, Nolin M, Hansson HA. Real-time server-based communication with CAN[J]. Industrial Informatics, IEEE Transactions on,2005,1(3):192-201.
    56. 李雅博,张俊智,卢青春.混合动力电动汽车车上CAN网络设计实时性分析[J].汽车工程,2005,(01):16-19.
    57. 吕伟杰,刘鲁源,王毅新.基于CAN总线的TT-FPS调度算法研究及其性能分析[J].中国工程科学,2006,(05):45-48.
    58. 吕伟杰,刘鲁源,王毅新.CAN总线时间触发机制的实现[J].中国工程科学,2005,(09):40-43.
    59.刘鲁源,万仁君,李斌.基于TTCAN协议的网络控制系统静态调度算法的研究[J].控制与决策,2004,(07):813-816.
    60. 刘鲁源,王晓欣,刘昆,吕伟杰.分布式系统高精度时钟同步算法及其实现[J].天津大学学报,2006,(08):923-927.
    61. 王庆祥,陈家琪.利用遗传算法优化TTCAN网络的时间调度系统矩阵[J].航空计算技术,2004,(01):24-27.
    62.王庆祥,陈家琪.TTCAN网络的响应分析及系统矩阵的优化[J].上海理工大学学报,2005,(01):32-36&42.
    63.王欢,王丽芳.TTCAN通讯网络实时性分析[J].高技术通讯,2006,(08):830-833.
    64. 秦贵和.车上网络技术[M].北京:机械工业出版社,2003.5.
    65. Navet N, Song Y, Simonot-Lion F, Wilwert C. Trends in Automotive Communication Systems[J]. Proceedings of the IEEE,2005,93(6):1204-1223.
    66.李爽,孙克怡.汽车网络的分类及发展趋向[J].单片机与嵌入式系统应用,2006,(02):5-8.
    67. LIN-Consortium.LIN Specification Package[Z].Version 1.2.2001.
    68.龚进峰,吴正,曹健,汪葵.CAN/LIN混合网络在轿车车门控制系统中的应用[J].汽车工程,2006,(06):578-581.
    69. ISO11898:Road Vehicle-Interchange of Digital Information-Controller area Network (CAN) for High-Speed Communication[S].ISO.1993.
    70. ISO 9141:Road vehicles-Diagnostic systems-Requirements for interchange of digital information [S].1994.
    71. ISO 15765:Road vehicles-Diagnostic on Controller area networks (CAN)[S].2000.
    72. Cooperation M.Most Specification Framework[Z].Version 1.1.2001.
    73. 饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003.6.
    74. Barranco M, Proenza J, Rodriguez-Navas G, Almeida L. An active star topology for improving fault confinement in CAN networks[J]. Industrial Informatics, IEEE Transactions on,2006,2(2):78-85.
    75. Cena G, Durante L, Valenzano A. A new CAN-like field network based on a star topology[J]. Computer Standards & Interfaces,2001,23(3):209-222.
    76. Eisenreich D, DeMuth B. Controller Area Network. In, Designing Embedded Internet Devices. Burlington:Newnes; 2002:467-509
    77. Liang N, Popovic D, Ljubo V, Michel P, Fumio H. The CAN bus. In, Intelligent Vehicle Technologies. Oxford:Butterworth-Heinemann; 2001:21-64
    78. Ceng PWBB. CAN bus. In, Computer Busses. Oxford:Butterworth-Heinemann; 2000:333-343
    79. Broster I, Burns A, Rodriguez-Navas G. Comparing real-time communication under electromagnetic interference[C]. Real-Time Systems,2004 ECRTS 2004 Proceedings 16th Euromicro Conference on,2004:45-52.
    80. CAN Specification 2.0A[Z].Robert Bosch GmbH.1991.9.
    81. CAN Specification 2.0B[Z].Robert Bosch GmbH.1991.9.
    82. 邬宽明.现场总线技术应用选编2[M].北京:北京航空航天大学出版社,2004.6.
    83. 邹益仁,马增良,蒲维.现场总线控制系统的设计和开发[M].北京:国防工业出版社,2003.1.
    84. CaoWanke, ZhangTianxia, JiaYongquan. Integrated technology of vehicle network based on CAN[C]. Dalian, China:Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States,2006:8301-8305.
    85. Ali Livani M, Kaiser J, Jia W. Scheduling hard and soft real-time communication in a controller area network[J]. Control Engineering Practice,1999,7(12):1515-1523.
