用户名: 密码: 验证码:
PF-MBR处理城市生活污水及其膜污染控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器是将生物处理工艺与膜分离技术相结合而成的一种新型、高效污水处理技术,是中水回用的热点处理工艺。该工艺具有出水水质好、耐冲击负荷、剩余污泥少及占地面积小等优点。在污水排放标准越来越严格和水资源短缺问题日益突出的背景下,膜生物反应器将成为污水处理与资源化的重要技术途径之一。但膜生物反应器技术目前还存在膜污染、能耗大、费用高等问题。已有的研究多通过优化运行参数、添加PAC填料、采用组合工艺等措施提高污染物去除率,有些措施还能有效减缓膜污染。但向膜生物反应器中添加廉价的铁氧体粉末及采用低温等离子体技术对膜进行改性,以提高污水中污染物去除率及改善膜污染的系统研究尚不多见。
     在上述背景下,设计制作铁氧体粉末膜生物反应器(PF-MBR),组建实验系统;并对城市生活污水进行处理,研究各主要运行参数对污染物去除效果及膜污染的影响规律;考察铁氧体粉末添加对污水中污染物去除效果及膜污染的影响,并进行了PF-MBR处理城市生活污水的动力学分析;在此基础上采用低温等离子体对聚偏氟乙烯膜进行改性,研究低温等离子体改性对污染物去除率及膜耐污性能的影响。
     实验结果表明,采用自制的PF-MBR处理生活污水时,反应器中DO、HRT、MLSS、进水pH及温度等对污水中COD、NH_4~+-N、TN及TP的去除均有一定的影响;膜生物反应器中添加铁氧体粉未能明显提高生物反应器对COD及NH_4~+-N的去除率,但对TN和TP的去除效果影响不大;添加铁氧体粉末能在一定程度上延缓膜污染。一定条件下,膜生物反应器运行到第30天时,不加铁氧体粉末的MBRB膜过滤压差达到22.9kPa,而添加铁氧体粉末的MBRA膜过滤压差只有1 7.2kPa;MBRA的膜过滤阻力比MBRB小1.65×10~(12)m~(-1),,其中,MBRA由膜孔堵塞与吸附产生的阻力显著小于MBRB;尽管MBRA和MBRB的临界通量均介于17-20L/(m~2·h)之间,但当膜生物反应器以20L/(m~2·h)的膜通量运行时,MBRB膜过滤压差的增长速率为0.06kPa/min,明显大于MBRA。通过正交实验得到因素铁氧体粉术投加量A、铁氧体粉末比饱和磁化强度B、膜通量C和曝气量D对COD去除率、NH_4~+-N去除率及膜过滤阻力上升速率影响的重要性顺序。PF-MBR运行的较优水平是A_3B_3C_1D_2。
     机理分析表明,膜生物反应器中加入铁氧体粉末后,在微生物降解、磁场能、铁氧体粉术吸附等共同作用下,实现了污水中污染物去除率的提高;同时,铁氧体粉末的加入改变了活性污泥絮体的结构和性质,降低了膜生物反应器运行过程中膜表面泥饼层产生的阻力及膜孔堵塞与吸附产生的阻力,从而有效缓解膜污染。
     动力学分析结果显示,PF-MBR处理城市生活污水时,有机底物降解动力学常数K的平均值为0.0023 L/(mg·d),大于不加铁氧体粉末膜生物反应器的有机底物降解动力学常数;PF-MBR处理城市生活污水时,污泥增殖的动力学模式为:(?)=0.2502(?)-0.0371,产率系数y为0.2502,衰减系数K_d为0.0371。
     低温等离子体改性对PF-MBR去除污染物效果的影响不大,但能增强膜的耐污染性能。在稳定运行过程中,改性膜过滤压差增加的速率明显小于非改性膜;改性膜的过滤总阻力、膜本身的固有阻力、膜表面泥饼层所产生的阻力及膜孔堵塞与吸附所产生的阻力均小于非改性膜;在相同操作条件下,改性膜的临界通量为20~23L/(m~2·h),高于非改性膜。机理分析表明,膜的低温等离子体改性可以在膜表面引入大量羟基、羰基等亲水性极性基团,使膜表面受到刻蚀,粗糙度增加,从而使膜表面的亲水性增强,耐污性能得到提高。
     研究中采用低温等离子体进行膜改性,能明显增强膜的耐污染性能,同时具有高效、低成本、环保等优点。所采用的磁性铁氧体粉末可以从重金属废水中在一定条件下直接获得。该填料的加入在提高污染物去除率及改善膜污染的同时,还可实现废物的综合利用,体现了资源化的技术政策。因此,该研究具有重要的意义及较大的推广应用价值。
Membrane bioreactor(MBR) is a new efficient technology of sewage treatment, which combines biological treatment with membrane separation process. It is the hot spot of reuse process of reclaimed water. MBR has many advantages, such as good effluent quality, strong resistant capability to impact loading, little excessive sluge, small area occupied. Wastewater discharge standard is more and more strict. At the same time water resources shortage is becoming increasingly conspicuous. Under the circumstances, MBR will be one of the important technologies for sewage treatment and recycling. But MBR faces some problems such as membrane fouling, high energy consumption and high running expense. In existing research the removal rates of pollutants increase usually by optimizing running parameters, adding PAC filling, using combined process, etc. Some of the measures can also lighten membrane fouling. But systematic researches on raising the removal rates of pollutants and controlling membrane fouling are rare by adding cheap powdered ferrite and modifying membrane using low temperature plasma technology.
