用户名: 密码: 验证码:
假单胞菌的快速检测及其与表面活性剂的作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
假单胞菌是一属在环境生物技术和工业生物技术中占据着重要位置的微生物,为了实现对该菌属整细胞的控制和催化过程强化,需要对其细胞特性进行快速的定量和监测。
     本论文以假单胞菌为重点研究对象,通过应用生物发光及荧光技术,在饮用水及其过滤系统内的生物膜体系中对混合菌群结构进行解析,提出了一种快速定量目标菌的新方法;在表面活性剂对恶臭假单胞菌代谢影响机理的解析中,利用LUX-CFP实现了对整细胞及其胞内酶活性的快速准确表征,为基于表面活性剂控制假单胞菌整细胞及其代谢特性提供了新的手段。
     实验结果表明,饮用水过滤器系统虽然能在一定程度上简化饮用水中的菌群结构,但因为在其内部会形成生物膜,导致出水中的微生物学指标升高,而生物膜的形成与过滤器的结构和温度都有关系。另外,在饮用水中检出了恶臭假单胞菌,但经过过滤系统后,该菌没有再被检测到。
     提出并成功建立了一种基于KinExA仪器的免疫检测病原菌的方法,该方法对菌体的定量检测具有操作简单、灵敏度高、准确度高、重复性高和检测时间短等优点,用该方法检测铜绿假单胞菌的结果,接近文献报道的最优值,而其灵敏度比常规ELISA的高出100倍,并具有应用于混合微生物种群解析的潜力。
     通过成功构建带有生物发光和荧光蛋白标记的基因工程菌P. putida BLU-CFP,实现了用LUX-CFP双生物标记简单而全面的表征整细胞及其胞内蛋白总体特性的目的。其中,LUX反映细胞的代谢活性,CFP可用其来衡量细胞膜通透性及细胞形态完整性的变化,并可用以表征细胞内大部分蛋白的活性。
     对季铵盐阳离子表面活性剂DTAB和P. putida整细胞作用过程的机理模型研究表明,按照DTAB从低浓度到高浓度的顺序,DTAB对细胞的作用可以分为五个阶段:正常适应→休止细胞→代谢活性被抑制→失去繁殖能力→细胞裂解。而胞内蛋白主要经历了三个变化阶段:正常→部分酶活被抑制,但底物或产物的传质速率增加→酶泄漏到胞外→酶失活。此外,研究发现在该作用的过程中,阳离子表面活性剂的疏水基团起到了十分关键的作用。
Pseudomonas is an important genus both for environmental biotechnology and industrial biotechnology. In order to control the bacteria of this genus and intensify the metabolism of the whole cells, rapid and accurate monitoring of cell number and cellular characteristics is indispensable.
     This thesis aimed at establishing rapid and simple tools for quantification and monitoring of the whole cells and cellular activities of Pseudomonas sp., by means of fluorescence and bioluminescence techniques.
     To study the rapid quantification of Pseudomonas sp., the system of drinking water with its purifier was chosen, for its bacterialogical quality is closely related to the human health. The water purifier was found to be capable of simplifying the structure of bacterial community in drinking water by API kits identification. While, the biofilm formed inside the purifier would significantly increase the total number of bacteria (HPC) and the formation was closely related to the configuration and temperature of the purifier. P. putida was detected in the drinking water, but became non-detectable either in the filtered water or the biofilm formed inside the purifier.
     A novel immunoassay-based bacterial quantification method was developed by using the KinExA instrument, showing the superior performances with high sensitivity, high accuracy, high reproducibility, simple manipulation and short detection time, etc. By this method, the sensitivity and dynamice range for P. aeruginosa detection were close to or even better than those of the best immunological detection method reported so far, and the sensitivity was 100 times higher than that of ELISA.
     To analyze the whole cell characteristics and intracellular metabolic activities under the presence of cationic surfactants, a genetically engineered strain, P. putida BLU-CFP, was constructed by employing the LUX-CFP dual bioremarkers. Results showed that LUX reflected the metabolic activity of the cells, while CFP could estimate the membrane permeability, the shape integrity of the cells and also the activities of most intracellular proteins. By using this dual bioremarkers of LUX-CFP, the monitoring of whole cell catalysis would be much simpler.