    86. Navet N, Song Y-Q. Validation of in-vehicle real-time applications[J]. Computers in Industry,2001,46(2):107-122.
    87. Cavalieri S, Stefano A Di,O M. Mapping automotive process control on IEC/ISA FieldBus functionalities[J]. Computers in Industry,2002,28(3):233-250.
    88. Wang X, Huiyan C, Huarong D. The application of controller area network on vehicle[C]. Vehicle Electronics Conference,1999 (IVEC'99) Proceedings of the IEEE International,1999:455-458 vol.451.
    89. Buttazzo GC. Rate Monotonic vs. EDF:Judgment Day[J]. Real-Time Systems, 2005,29(1):5-26.
    90. Manabe Y, Aoyagi S. A Feasibility Decision Algorithm for Rate Monotonic and Deadline Monotonic Scheduling[J]. Real-Time Systems,1998,14(2):171-181.
    91. 王俊波,胥布工.CAN报文实时性分析及在线评估[J].控制与决策,2007,22(4):448-452.
    92. Misbahuddin S, Al-Holou N. Efficient data communication techniques for controller area network (CAN) protocol[C]. Computer Systems and Applications,2003 Book of Abstracts ACS/IEEE International Conference on,2003:22.
    93. Zuberi KM, Shin KG. Design and implementation of efficient message scheduling for controller area network[J]. Transactions on Computers,2000,49(2):182-188.
    94. Leen G, Heffernan D. Time-triggered controller area network[J]. Computing & Control Engineering Journal,2001,12(6):245-256.
    95.刘鲁源,李芳,吕伟杰.TTCAN协议的分析与展望[J].天津理工大学学报,2005,(03):15-19.
    96. 牛德青,岳曾敬.时间触发的CAN协议[J].兵工自动化,2005,(05):44-45&48.
    97.牛德青,岳曾敬.TTCAN冗余网络的实现机制[J].兵工自动化,2006,(06):53-54.
    98. 任谦,陶维青.基于标准CAN总线的TTcan协议浅析[J].仪器仪表用户,2006,(06):92-94.
    99. 李佳,朱元,田光宇.CAN与TTCAN通信延迟时间的分析[J].清华大学学报(自然科学版),2006,261-265(02).
    100.沈君,方凯,刘峰,金芳,陈小元.在CAN中植入时间触发机制的研究[J].汽车工程,2006,(04):379-382.
    101. Kopetz H. Time-triggered real-time computing[J]. Annual Reviews in Control, 2003,27(1):3-13.
    102. C. Carvalho F, Freitas EP, Pereira CE, et al. A time-triggered controller area network platform with essentially distributed clock synchronization. In, Information Control Problems in Manufacturing 2006. Oxford:Elsevier Science Ltd; 2006:93-98
    103. Ryan C, Heffernan D, Leen G. Clock synchronisation on multiple TTCAN network channels[J]. Microprocessors and Microsystems,2004,28(3):135-146.
    104.朱智林,刘晓华,韩俊刚.TTCAN周期性任务的优化调度算法[J].兰州大学学报(自然科学版),2005,(04):73-76.
    105. Kopetz H. A comparison of CAN and TIP[J]. Annual Reviews in Control,2000,24: 177-188.
    106. Jia X, Lorge PD. Priority Scheduling Versus Pre-Run-Time Scheduling[J]. Real-Time Systems,2000,18(1):7-23.
    107. WankeCao, TianxiaZhang, YingjiLiu, FengWang. Study of Periodical-Message-Scheduling AL Algorithm without Collision of CAN Bus[J]. Natural Science Research, 2006.12,8(6):83-89.
    108. Sevillano JL, Pascual A, Jimenez G, Civit-Balcells A. Analysis of channel utilization for controller area networks[J]. Computer Communications,1998,21(16):1446-1451.
    109.刘鲁源,万仁君,李斌,吴志新.TTCAN调度算法及其在汽车控制系统中的应用[J].汽车工程,2005,(01):60-63.
    110.曹万科,张天侠,刘应吉.基于混合调度算法汽车TTCAN网络设计及实时性分析[J].中国工程机械学报,2007.1,5(01):62-66.
    111. Anwar K, Khan ZA. Dynamic Priority Based Message Scheduling on Controller Area Network[C]. Electrical Engineering,2007 ICEE'07 International Conference on, 2007:1-6.
    112. Shaheen S, Heffernan D, Leen G. A gateway for time-triggered control networks[J]. Microprocessors and Microsystems,2007,31(1):38-50.
    113.曹万科,张天侠,周淑文,陈启明.基于CAN与TTCAN的汽车整车分层控制网络及调度[J].东北大学学报(自然科学版),2007.11,28(11):1640-1644.
