用户名: 密码: 验证码:
分布式水文模型在长江流域的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认识气候和流域下垫面等变化条件下的流域水文响应特征,有效预测和预报流域水资源和洪水的变化,是“维持健康长江、实现人水和谐”的科学基础。传统的基于经验和河道流量观测资料建立起来的水文模型,难以适应变化条件下的降雨径流模拟。本论文采用基于物理机制的分布式水文模型,在模拟流域水文循环全过程的基础上,探讨了分布式水文模型在水资源评价、干旱评估和洪水预报中的应用。
     论文首先分析了20世纪下半叶长江流域气温、降水和径流的变化趋势。结果发现:流域年均气温升高趋势显著且年际波动幅度增大;降水时空分布有改变的趋势,长江中下游夏季降水增加,而四川盆地秋季降水减少。
     在流域面积约为100万km2的长江上游,利用DEM及相关遥感和地理信息来表现流域下垫面的空间差异性,构建了基于流域地形地貌特征的大尺度分布式水文模型。模型采用次网格参数化方法来处理大尺度网格内下垫面的非均一性,采用具有物理意义的水流运动方程来描述产汇流过程。通过模拟1961~2000年的天然径流过程,论文从径流、蒸散发和土壤含水量等分析了长江上游水资源的演变趋势。根据模拟结果,论文还分析了长江上游干旱的发展趋势,并构建了GBHM-PDSI干旱评估指标。结果显示,该指标综合反映水分亏缺和持续时间对干旱程度的影响,能够表现旱情在流域空间上的分布和发展变化。
     在洪水预报应用方面,本论文着重探讨了提高三峡区间洪水预报能力的可能性。在三峡区间构建了尺度相对较小的分布式洪水预报模型,提出了利用自动遥测雨量站观测数据进行雷达测雨校正的方法。结果显示,分布式洪水预报模型与雷达测雨数据结合,可以减少洪水预报中的不确定性,提高预报精度。
     面对三峡水库建成后水资源管理和防洪实时调度的要求,以上述两种尺度的水文模型为基础,结合水动力学模型,在长江上游初步构建了空间嵌套式水文模型,实现了上游来水预报、区间洪水预报和三峡库区洪水演进的整合。以空间嵌套式流域水文模型为核心,提出了构建流域数字水文模拟系统的设想,以适应大型流域水资源管理和防洪决策的多任务、多目标和多尺度要求。
The Yangzte River basin (also called the Changjiang River basin) is the largest river basin in China, which has complicated geomorphological features and diverse climatic patterns, and frequent natrual disaters caused by flood and drought.
     Understanding the hydrological response to climate change and human activities, assessment of the changes in water resources and the flood forecast are the key research topics for integrated watershed management with new anthropo-concept of health and harmonious river. Building on the geomorphology-based hydrological model -- GBHM, a large-scale distributed hydrological model has been established in the upper Yangtze River. Applications of the model for water resources assessment, drought severity evaluation and flood forecast have been addressed in this research.
     Using meteorological data from 154 weather stations together with river discharge from 26 hydrological gauges, it analyzed the spatio-temporal variation of temperature, precipitation and runoff during the last half century. The TFPW-MK statistical test has been applied to detect the significance of trends. Both runoff and precipitation showed a significant increasing trend in summer along the middle and lower reaches in the 1990s. However, a decreasing trend for runoff and precipitation was found in spring and autumn, particularly in the upper reaches.
     Then, a large scale distributed hydrological model has been established in the upper Yangtze River with area of 1 million km2. In this model, the study basin is divided into a discrete grid system of 10-km size, and each grid is represented by a number of geometrically-symmetrical hillslopes. The basin is divided into a number of sub-basins with the proper size and the river network is identified up to the main stream of the minimum sub-basin. The hydrological components, including runoff generation from the hillslopes and the flow routing in the river network are modelled using physically-based approaches. Taking the meteorological inputs, the model simulated river discharge during 1961~2000 at different locations in the river network, and temporal changes and spatial distributions of soil moisture and evapotranspiration, which provide an inside investigation into water resources in the study basin. Results showed that the ratio of seasonal runoff to annual one has a significant increasing trend in summer in the eastern Sichuan basin and the Three Gorges region in the 1990s, but a decreasing trend in autumn. This implies an increasing flood risk in summer and water shortage in autumn. Based on the hydrological simulation, a new drought index, GBHM-PDSI, was proposed. It was found that the new drought index has obvious advantages on describing the temporal change of drought severity and the spatial variation of dryness.