     The action process of DTAB (one of the cationic surfactants) on the whole cell of P. putida could be divided into five stages according to the changes of the cells by the treatment of DTAB from low to high concentrations: normalcells resting metabolic activity inhibited cell viability lost lysed. And according to the changes of intracellular enzymes, the DTAB effect was described as normal partly inhibited, while mass transfer speed enhanced leaked outside the cell completely denatured. In addition, the hydrophobic group of quarternary ammonium compounds was found playing a key role in the action of cationic surfactant on the whole cells and its intracellular enzymes.
引文
[1]杜晨宇,李春,曹竹安, et al.工业生物技术的核心.生物工程进展, 2002, 22: 9-14.
    [2] OECD Report: Biotechnology for clean industrial products and processes: Towards industrial sustainability (1998).
    [3] Schmid A, Dordick J S, Hauer B. Industrial biocatalysts today and tomorrow. Nature, 2001, 409: 258-268.
    [4]十届全国人大四次会议文件:《中华人民共和国国民经济和社会发展第十一个五年计划纲要》(草案,2006年3月).
    [5] Nikolova P, Ward O P. Whole-cell biocatalysis in nonconventional media. J. Indust. Microbiol., 1993, 12: 76-86.
    [6] Jung H C, Kwon S J, Pan J G. Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnol., 2006, 6.
    [7] Heipieper H J, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol., 2007, 74: 961-973.
    [8] Xie X K, Tang Y. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Applied and Environmental Microbiology, 2007, 73: 2054-2060.
    [9] Mannisto M K, Salkinoja-Salonen M S, Puhakka J A. In situ polychlorophenol bioremediation potential of the indigenous bacterial community of boreal groundwater. Water Res., 2001, 35: 2496-2504.
    [10] Jenkins R O, Heald S C. Stability of toluene oxidation by Pseudomonas putida under nutrient deprivation. Appl. Microbiol. Biotechnol., 1996, 46: 388-392.
    [11] Rich J O, Michels P C, Khmelnitsky Y L. Combinatorial biocatalysis. Curr. Opin. Chem. Biol., 2002, 6: 161-167.
    [12] Xing X H, Tanaka T, Matsumoto K, et al. Characteristics of a newly created bioluminescent Pseudomonas putida harboring TOL plasmid for use in analysis of a bioaugmentation system. Biotechnol. Lett., 2000, 22: 671-676.
    [13] Soda S, Ike M, Fujita M. Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol. J. Ferment. Bioeng., 1998, 86: 90-96.
    [14]马展,张德纯.假单胞基因工程菌的开发应用现状与展望.中国微生态学杂志, 2003, 15: 186-187.
    [15] Ye R W, Thomas S M. Microbial nitrogen cycles: physiology, genomics and applications. Curr. Opin. Microbiol., 2001, 4: 307-312.
    [16] Wackett L P. Pseudomonas putida - a versatile biocatalyst. Nat. Biotechnol., 2003, 21: 136-138.
    [17] Montie T C e. Pseudomonas. New York and London: Plenum Press. 1998.
    [18] Sheridan R, Jackson G A, Regan L, et al. Rational engineering of the TOL meta-cleavage pathway. Biotechnology and Bioengineering, 1998, 58: 240-249.
    [19] Suyama A, Iwakiri R, Kimura N, et al. Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene. J. Bacteriol., 1996, 178: 4039-4046.
    [20] Furukawa K, Hirose J, Hayashida S, et al. Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J. Bacteriol., 1994, 176: 2121-2123.
    [21] Lee J Y, Jung K H, Kim H S. Amplification of toluene dioxygenase genes in a hybrid Pseudomonas strain to enhance the biodegradation of benzene, toluene, and p-xylene mixture. Biotechnology and Bioengineering, 1995, 45: 488-494.
    [22] Wang Z Y, Li J, Hesham A E L, et al. Co-variations of bacterial composition and catabolic genes related to PAH degradation in a produced water treatment system consisting of successive anoxic and aerobic units. Sci. Total Environ., 2007, 373: 356-362.
    [23] Junca H, Plumeier I, Hecht H J, et al. Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment. Microbiology-(UK), 2004, 150: 4181-4187.
    [24] Samanta S K, Bhushan B, Jain R K. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Microbiol. Biotechnol., 2001, 55: 627-631.
    [25] http://www.brenda-enzymes.info/.
    [26]翁稣颖,戚蓓静,史家梁.环境微生物学.北京:科学出版社, 1987.