    114. Pinho LM, Vasques F. Reliable real-time communication in CAN networks [J]. Transactions on Computers,2003,52(12):1594-1607.
    115. Ferreira J, Pedreiras P, Almeida L, Fonseca JAAFJA. The FTT-CAN protocol for flexibility in safety-critical systems[J]. Micro, IEEE,2002,22(4):46-55.
    116. Pedreiras P, Almeida L. Combining event-triggered and time-triggered traffic in FTT-CAN:analysis of the asynchronous messaging system[C]. Almeida L. Factory Communication Systems,2000 Proceedings 2000 IEEE International Workshop on, 2000:67-75.
    117. Ferreira J, Pedreiras P, Almeida L, Fonseca JAFJ. Achieving fault tolerance in FTT-CAN[C]. Pedreiras P. Factory Communication Systems,2002 4th IEEE International Workshop on,2002:125-132.
    118. Bertozzi F, Di Natale M, Almeida L. Admission control and overload handling in FTT-CAN[C]. Di Natale M. Factory Communication Systems,2004 Proceedings 2004 IEEE International Workshop on,2004:175-184.
    119. Atade FH, Pereira CE, Lages WF, Assis ACAAAC. On the design of an embedded FTT-CAN platform with improvement of its inherent jitter[C]. Pereira CE. Industrial Informatics,2006 IEEE International Conference on,2006:688-692.
    120. Rufino J, Almeida C, Verissimo P, Arroz G. Enforcing Dependability and Timeliness in Controller Area Networks[C]. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006:3755-3760.
    121. Othman HF, Aji YR, Fakhreddin FT, Al-Ali AR. Controller Area Networks:Evolution' and Applications[C]. Information and Communication Technologies,2006 ICTTA'06 2nd,2006:3088-3093.
    122. Jiyong P, Saehwa K, Wooseok Y, Seongsoo H. Designing Real-Time and Fault-Tolerant Middleware for Automotive Software[C]. SICE-ICASE,2006 International Joint Conference,2006:4409-4413.
    123. Simon D,周瑜萍.Visual C++6编程宝典[M].北京:电子工业出版社,2005.
    124.李显宏.MATLAB 7.x界面设计与编译技巧[M].北京:电子工业出版社,2006.12.
    125.GPS全球定位系统和行车记录仪系统[J].交通节能与环保,2007,(04):33-35.
    126.王学峰,曹健.汽车行驶记录仪[J].世界汽车,2003,(05):23-24.
    127.王雷.汽车行驶记录仪的数据传输设计[J].今日电子,2007,(06):90-91.
    128.陈斌.全球卫星定位系统GPS及其在现代汽车中的应用[J].沿海企业与科技,2007,(09):20-21.
    129.彭万龙.数字GPS让汽车进入有“眼”时代[J].中国公共安全(市场版),2007,(04):91-92.
    130.胡风珍.汽车GPS卫星导航全球定位系统技术研究与应用[J].石油仪器,2007,(04):46-48&51&109.
    131.王凤林.汽车行驶记录仪和全球定位系统的区别[J].商用汽车,2003,(11):72.
    132.高玉民.国内外汽车黑匣子的现状与发展动态[J].汽车电器,2004,(04):138-140.
    133.付胜波.基于CAN总线的汽车组合仪表研究[D]:武汉理工大学,2007.
    134.陆文昌.汽车行驶记录仪的现状与发展趋势[J].汽车电器,2005,(05).
    135.高成鼎.汽车行驶记录仪使用现状与技术展望[J].客车技术与研究,2006,(06):42-43.
    136.徐哲,丛琳.全球定位系统(GPS)在汽车运输中的应用[J].山西交通科技,2006,(02):76-78.
    137.徐哲,丛琳.全球定位系统(GPS)在汽车中的应用[J].汽车与配件,2006,(32):46-48.
    138.程传河,王莉敏,龚保全,董秀辉.商用车CAN总线仪表开发与设计[J].电子测试,2007,(01):87-91.
    139.何彬,宋君花,唐航波,杨林.基于CAN总线的混合动力汽车LCD仪表系统[J].计算机工程与应用,2007,(12):218-220&248.
    140.黄妙华,徐保松,李秀芬.虚拟数字式汽车仪表信息系统的研究与开发[J].汽车科技,2006,(05):15-18.
    141.邵贝贝.单片机嵌入式应用的在线开发方法[M].北京:清华大学出版社,2006.
    142.周立功.ARM微控制器基础与实践[M].北京:北京航空航天大学出版社,2005.8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700