     In order to reduce the uncertainties of real time flood forecast in the Three Gorges region, the radar rainfall data has been used together with the distributed hydrological model. Results showed that in addition to the rain gauge network the weather radar can provide better spatial distribution of rainfall. By means of physically-based distributed hydrological model combining with radar rainfall data, it can capture adequately the spatial variation of rainstorm, and provide better flood forecast at real time.
     For meeting with the requirements of integrated operation of the Three Gorges reservoir, a new space-nested hydrological model with different spatial scales (present used 10km and 1km grid sizes) has been built. Inflow simulation from the upper streams of the reservior, inflow simulation from the inter-basin of the Three Gorges and the flood routing in the reservoir were coupled into one model system. The preliminary results showed that this model could sucessfuly simulate the dynamic change in reservoir water level and provide a useful tool for the reservoir operation.
     Using this model as the core, a Digital Hydrology Simulation System for the Yangtze River basin has been proposed as the tool for the integrated river management in future.
引文
[1] 安顺清, 邢久星. 帕默尔旱度模式的修正[J]. 气象科学院院刊, 1986, 1(1):75-81.
    [2] 蔡其华. 关于长江重大问题的思考[J]. 人民长江, 2002, 33(1):1-6.
    [3] 蔡其华. 维护健康长江促进人水和谐[J]. 求是, 2005, 13:57-59.
    [4] 陈军锋, 李秀彬. 土地覆盖变化的水文响应模拟研究[J]. 应用生态学报, 2004, 15(5):833-836.
    [5] 陈家琦, 王浩. 水资源学[M]. 北京: 科学出版社, 2002.
    [6] 陈正红, 杨宏青, 任国玉, 等. 长江流域面雨量变化趋势对干流流量影响[J]. 人民长江, 2005, 36(1):22-31.
    [7] 陈万金, 信乃诠. 中国北方旱地农业综合发展与对策[M]. 北京:中国农业科技出版社, 1994.
    [8] 陈桂蓉, 程根伟. 长江上游干旱灾害分析及防灾减灾措施[J]. 长江流域资源与环境, 1997, 1(1):74-79.
    [9] 丁一汇. 气候变化及其对中国降水的影响[J]. 气候变化通讯, 2003, 2(2):9-10.
    [10] 郭生练. 大尺度分布式水文模型发展概况和展望[J]. 水资源研究, 1997a, 18(2):32-36.
    [11] 郭生练, 刘春蓁. 大尺度水文模型及其与气候模型的联结耦合研究[J]. 水利学报, 1997b 7:37-41.
    [12] 郭生练, 熊立华, 等. 基于 DEM 的分布式流域水文物理模型[J]. 武汉水利电力大学学报, 2000, 33(6):1-5.
    [13] 杨井, 郭生练, 等. 基于GIS的分布式月水量平衡模型及其应用[J]. 武汉大学学报: 工学版, 2002, 35(4):22-26.
    [14] 郝振纯, 苏凤阁. 分布式月水文模型研究及其在淮河流域的应用[J]. 水科学进展, 2000, 12: 增刊.
    [15] 胡和平, 杨诗秀, 雷志栋. 土壤冻结时水热迁移规律的数值模拟. 水利学报, 1992, 7:1-8.
    [16] 胡和平, 叶柏生, 周余华, 田富强. 考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet 试验中的应用. 中国科学: D 辑 地理科学, 2006, 36(8):755-766.
    [17] 胡四一, 王银堂, 谭维炎, 等. 长江中游洞庭湖防洪系统水流模拟――II: 模型实现和率定检验. 水科学进展, 1996, 7(4):346-353.
    [18] 黄平, 赵吉国. 流域分布型水文数学模型的研究及应用前景展望[J]. 水文, 1997, 17(5):5-10.
    [19] 黄忠恕. 长江流域历史水旱灾害分析[J]. 人民长江, 2003, 34(2):1-3.
    
    [20] 贾仰文, 王浩, 等. 分布式流域水文模型原理与实践[M]. 北京: 中国水利水电出版社, 2005a.
    [21] 贾仰文, 王浩, 王建华, 等. 黄河流域分布式水文模型开发和验证. 自然资源学报, 2005b, 20(2):300-308.
    [22] 贾仰文, 王浩, 仇亚琴, 周祖昊. 基于流域水循环模型的广义水资源评价(Ⅱ)――评价方法. 水利学报, 2006a, 37(9):1050-1055.