    [27] Atkinson B W, Mudaly D D, Bux F. Contribution of Pseudomonas spp. to phosphorus uptake in the anoxic zone of an anaerobic anoxic-aerobic continuous activated sludge system. Water Sci Technol, 2001, 43: 139-146.
    [28] Xiao Z-Y, Mohammad H D, Xing X-H, et al. A membrane bioreactor with novel modules for effective biodegradation of toluene. Biochem. Eng. J., 2000, 5: 83-88.
    [29] Mohammad H D, Xing X-H, Yoshikawa Y, et al. Analysis of a simple biodegradation process for the removal of volatile organic chemicals from wastewater based on a gas stripping principle. Journal of Bioscience and Bioengineering, 1999, 87: 519-524.
    [30] Greated A, Lambertsen L, Williams P A, et al. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ. Microbiol., 2002, 4: 856-871.
    [31] Bae J W, Han J H, Park M S, et al. Development of recombinant Pseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide. Biotechnol. Bioprocess Eng., 2006, 11: 530-537.
    [32]刘智,张晓舟,何健, et al.营养物质及金属离子对DLL-E4菌降解对硝基苯酚的影响.土壤学报, 2004, 41: 292-297.
    [33]董新姣.三株染料脱色优势菌的分离与鉴定.温州师范学院学报(自然科学版), 2000, 21: 42-43.
    [34]陈志英,王磊,周琪.菌龄对恶臭假单胞菌吸附铜离子能力的影响.中国环境科学, 2006, 26(Suppl.): 97-101.
    [35] Filonov A E, Puntus I F, Karpov A V, et al. Efficiency of naphthalene biodegradation by Pseudomonas putida G7 in soil. J. Chem. Technol. Biotechnol., 2004, 79: 562-569.
    [36] Kiener A. Enzymatic oxidation of methyl-groups on aromatic heterocycles - a versatile method for the preparation of heteroaromatic carboxylic-acids. Angew. Chem.-Int. Edit. Engl., 1992, 31: 774-775.
    [37]罗九甫,伍登熙,李亚红, et al.固定化对恶臭假单胞菌腈水合酶催化特性的影响.分子催化, 1989, 8: 242-246.
    [38] Chen R R Z. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl. Microbiol. Biotechnol., 2007, 74: 730-738.
    [39] Nagalakshmi V, Pai J S. Permeabilization of Escherichia-coli-cells for enhanced penicillin acylase activity. Biotechnol. Tech., 1994, 8: 431-434.
    [40] Ni Y, Mao Z C, Chen R R. Outer membrane mutation effects on UDP-glucose permeability and whole-cell catalysis rate. Appl. Microbiol. Biotechnol., 2006, 73: 384-393.
    [41] Yin B D, Chen Y C, Lin S C, et al. Production of D-amino acid precursors with permeabilized recombinant Escherichia coli with D-hydantoinase activity. Process Biochem., 2000, 35: 915-921.
    [42] Li J Y, Cao Y, Liu Y, et al. Activity and stability of arginine deiminase for producing L-citrulline. Chin. J. Chem. Eng., 2005, 13: 841-844.
    [43] Liu Z B, Jacobson A M, Luthy R G. Biodegradation of naphthalene in aqueous nonionic surfactant systems. Applied and Environmental Microbiology, 1995, 61: 145-151.
    [44] Li Q, Logan B E. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res., 1999, 33: 1090-1100.
    [45] Powelson D K, Mills A L. Water saturation and surfactant effects on bacterial transport in sand columns. Soil Sci., 1998, 163: 694-704.
    [46] Fujio T, Maruyama A, Aoyama Y, et al. Production of 5 '-GMP from glucose by coupling reaction between Corynebacterium ammoniagenes and self-cloned Escherichia coli - Monograph. Seibutsu-Kogaku Kaishi-J. Soc. Ferment. Bioeng., 1999, 77: 104-112.
    [47] Tanaka T, Xing X H, Matsumoto K, et al. Preparation and characteristics of resting cells of bioluminescent Pseudomonas putida BLU. Biochem. Eng. J., 2002, 12: 29-36.
    [48] Aflalo C, Meshulam Y, Zarka A, et al. On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnology and Bioengineering, 2007, 98: 300-305.
    [49] Du G C, Chen J, Yu J, et al. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J. Biotechnol., 2001, 88: 59-65.
    [50] Daniel H J, Reuss M, Syldatk C. Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol. Lett., 1998, 20: 1153-1156.