     Under the background, PF-MBR (MBR with powdered ferrite added) is designed and made. And experimental system is established. The effect laws of main running parameters on the removal efficiency of pollutants and membrane fouling are studied when treating urban domestic wastewater with the self-made PF-MBR. The effect of adding powdered ferrite on the removal efficiency of pollutants and membrane fouling is researched. The kinetics of treating municipal wastewater with PF-MBR is discussed. On this basis, polyvinylidene fluoride (PVDF) membrane is modified with low temperature plasma. And the effect of the modification on the removal rates of pollutants and anti-fouling property of membrane is researched.
     The results show that DO, HRT, MLSS, influent pH and temperature influence the removal of COD, NH_4~+-N, TN and TP in sewage when treating domestic wastewater with the self-made PF-MBR. When magnetic powdered ferrite is added in MBR, the removal rates of COD and NH_4~+-N increase obviously. But the removal of TN and TP is not obviously affected by the addition of magnetic powdered ferrite. Adding magnetic powdered ferrite can lessen membrane fouling to a certain extent. On the thirtieth day of stable operation, the transmembrane pressure of MBRB without powdered ferrite added is 22.9kPa. The transmembrane pressure of MBRA with powdered ferrite added is 17.2kPa. The membrane filtration resistance of MBRA is less than that of MBRB by 1.65×10~(12)m~(-1), in which the resistance from membrane pore plugging and adsorption of MBRA is markedly less than that of MBRB. Although critical fluxes of both MBRA and MBRB are 17~20IV(m~2·h) under the given conditions, the growth rate of transmembrane pressure in MBRB is obviously more than in MBRA when running flux is 20L/(m~2·J). It is 0.06kPa/min. The importance sequence of the dosage of powdered ferrite (A), the specific saturation magnetization of powdered ferrite (B), membrane flux(C) and aeration intensity(D) is arrived at through orthogonal experiments, which influence the removal rates of COD and NH_4~+-N, the increasing rate of membrane filtration resistance. The optimum operation parameters are A_3B_3C_1D_2 when PF-MBR operates steadily.
     Mechanism analysis shows that the increasingof the removal rates of pollutants is due to the combined action of microbial degradation, the adsorption of powdered ferrite and magnetic field energy after adding powdered ferrite to MBR. Besides, the addition of powdered ferrite changes the structure and property of activated sludge floc and make the cake layer resistance and the resistance from membrane pore plugging and adsorption decrease. So membrane fouling is alleviated.
     Kinetic analysis shows that the average value of kinetic constants of substrate degradation is 0.0023 L/(mg·d) when PF-MBR treating municipal wastewater. It is more than the kinetic constant of substrate degradation in MBR without powdered ferrite. When PF-MBR treats municipal wastewater, the kinetic equation of sludgegrowth is Yield coefficient and decay coefficientare 0.2502 and 0.0371 respectively.
     The modification of membrane with low temperature plasma has no significant effect on the removal rates of pollutants. But it can improve the anti-fouling property of PVDF hollow fiber membrane. During stable operation, the increasing rate of transmembrane pressure of modified membrane is less than that of unmodified membrane markedly. The total resistance, intrinsic resistance of membrane, cake layer resistance and resistance from membrane pore plugging and adsorption of modified membrane are less than those of unmodified membrane. Under the same given conditions, the critical flux of modified membrane is 20~23L/(m~2·h), which is more than it of unmodified membrane. Mechanism analysis indicates that a lot of hydrophilic polar groups such as hydroxyl, carbonyl, etc can be introduced onto the surface of membrane by modification with low temperature plasma. Meanwhile the modification can erode the surface of membrane and increase surface roughness. So the hydrophilicity and anti-fouling property of membrane are improved.