    [23] 贾仰文, 王浩, 仇亚琴, 周祖昊. 基于流域水循环模型的广义水资源评价(Ⅱ)――黄河流域应用. 水利学报, 2006b, 37(10):1181-1187.
    [24] 姜彤 , 施雅风 . 全球变暖、长江水灾与可能损失 [J]. 地球科学进展 , 2003, 18(2):277-284.
    [25] 姜兆雄. 长江水资源状况与可持续利用[J]. 水利水电快报, 2005, 26(13):1-5.
    [26] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1988:1-75.
    [27] 李建通, 郭林, 杨洪平. 雷达-雨量计联合估测降水初值场形成方法探讨[J].大气科学,2005, 29(6):1010-1020.
    [28] 李建通, 杨维生, 等. 提高最优插值法测量区域降水量精度的探讨[J]. 大气科学, 2000, 24(2):263-270.
    [29] 李兰, 钟名军. 基于 GIS 的 LL-II 分布式降雨径流模型的结构[J]. 水电能源科学, 2003, 21(4):35-38
    [30] 李致家, 董增川, 梁忠明, 等. 大流域洪水预报与洪水调度管理方法研究. 河海大学学报, 2004a, 30(1):12-15.
    [31] 李致家, 刘金涛, 等. 雷达估测降雨与水文模型的耦合在洪水预报中的应用[J]. 河海大学学报: 自然科学版, 2004b, 32(6):601-606.
    [32] 李致家, 包红军, 孔祥光, 等. 水文学与水力学相结合的南四湖洪水预报模型. 湖泊科学, 2005, 17(4):299-304.
    [33] 刘昌明, 陈志恺. 中国水资源现状评价和供需发展趋势分析[J]. 北京: 中国水利水电出版社, 2001.
    [34] 刘昌明, 李道峰, 等. 基于 DEM 的分布式水文模型在大尺度流域应用研究[J]. 地理科学进展, 2003,22(5):437-445.
    [35] 刘昌明, 夏军, 郭生练, 等. 黄河流域分布式水文模型初步研究与进展. 水科学进展, 2004, 15(4):495-500.
    [36] 刘昌明, 郑红星, 王中根, 等. 流域水循环分布式模拟[M]. 郑州: 黄河水利出版社, 2006:116-151.
    [37] 刘巍巍, 安顺清, 刘庚山, 等. 帕默尔旱度模式的进一步修正[J]. 应用气象学报, 2004, 15(2):207-216.
    [38] 刘庚山, 郭安红, 安顺清, 等. 帕默尔干旱指标及其应用研究进展[J]. 自然灾害学报,2004, 13(4):21-26.
    [39] 龙利民, 王建国, 等. 多普勒天气雷达一小时累积降水产品估测能力检验[J]. 湖北气象, 2004, 1:19-21
    [40] 李纪人. 遥感和地理信息系统在分布式流域水文模型研制中得应用[J]. 水文, 1997, 17(3):8-12.
    [41] 陆建华, 余达征, 刘金清. 我国水文科学新进展及其展望[J]. 中国水文科学与技术研究进展: 全国水文学术讨论会论文集, 北京:中国水利水电出版社, 2004:58-65.
    [42] 吕爱锋, 陈嘻, 王纲胜. 基于 DEM 的流域水系分维估算方法探讨. 干旱区地理, 2005, 25(4):315-319.
    [43] 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情检测研究[J]. 遥感学报, 2003, 7(5):420-427.
    [44] 任国玉, 吴虹, 陈正红. 我国降水变化趋势的空间特征[J]. 应用气象学报, 2000, 11(3): 322-330.
    [45] 任立良, 刘新仁. 数字高程模型信息提取和数字水文模型研究进展[J]. 水科学进展, 2000a, 11(4):463-469.
    [46] 任立良, 刘新仁. 基于 DEM 的水文物理过程模拟[J]. 地理研究, 2000b, 19(4):369-376.
    [47] 任立良, 程媛华, 等. 数字水文的发展趋势与应用前景[J]. 中国水文科学与技术研究进展: 全国水文学术讨论会论文集, 北京: 中国水利水电出版社, 2004:27-32.
    [48] 芮孝芳, 流域水文模型研究中的若干问题[J]. 水科学进展, 1997, 8(1): 94-98.