    [51] He F J, Zhang X Q, Liu Z H. A new sensor method for studying the effect of surfactants on the growth of Pseudomonas aeruginosa. Sens. Actuator B-Chem., 2006, 113: 428-434.
    [52] Proksova M, Vrbanova A, Sladekova D, et al. Dialkyl sulfosuccinate toxicity towards Comamonas terrigena N3H. J. Trace Microprobe Tech., 1998, 16: 475-480.
    [53] Brown D G, Jaffe P R. Effects of nonionic surfactants on the UV/visible absorption of bacterial cells. Biotechnology and Bioengineering, 2001, 74: 476-482.
    [54] Panda A K, Chakraborty A K. Interaction of mixed surfactants with bacterial lipopolysaccharide. J. Colloid Interface Sci., 1998, 203: 260-264.
    [55] Rao J, Satyanarayana T. Enhanced secretion and low temperature stabilization of a hyperthermostable and Ca2+-independent alpha-amylase of Geobacillus thermoleovorans by surfactants. Lett. Appl. Microbiol., 2003, 36: 191-196.
    [56] Savelli G, Spreti N, Di Profio P. Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions. Curr. Opin. Colloid Interface Sci., 2000, 5: 111-117.
    [57] Grabińska-Sota E, Kalka J. Toxicity of imidazolium chlorides to aquatic organisms. Pol. J. Environ. Stud., 2006, 15: 405-409.
    [58] Tran-Ha M H, Santos V, Wiley D E. The effect of multivalent cations on membrane-protein interactions during cleaning with CTAB. J. Membr. Sci., 2005, 251: 179-188.
    [59] Rajagopal S, Eis N, Nickerson K W. Eight Gram-negative bacteria are 10 000 times more sensitive to cationic detergents than to anionic detergents. Can. J. Microbiol., 2003, 49: 775-779.
    [60] Mereghetti L, Quentin R, Marquet-Van der Mee N, et al. Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Applied and Environmental Microbiology, 2000, 66: 5083-5086.
    [61] McDonnell G, Russell A D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev., 1999, 12: 147-179.
    [62] Gilbert P, Allison D G, McBain A J. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J. Appl. Microbiol., 2002, 92: 98S-110S.
    [63] Unge A, Tombolini R, M?lbak L, et al. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Applied and Environmental Microbiology, 1999, 65: 813-821.
    [64] Ivnitski D, Abdel-Hamid I, Atanasov P, et al. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron., 1999, 14: 599-624.
    [65] Chang Y T, Lee J F, Hung C H. PAH biodegradation in surfactant-water systems based on the theory of cohesive energy density (CED). J. Chem. Technol. Biotechnol., 2007, 82: 442-452.
    [66] Choi M J, Kang S H, Kim S, et al. The interaction of an antimicrobial decapeptide with phospholipid vesicles. Peptides, 2004, 25: 675-683.
    [67] Daschner F D, Ruden H, Simon R, et al. Microbiological contamination of drinking water in a commercial household water filter system. Eur. J. Clin. Microbiol. Infect. Dis., 1996, 15: 233-237.
    [68] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol. Rev., 1995, 59: 143-169.
    [69] de Poorter L M I, Keltjens J T. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeon Methanobacterium thermoautotrophicum. J. Microbiol. Methods, 2001, 47: 233-241.
    [70] Schwab C, Vogel R, Ganzle M G. Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology, 2007, 55: 108-114.
    [71] Ellison M L, Champlin F R. Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan. Vet. Microbiol., 2007, 124: 310-318.
    [72] Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal. Chim. Acta, 2006, 568: 200-210.
    [73] Hastings J W. Chemistries and colors of bioluminescent reactions: A review. Gene, 1996, 173: 5-11.
    [74] Stewart G, Williams P. lux genes and the applications of bacterial bioluminescence. Journal of General Microbiology, 1992, 138: 1289-1300.
    [75]张菊梅,吴清平.荧光素酶研究进展.微生物学通报, 2001, 28: 98-101.
    [76] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of Aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellularand Comparative Physiology, 1962, 59: 223-239.
    [77] Ormo M, Cubitt A B, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273: 1392-1395.
    [78] Mussauer H, Sukhorukov V L, Zimmermann U. Trehalose improves survival of electrotransfected mammalian cells. Cytometry, 2001, 45: 161-169.