     PVDF membrane is modified by low temperature plasma in research, which can improve the anti-fouling property of membrane. The modification method has the advantages of high efficiency, low cost and less pollution, etc. The magnetic powdered ferrite used in the experiment may be gained from the wastewater containing heavy metals under certain conditions. The addition of powdered ferrite in MBR can increase the removal efficiency of pollutants and lighten membrane fouling. Furthermore, it materializes comprehensive utilization of wastes and incarnate the technology policy of recycling. So the research is important and has the value of application and extension.
引文
[1]P.Odendaal.Water Quality Management in Developing Countries[J].New World Water.1999:9-11
    [2]李广贺,刘兆昌,张旭.水资源利用工程与管理[M].北京:清华大学出版社,1998
    [3]刘福臣,张桂芹,杜守建等.水资源开发利用工程[M].北京:化学工业出版社,2006
    [4]雷川华,吴运卿.我国水资源现状、问题与对策研究[J].节水灌溉,2007,4:41-43
    [5]祝社民,陈英文,沈树宝.城市生活污水同用处理新技术[J].水处理技术,2005,31(12):34-36
    [6]Richard Blackburne, Zhiguo Yuan, Jiirg Keller. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater[J]. Water Research,2008, 42(8-9):2166-2176
    [7]Yongzhen Peng, Hongxun Hou, Shuying Wang, et al. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system[J].Journal of Environmental Sciences, 2008, 20(4):398-403
    [8]林绍葵,崔松阳,饶欠平.优化A/O工艺合并处理城市污水及垃圾渗滤液[J].市政技术,2007,25(4):279-280
    [9]喻泽斌,王敦球,张学洪.城市污水处理技术发展同顾与展望[J].广西师范大学学报(白然科学版),2004,22(2):81-87
    [10]Ryu H D, Kim D, Lim H E, et al.Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system[J].Process Biochemistry, 2008,43(7):729-735
    [11]Anal Chavan, Suparna Mukherji. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio[J]. Journal of Hazardous Materials, 2008,154(1-3):63-72
    [12]Huifang Wu, Shihe Wang, Huoliang Kong, et al. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater[J].Bioresource Technology, 2007,98(7):1501-1504
    [13]李璐,张辉,谢曙光等.生物接触氧化工艺处理河道污水的试验研究[J].中国给水排水,2008,24(7):25-28
    [14]Wen Jianping, Pan Lei, Du Liping, et al. The denitrification treatment of low C/N ratio nitrate-nitrogen wastewater in a gas-liquid-solid fluidized bed bioreactor[J]. Chemical Engineering Journal, 2003,94(2)155-159
    [15]李风亭,王亮,刘华等.膜生物反应器在水处理中的应用与新发展[J].工业水处理,2005,25(1):10-13
    [16]Kim J S, Lee C H, Chang I S. Effect of pump shear on the performance of a crossflow membrane bioreactor[J]. Wat. Res., 2001,35(9): 2137-2144
    [17]Ueda T, Hata K, Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor[J]. Wat Sci Tech, 1996,34(9): 189-196
    [18]陈少华,郑祥,刘俊新.重力出流式膜生物反应器的膜通量及膜污染控制研究[J].环境科学,2006,27(12):2518-2524
    [19]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,2002
    [20]黄霞,桂平,范晓军等.膜生物反应器废水处理工艺的研究进展[J].环境科学研究,1998,11(1):40-44
    [21]Tsmumota K,Hiosa H, Talat M, et al. Direct solid-liquid separation using hollow fiber membranes in an activated sludge aeration TavelJ[J]. Wat Sci Tech, 1989,21(4/5): 43-54
    [22]李静,杜启云,戴海平.污水处理中膜生物反应器的研究进展[J].天津工业大学学报,2003,22(6):18-21
    [23]朱凌云,张勤.膜生物反应器技术探讨[J].重庆建筑大学学报,2004,26(1):85-88
    [24]Sun D D, Zeng J L, Tay J H. A submerged tubular ceramic membrane bioreactor for high strength wastewater treatment[J]. Water Sci. and Tech., 2002,47(1): 105-111