    [49] 芮孝芳, 地貌瞬时单位线研究进展[J]. 水科学进展, 1999, 10(3):355-350.
    [50] 芮孝芳, 朱庆平. 分布式流域水文模型研究中的几个问题[J]. 水利水电科学进展, 2002, 22(3): 56-58.
    [51] 芮孝芳, 石朋. 基于地貌扩散和水动力扩散的流域瞬时单位线研究. 水科学进展, 2002, 13(4):439-444.
    [52] 芮孝芳, 黄国如. 分布式水文模型的现状与未来[J]. 水利水电科学进展, 2004, 24(2):55-58.
    [53] 施雅风, 姜彤, 等. 1840 年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4): 289-297.
    [54] 苏凤阁, 郝振纯. 新安江网格化月水文模型的改进. 水科学进展, 2000, 12: 增刊.
    [55] 孙荣强. 旱情评定与灾情指标探讨[J]. 自然灾害学报, 1994, 3(3):49-55.
    [56] 谭维炎, 胡四一, 等. 长江中游洞庭湖防洪系统水流模拟――I: 建摸思路和基本算法. 水科学进展, 1996, 7(4):336-345.
    [57] 唐莉华,张思聪. 小流域产汇流及产输沙分布式模型的初步研究. 水利发电学报, 2002, 3:119-127.
    [58] 田富强, 胡和平, 雷志栋. 基于代表性单元流域的水文模拟理论与方法[J]. 中国科技论文在线.
    [59] 田富强. 流域热力学系统水文模拟理论和方法研究[博士学位论文]. 北京: 清华大学水利系, 2006.
    [60] 田国良, 等. 热红外遥感[M]. 北京: 电子工业出版社, 2006:288-296
    [61] 王德厚, 谭德宝. “数字长江”建设与水利科技发展[J]. 长江科学院院报, 2001, 18(3):43-46.
    [62] 王光谦, 刘家宏. 数字流域模型[M]. 北京: 科学出版社, 2006a:3-11.
    [63] 王光谦, 刘家宏. 黄河数字流域模型[J]. 水利水电技术, 2006b, 37(2):15-21.
    [64] 王国庆, 张建云, 章四龙. 全球气候变化对中国淡水资源及其脆弱性影响研究综述. 水资源与水工程学报, 2005, 16(2):7-10.
    [65] 王浩, 贾仰文, 等. 人类活动影响下的黄河流域水资源演化规律初探[J]. 自然资源学报, 2005, 20(2):157-162.
    [66] 王浩, 王建华, 秦大庸, 贾仰文, 等. 现代环境下的流域水资源评价方法研究. 水文, 2006a, 26(3):18-21.
    [67] 王浩, 王建华, 秦大庸, 贾仰文. 基于二元水循环模式的水资源评价理论方法. 水利学报, 2006b, 37(12):1496-1502.
    [68] 王中根, 刘昌明, 等. SWAT 模型的原理、结构及应用研究[J]. 地理科学进展, 2003, 22(1):80-86.
    [69] 王忠静, 李宏益, 杨大文. 现代水资源规划若干问题及解决途径与技术方法――还原“失真”与“失效”[J]. 海河水利, 2003, 1:13-16.
    [70] 王玲玲, 康玲玲, 等. 气象、水文干旱指数计算方法研究概述[J]. 水资源与水工程学报, 2004, 15(3):15-18.
    [71] 王绍武, 伍荣生, 杨修群, 等. 中国气候与环境演变――气候与环境的演变与预测: 中国的气候变化[M] (秦大河主编). 北京: 科学出版社, 2005:88-96.
    [72] 王蕾. 基于不规则三角形网格的物理性流域水文模型研究[博士学位论文]. 北京: 清华大学水利系, 2007.
    [73] 卫捷, 陶诗言, 张庆云. Palmer干旱指数在华北干旱分析中的应用[J]. 地理学报, 2003a, 58: 91-99.
    [74] 卫捷, 马柱国. Palmer 干旱指数、地表湿润指数与降水距平的比较[J]. 地理学报: 增刊, 2003b, 58:117-124.
    [75] 文伏波, 韩其为, 许炯心, 胡春宏, 陈吉余, 李国英, 董哲仁, 王光谦. 河流健康的定义与内涵. 水科学进展, 2007 18(1):140-150.
    [76] 翁文斌, 王忠静, 赵建世. 现代水资源规划――理论、方法和技术[M]. 北京: 清华大学出版社, 2004:374-388.