    [79] Josenhans C, Friedrich S, Suerbaum S. Green fluorescent protein as a novel marker and reporter system in Helicobacter sp. FEMS Microbiol. Lett., 1998, 161: 263-273.
    [80] Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol., 2001, 2: 444-456.
    [81] Miller S, Kennedy D, Thomson J, et al. A rapid and sensitive reporter gene that uses green fluorescent protein expression to detect chemicals with estrogenic activity. Toxicol. Sci., 2000, 55:69-77.
    [82] Moseyko N, Feldman L J. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ., 2001, 24: 557-563.
    [83] Wang Y, Wang G, O'Kane D J, et al. A study of protein-protein interactions in living cells using luminescence resonance energy transfer (LRET) from Renilla luciferase to Aequorea GFP. Mol. Gen. Genet., 2001, 264: 578-587.
    [84] Billinton N, Knight A W. Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem., 2001, 291: 175-197.
    [85]刘敏胜.荧光蛋白快速定量监控微生物培养过程方法研究.清华大学工学博士学位论文, 2006.
    [86] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene-expression. Science, 1994, 263: 802-805.
    [87] Yang F, Moss L G, Phillips G N. The molecular structure of green fluorescent protein. Nat. Biotechnol., 1996, 14: 1246-1251.
    [88] Kosek M, Bern C, Guerrant R L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull. World Health Organ., 2003, 81: 197-204.
    [89] Hunter P R, Andersson Y, von Bonsdorff C H, et al. Surveillance and investigation of contamination incidents and waterborne outbreaks. In: Assessing Microbial Safety of Drinking Water: Improving Approaches and Methods. , (ed.) Dufour, A.I.; Snozzi, M.; Koster, W.; Bartram, J.; Ronchi, E.; Fewtrell, L. pp. 205-236. London: IWA Publishing.
    [90] http://www.pureaircontrols.com/.
    [91] September S M, Els F A, Venter S N, et al. Prevalence of bacterial pathogens in biofilms of drinking water distribution systems. J. Water Health, 2007, 5: 219-227.
    [92] Silvestry-Rodriguez N, Bright K R, Uhlmann D R, et al. Inactivation of Pseudomonas aeruginosa and Aeromonas hydrophila by silver in tap water. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 2007, 42: 1579-1584.
    [93] Stover C K, Pham X Q, Erwin A L, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000, 406: 959-964.
    [94] Hwang M G, Katayama H, Ohgaki S. Accumulation of copper and silver onto cell body and its effect on the inactivation of Pseudomonas aeruginosa. Water Sci. Technol., 2006, 54: 29-34.
    [95] Hambsch B, Sacre C, Wagner I. Heterotrophic plate count and consumer's health under special consideration of water softeners. Int. J. Food Microbiol., 2004, 92: 365-373.
    [96] Bovenizer J S, Jacobs M B, O'Sullivan C K, et al. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Anal. Lett., 1998, 31: 1287-1295.
    [97] Martiny A C, Jorgensen T M, Albrechtsen H J, et al. Long-term succession of structure anddiversity of a biofilm formed in a model drinking water distribution system. Applied and Environmental Microbiology, 2003, 69: 6899-6907.
    [98] Emtiazi F, Schwartz T, Marten S M, et al. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Res., 2004, 38: 1197-1206.
    [99] Snyder J W, Mains C N, Anderson R E, et al. Effect of point-of-use, activated carbon filters on the bacteriological quality of rural groundwater supplies. Applied and Environmental Microbiology, 1995, 61: 4291-4295.
    [100] Chemburu S, Wilkins E, Abdel-Hamid I. Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens. Bioelectron., 2005, 21: 491-499.
    [101] Endo H, Hayashi T, Ren H, et al. Quartz crystal assay for rapid determination of nitrifying bacterial cells. Int. J. Environ. Anal. Chem., 2005, 85: 807-815.
    [102] Yasui T, Yoda K. Imaging of Lactobacillus brevis single cells and microcolonies without a microscope by an ultrasensitive chemiluminescent enzyme immunoassay with a photon-counting television camera. Applied and Environmental Microbiology, 1997, 63: 4528-4533.
    [103] Rishpon J, Ivnitski D. An amperometric enzyme-channeling immunosensor. Biosens. Bioelectron., 1997, 12: 195-204.
    [104] Croci L, Delibato E, Volpe G, et al. A rapid electrochemical ELISA for the detection of Salmonella in meat samples. Anal. Lett., 2001, 34: 2597-2607.