    [77] 夏军, 王纲胜, 等. 分布式时变增益流域水循环模拟[J]. 地理学报, 2003, 58(5):789-796.
    [78] 夏军, 王纲胜, 等. 水文非线性系统与分布式时变增益模型[J]. 中国科学 D 辑: 地球科学, 2004, 34(11):1062-1071.
    [79] 夏军, 左其亭. 国际水文科学研究的新进展[J]. 地球科学进展, 2006, 21(3):256-261
    [80] 熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004.
    [81] 熊忠幼, 张志杰, 等. 实现“数字长江”宏伟构想[J]. 中国水利, 2004, 4:45-47.
    [82] 徐宗学, 赵芳芳. 黄河流域日照时数变化趋势分析. 资源科学, 2005a, 27(5):153-159.
    [83] 徐宗学, 隋彩虹. 黄河流域平均气温变化趋势分析. 气象, 2005b, 31(11):7-10
    [84] 徐宗学, 和宛琳. 黄河流域近 40 年蒸发皿蒸发量变化趋势分析. 水文, 2005c, 25(6):6-11.
    [85] 徐宗学, 巩同梁, 赵芳芳. 近 40 年来西藏高原气候变化特征分析. 亚热带资源与环境学报, 2006, 1(1):24-32
    [86] 杨大文, 李翀, 倪广恒, 等. 分布式水文模型在黄河流域的应用[J]. 地理学报, 2004a, 59(1):143-154.
    [87] 杨大文, 夏军, 等. 中国 PUB 研究与发展: 水问题的复杂性与不确定性研究与进展[M]. 北京: 中国水利水电出版社, 2004b.
    [88] 杨宏青, 陈正红, 等. 长江流域近 40 年强降水的变化趋势[J]. 气象, 2005, 31(3):66-67.
    [89] 杨扬, 张建云, 戚建国, 岳智慧. 雷达测雨及其在水文中应用的回顾与展望. 水科学进展, 2000, 11(1):92-98.
    [90] 俞鑫颖, 刘新仁. 分布式冰雪融水雨水混合水文模型[J], 河海大学学报: 自然科学版, 2002, 30(5):24-27.
    [91] 袁作新. 流域水文模拟[M]. 北京: 水利电力出版社, 1988.
    [92] 袁文平, 周广胜. 干旱指标的理论分析与研究展望[J], 地球科学进展, 2004, 19(6):982-990.
    [93] 左洪超, 吕世华, 等. 中国近 50 年气温及降水量的变化趋势分析[J]. 高原气象, 2004, 23(2):238-244.
    [94] 张建云. 水文科学面临的气候变化问题[J]. 中国水文科学与技术研究进展: 全国水文学术讨论会论文集, 2004:3-13.
    [95] Maidment D R. 水文学手册[M]. 张建云, 李纪生, 译. 北京: 科学出版社, 2002:44-50.
    [96] 张济世, 刘立昱, 等. 统计水文学[M]. 郑州: 黄河水利出版社, 2006.
    [97] 张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京: 气象出版社, 2000.
    [98] 张秋文, 张勇传, 等. 数字流域整体结构及实现策略. 2001, 19(3):4-7.
    [99] 张永春, 李维新, 等. 长江流域洪灾与生态破坏的关系浅析: II 生态破坏导致洪灾加剧[J]. 农村生态环境, 1999, 15(4):12-15.
    [100] 张有芷, 张少婕, 王政祥. 长江三峡区间暴雨洪水分析[J]. 人民长江, 1999, 30(3):11-13.
    [101] 赵人俊. 流域水文模拟[M]. 北京: 水利水电出版社, 1984.
    [102] Abbott M B, Bathurst J C, Cunge J A, et al. An introduction to the European Hydrologic System – SHE. Journal of Hydrology, 1986, 87:45-77.
    [103] Allen R G, Pereira L S. Raes D, Smith M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. 1998
    [104] Alley W M. The Palmer drought severity index: limitations and assumpations. J. Climate Appl. Meteor., 1984, 23:1100-1109.
    [105] Anderson M L, Chen M, Kavvas M, et al. Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. Journal of Hydrologic Engineering, 2002, 7(4):312-318.
    [106] Beven K. Towards an alternative blue point for a physically based digitally simulated hydrologic response modeling system. Hydrological Processes, 2002, 16:189-206.
    [107] Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology. Hydorl. Sci., Bull, 1979, 24(1):43-69.
    [108] Borga M. Accuracy of radar rainfall estimates for stream flow simulation. Journal of Hydrology, 2002, 267:26–39.
    [109] Boyle D P, Gupta H V, Sorooshian S. Toward improved stream flow forecast: value of semi- distributed modeling. Water Resources Research, 2001, 37(11):2749–2759.
    [110] Bueh C, Cubasch U, Hagemann S. Impacts of global warming on changes in the East Asian monsoon and the related river discharge in a global time-slice experiment. Climate research, 2003, 24:47-57.
    [111] Chow V T, Maidment D R, Mays L W. Applied Hydrology. McGraw-Hill, New York, 1988.
    [112] Donnell B P. Users guide to RMA2 WES: Version 4.3. USACE-WES Hydraulics Laboratory. New York: WexTech Systems, Inc., 1997.
    [113] Douglas E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States: impact of spatial correction. Journal of Hydrology, 2000, 240:90-105.
    [114] Ewen J, Parkin G, et al. SHETRAN: Distributed river basin flow and transport modeling system. Journal of Hydrologic Engineering, 2000, 5(3):250-258.
    [115] Fortin J P, et al. Distributed watershed model compatible with remote sensing and GIS data I: Description of model. Journal of Hydrological Engineering, 2001, 6(2):91-99.
    [116] Fortin J P, et al. Distributed watershed model compatible with remote sensing and GIS data II: Application to Chaudiere watershed. Journal of Hydrological Engineering, 2001, 6(2):100-108.
    [117] Freeze R A, Harlan R.L. Blueprint for a physically-based digitally-simulated hydrological response model. Journal of Hydrology, 1969, 9:237-258.
    [118] Garrote L, Bras R L. A distributed model for real-time flood forecasting using digital elevation models. Journal of Hydrology, 1995, 167:279-306.
    [119] Garbrecht J, et al. GIS and distributed watershed models I: Data Coverages and Sources. Journal of Hydrological Engineering, 2001, 6(6):507-514.
    [120] Schultz G A, Engman E T. Remote Sensing in Hydrology and Water Management. Spring- verlag Berlin Heidelberg, 2000.
    [121] Granier A, Breda N, Biron P, et al. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecology Modeling, 1999, 116:269-283.
    [122] Hossain F, Anagnostou E N, Dinku T, Borga M. Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty. Hydrological Processes, 2004, 18:3277-3291.
    [123] IPCC(Intergovernment Panel on Climate Change), Climate Change 2001: The Scientific Basis (http:/www.ipcc.ch/pub/tar/wg1/).
    [124] Kalinga O A, Gan T Y. Semi-distributed modeling of basin hydrology with radar and gauged precipitation. Hydrological Processes, 2006, 20:3725-3746.
    [125] Kavvas M L. On the coarse-graining of hydrologic processes with increasing scales. Journal of Hydrology, 1999, 27:191–202.
    [126] Kirkby M J. Hillslope hydrology. New York: Wiley-Interscience, 1978.
    [127] Maidment D R. Handbook of Hydrology. McGraw-Hill, New York, 1988.
    [128] Miler J. R, Russe G L. The Impact of impact warming on river runoff. Journal of Geophysical Research, 1992, 97(D3):1-10.
    [129] Moran M S, Clarke T R,et al. Estimating crop water deficit using the relation between surface air temperature and spectural vegetation index. Remote Sensing of Environment, 1994, 49:246-263.
    [130] Morin E, Goodrich D C, Maddox R A. Rainfall modeling for integrating radar information into hydrological model. Atmospheric Science Letters 2005, 6:23-30.
    [131] Naden P. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure. Hydrological Science Journal, 1992, 37:53-71.
    [132] New M. Hulme M, Jones P. Representing twentieth-centry space-time climate variability (Part I): Development of a 1961-1990 mean monthly terrestrial climatology. Journal of Climate, 1999, 12:829-856.
    [133] O’Callaghan J F, Mark D M. The extraction of drainage networks from digital elevation data, Computer Vision. Graphics and Image Processing, 1984, 28:323-344.
    [134] Ogden F J, et al. GIS and distributed watershed models II: Modules, Interfaces, and Models. Journal of Hydrological Engineering, 2001, 6(6):515-523.
    [135] Palmer W C,Meterological drought US. Weather Bureau Research Paper, 1965:45-58.