    [105] Babacan S, Pivarnik P, Letcher S, et al. Piezoelectric flow injection analysis biosensor for the detection of Salmonella typhimurium. J. Food Sci., 2002, 67: 314-320.
    [106] BattéM, Mathieu L, Laurent P, et al. Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization. Can. J. Microbiol., 2003, 49: 741-753.
    [107] Kalmbach S, Manz W, Szewzyk U. Dynamics of biofilm formation in drinking water: Phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiol. Ecol., 1997, 22: 265-279.
    [108] Manz W, Szewzyk U, Ericsson P, et al. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Applied and Environmental Microbiology, 1993, 59: 2293-2298.
    [109]东秀珠,蔡妙英等编著.常见细菌系统鉴定手册. 2001,北京:科学出版社.
    [110] Baudart J, Coallier J, Laurent P, et al. Rapid and sensitive enumeration of viable diluted cells of members of the family Enterobacteriaceae in freshwater and drinking water. Applied and Environmental Microbiology, 2002, 68: 5057-5063.
    [111] Villarino A, Bouvet O M M, Regnault B, et al. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heat- or UV-killed cells. Res.Microbiol., 2000, 151: 755-768.
    [112] Delehanty J B, Ligler F S. A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal. Chem., 2002, 74: 5681-5687.
    [113] Ohmura N, Lackie S J, Saiki H. An immunoassay for small analytes with theoretical detection limits. Anal. Chem., 2001, 73: 3392-3399.
    [114] Drake A W, Myszka D G, Klakamp S L. Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods. Anal. Biochem., 2004, 328: 35-43.
    [115] Blake D A, Jones R M, Blake R C, et al. Antibody-based sensors for heavy metal ions. Biosens. Bioelectron., 2001, 16: 799-809.
    [116] Lehtola M J, Miettinen K T, Keinanen M M, et al. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res., 2004, 38: 3769-3779.
    [117] Fewtrell L, Kaufmann R B, Kay D, et al. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. Lancet Infect. Dis., 2005, 5: 42-52.
    [118] Crump J A, Okoth G O, Slutsker L, et al. Effect of point-of-use disinfection, flocculation and combined flocculation-disinfection on drinking water quality in western Kenya. J. Appl. Microbiol., 2004, 97: 225-231.
    [119] Schwartz T, Hoffmann S, Obst U. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J. Appl. Microbiol., 2003, 95: 591-601.
    [120] Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. Fems Microbiol. Rev., 2000, 24: 661-671.
    [121] Regan J M, Harrington G W, Noguera D R. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Applied and Environmental Microbiology, 2002, 68: 73-81.
    [122] Buswell C M, Herlihy Y M, Lawrence L M, et al. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Applied and Environmental Microbiology, 1998, 64: 733-741.
    [123] Dukan S, Levi Y, Piriou P, et al. Dynamic modelling of bacterial growth in drinking water networks. Water Res., 1996, 30: 1991-2002.
    [124] Ma Q L, Wang Z Z, Li M M, et al. Study of activated carbon applied to water treatment. New Carbon Mater., 2002, 17: 59-61.
    [125] Tobin R S, Smith D K, Lindsay J A. Effects of activated carbon and bacteriostatic filters on microbiological quality of drinking water. Applied and Environmental Microbiology, 1981, 41:646-651.
    [126] Tokajian S, Hashwa F. Incidence of antibiotic resistance in coliforms from drinking water and their identification using the biolog and the API identification systems. J. Chemother., 2004, 16: 45-50.
    [127]国家环保局.水和废水监测分析方法.第三版.北京:中国环境科学出版社, 1998.
    [128] Kalmbach S, Manz W, Szewzyk U. Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Applied and Environmental Microbiology, 1997, 63: 4164-4170.
    [129] ProbeBase online website: http://www.microbial-ecology.de/probebase.
    [130] Williams M M, Domingo J W S, Meckes M C, et al. Phylogenetic diversity of drinking water bacteria in a distribution system simulator. J. Appl. Microbiol., 2004, 96: 954-964.
    [131] O'Hara C M, Sowers E G, Bopp C A, et al. Accuracy of six commercially available systems for identification of members of the family Vibrionaceae. J. Clin. Microbiol., 2003, 41: 5654-5659.
    [132] Beveridge T J. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 1999, 181: 4725-4733.