    [136] Rodriguez-Iturbe I, Gonzalez-Sanabria M, Bras R L. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resources Research, 1982, 18(4):877-886.
    [137] Robinson J, Sivapalan M, Snell J. On the relative roles of hillslope process, channel routing, and network geomorphology in the hydrologic response of natural catchments. Water Resources Research, 1995, 31(12):3089-3101.
    [138] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Romote Sensing of Environment, 2002, 79:213-224.
    [139] Scian B, Donnari M. Retrospective analysis of the Palmer drought severity index in the semi-arid Pampas region, Argentina. International Journal of Climatology, 1997, 17:313-322.
    [140] Sellers P J, Randall D A, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. Journal. Climate, 1996, (9):676-705.
    [141] Sellers P J, Los S O, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from statellite data. Journal. Climate, 1996, (9):706-737.
    [142] Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology. Journal of Hydrological Engineering, 2002a, 7(4):270-292.
    [143] Singh V P, Frevert D K. Mathematical models of large watershed hydrology, Water Resource Publication, LLC, 2002b.
    [144] Sivapalan M. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 2003, 48(6):857-879.
    [145] Troutman B, Karlinger M. Unit hydrograph approximations assuming linear flow through topographically random channel networks. Water Resource Research, 1985, 21(5):743-754.
    [146] Vieux B E. Distributed hydrologic modeling using GIS. Kluwer Academic Publishers, 2001.
    [147] Von Storch H. Misuses of statistical analysis in climate research. In: Analysis of Climate Variability: Applications of Statistical Techniques (edit by H Von Storch, A Navarra). Springer-Verlag, Berlin, 1995.
    [148] Wang S, Gong D, Zhu J. Twentieth-centry climatic warming in China in the context of the Holocene. the Holocene, 2001, 11:313-321.
    [149] Wilson C B, Valdes J B, Rodriquez-Iturbe I. On the Influence of the spatial distribution ofrainfall on storm runoff. Water Resources Research, 1979, 15(2):321–328.
    [150] Winchell M, Gupta H V, Sorooshian S. On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: effects of algorithm uncertainty and pixel aggregation. Water Resources Research, 1998, 34(10):2655–2670.
    [151] Yang D, Herath S, Musiake K. Analysis of geomorphologic properties extracted from DEMs for hydrological modeling. Annual Journal of Hydraulic Engineering, JSCE, 1997, 41:105-110.
    [152] Yang D, Herath S, Musiake K. Development of a geomorphology-based hydrological model for large catchments. Annual Journal of Hydraulic Engineering, JSCE, 1998a, 42:169-174.
    [153] Yang D. Distributed hydrological model using hillslope discretization based on catchment area function development and applications [Thesis for Degree of Doctor of Engineering]. University of Tokyo, 1998b.
    [154] Yang D, Musiake K, Kanae S, et al. Use of the Pfafstetter basin numbering system in hydrological modeling. Proceedings of 2000 Annual Conference. Japan Society of Hydrology and Water Resources, 2000.
    [155] Yang D, Kanae S, Oki T, Musiake K. Expanding the distributed hydrological modeling to continental scale. IAHS Publication 2001, 270:125-134.
    [156] Yang D, Herath S, Musiake K. Hillslope-based hydrological model using catchment area and width function. Hydrological Sciences Journal, 2002a, 47:49-65.
    [157] Yang D, Kanae S, Oki T, Musiake K. A geomorphology-based hydrological model and its application. In: Mathematical Models of Small watershed Hydrology and applications, Singh V P, Frevert D K (eds). Water Resource Publicaitons: Littleton, CO, 2002b:259-300.
    [158] Yang D, Musiake K. A continental scale hydrological model using the distributed approach and its application to Asia. Hydrological Processes, 2003, 17:2855-2869.
    [159] Yang D, Koike T, Tanizawa H. Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan. Hydrological Processes, 2004a,18:3119-3132
    [160] Yang D, Li C, Hu H, et al. 2004b, Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water resources research, 2004b, 40.
    [161] Yue S, Pilon P, Cavadias G. Power of the Mann-kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 2002a, 259:254-271.
    [162] Yue S, Wang C. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water resources research, 2002b, 38(6):41-47.
     [163] Yue S, Pilon P, Phinney B. Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrological Sciences, 2003a, 48(1):51-63.
    [164] Yue S, Michio H. Long term trends of annual and monthly precipitation in Japan. J. of the American Water Resources Association (JAWRA), 2003b, 39(3):587-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700