    [133] Zhao X J, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 15027-15032.
    [134] Delibato E, Bancone M, Volpe G, et al. Development and comparative evaluation of different screening methods for detection of Staphylococcus aureus. Anal. Lett., 2005, 38: 1569-1586.
    [135] Magliulo M, Simoni P, Guardigli M, et al. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157 : H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J. Agric. Food Chem., 2007, 55: 4933-4939.
    [136] Lazcka O, Del Campo F J, Munoz F X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron., 2007, 22: 1205-1217.
    [137] Blake R C, Pavlov A R, Blake D A. Automated kinetic exclusion assays to quantify protein binding interactions in homogeneous solution. Anal. Biochem., 1999, 272: 123-134.
    [138] Levasseur S, Husson M O, Leitz R, et al. Rapid detection of members of the family Enterobacteriaceae by a monoclonal antibody. Applied and Environmental Microbiology, 1992, 58: 1524-1529.
    [139] Haralambieva I, Iankov I, Petrov D, et al. Cross-reaction between the genus-specific lipopolysaccharide antigen of Chlamydia spp. and the lipopolysaccharides of Porphyromonas gingivalis, Escherichia coli O119 and Salmonella newington: Implications for diagnosis. Diagn. Microbiol. Infect. Dis., 2001, 41: 99-106.
    [140] Niemeyer C M, Mirkin C A e. Nanobiotechnology: Concepts, Applications and Perspectives. Weinheim: Wiley-VCH Pub., 2004.
    [141]李江,陈劲春,曹小岗, et al.生物法合成邻苯二酚.化工科技, 2003, 11: 29-32.
    [142] Lageveen R G, Huisman G W, Preusting H, et al. Formation of Polyesters of Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Applied and Environmental Microbiology, 1988, 54: 2924-2932.
    [143]郭尧君(编著).荧光实验技术及其在分子生物学中的应用.北京:科学出版社, 1979.
    [144]吴芳,郭卫东,张润, et al.荧光法测定微藻中色氨酸的含量.海洋科学, 2005, 29: 1-4.
    [145] Neumann G, Veeranagouda Y, Karegoudar T B, et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles, 2005, 9: 163-168.
    [146] Sim?es M, Pereira M O, Vieira M J. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res., 2005, 39: 478-486.
    [147] Hugo W B, Russell A D. Types of antimicrobial agents. In: Principles and Practice of Disinfection, Preservation and Sterilization, 2nd edn. ed. Russell, A.D., Hugo, W.B. and Ayliffe, G.A.J., 1992, Oxford:Blackwell Science Publications.
    [148] Ishikawa S, Matsumura Y, Katoh-Kubo K, et al. Antibacterial activity of surfactants against Escherichia coli cells is influenced by carbon source and anaerobiosis. J. Appl. Microbiol., 2002, 93: 302-309.
    [149] Larue T A, Blakley E R. Spectrophotometric determination of catechols with 4-aminoantipyrine. Anal. Chim. Acta, 1964, 31: 400-403.
    [150] Smets B S, Rittmann B E, Stahl D A. The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Applied and Environmental Microbiology, 1993, 59: 3430-3437.
    [151] Bultreys A, Gheysen I, Wathelet B, et al. High-performance liquid chromatography analyses of pyoverdin siderophores differentiate among phytopathogenic fluorescent Pseudomonas species. Applied and Environmental Microbiology, 2003, 69: 1143-1153.
    [152]王希成.生物化学.北京:清华大学出版社. 2001, 67-71.
    [153] Smits T H M, Seeger M A, Witholt B, et al. New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid, 2001, 46: 16-24.
    [154] Blouin K, Walker S G, Smit J, et al. Characterization of in vivo reporter systems for gene expression and biosensor applications based on luxAB luciferase genes. Applied and Environmental Microbiology, 1996, 62: 2013-2021.
    [155] Kneen M, Farinas J, Li Y X, et al. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J., 1998, 74: 1591-1599.
    [156] Jin D Y, Jiang X, Jing X, et al. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. J. Hazard. Mater., 2007, 144: 215-221.
    [157] Bordbar A K, Hosseinzadeh R, Norozi M H. Interaction of a homologous series of n-alkyltrimethyl ammonium bromides with egg white lysozyme - Microcalorimetric and spectroscopic study. J. Therm. Anal. Calorim., 2007, 87: 453-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700