    [25]Z Badani, H Ait-Amar, A Si-Salah, et al. Treatment of textile waste water by membrane bioreactor and use[J]. Desalination, 2005,185 (1-3): 411-417
    [26]I J Kang, S H Yoon, C H Lee. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor[J]. Water Research, 2002,36(7): 1803-1813
    [27]邢传宏,Tardieu Eric,钱易.无机膜-生物反应器处理生活污水实验研究[J].环境科学,1997,18(3):1-4
    [28]张寿通,杨风林,YAMADA Yuji等.高温好氧金属膜生物反应器处理合成生活污水[J].大连理工大学学报,2007,47(6):798-802
    [29]郭春禹,杜启云,王庆生.膜生物反应器污水再生工程的运行与优化[J].工业水处理,2006,26(1):63-66
    [30]吴桂萍,崔龙哲.一体式平板膜生物反应器中膜污染及清洗效果研究[J].中南民族大学学报(自然科学版),2006,25(2):15-18
    [31]李绍峰,崔崇威,刘玉强.影响膜生物反应器同步硝化反硝化因素研究[J].南京理工大学学报,2007,31(3):394-398
    [32]吴桂萍,崔龙哲,陆晓华等.一体式膜生物反应器处理生活污水的试验研究[J].中国给水排水,2007,23(7):55-61
    [33]张颖,任南琪,田文军等.膜生物反应器(MBR)中膜组件结构形式的优化设计初探[J].哈 尔滨建筑大学学报,2001,34(5):72-75
    [34]肖文胜,徐文国.组合填料-膜生物反应器处理生活污水生产性试验[J].水处理技术,2006,32(11):71-73
    [35]吴桂萍,杜春慧,徐又一.内置转盘式膜-生物反应器处理污水的工艺条件研究[J].环境科学,2006,27(11):2217-2221
    [36]Ulbricht M,Matuschewski H,Oechel A,et al.Photo-induced Graft Polymerization Surface Modifications for the Preparation of Hydrophilic and Low-protein-absorbing Ultrafiltration Membranes[J].J Membr Sci,1996,H5:31-47
    [37]Kaiser A,Schmidt H.Preparation of Membranes Based on Heteropolysiloxanes[J]. J Membr Sci,1985,23:257-268
    [38]Megat Johari M M N, Fakhrul F R, Mohamed T H, et al. Performance of flexible membrane using kaolin dynamic membrane intreating domestic wastewater[J]. Des, 2002,147(1-3):263-268
    [39]卓琳云,李俊,陈季华等.高岭士动态膜的制备[J].膜科学与技术,2006,26(3):37-40
    [40]Ye M S, Zhang H M, Wei Q F, et al. Study on the suitable thickness PAC precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J]. Des, 2006, 194(1-3):108-120
    [41]张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究[J].环境科学学报,2005,25(2):249-253
    [42]顾志明,赵军,王连军.一体式膜生物反应器膜污染研究[J].水处理技术,2005,31(11):43-45
    [43]叶茂盛,张捍民,杨风林等.动态膜-生物反应器中新型预涂剂的抗污染特性研究[J].环境科学,2007,28(11):2494-2499
    [44]Duputell D, Staude E. Heterogeneous modification of ultrafiltration membranes made from poly (vinylidene fluoride) and their characterization[J]. J Membr Sci, 1993,78:45-51
    [45]陆晓峰,汪庚华,梁国明等.聚偏氟乙烯超滤膜的辐照接枝改性研究[J].膜科学与技术,1998,18(6):54-57
    [46]Holler S, Trosch W. Treatment of urban wastewater treatment in a membrane bioreactor at high organic loading rates[J]. Journal of biotechnology, 2001,92:95-101
    [47]Visvanathan C, Aim RB, Parameshwaran K. Membrane separation bioreactors for wastewater treatment[J]. Critical Reviews .in Environmental Science and Technology, 2000,30(1): 1-48
    [48]Seo G T, Lee T S, Moon B H, et al. Two stage intermittent aeration membrane bioreactor for simultaneous organic, nitrogen and phosphorus removal[J]. Wat. Sci. Tech., 2000, 41(10-11): 217-225
    [49]Han S S, Bae T H, Jang G G. Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system[J]. Process Biochemistry, 2005,40: 2393-2400
    [50]Shoutong Zhang, Fenglin Yang, Yihui Liu, et al. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45℃[J].Desalination, 2006,194(1-3):146-155
    [51]袁丽梅,张传义,张雁秋等.水力停留时间对膜生物反应器复合工艺污水处理特性的影响[J].环境污染与防治,2007,29(5):363-366
    [52]蒋燕,陶冠红.膜生物反应器短程硝化脱氮处理生活污水的研究[J].环境科学与技术,2007,30(11):95-97
    [53]刘强,杨凤林,张兴文等.碳管膜曝气膜生物反应器处理高浓度氨氮污水的研究[J].水处理技术,2007,33(1):63-66
    [54]Magara Y, Itoh M. The effect of operational factors on solid-liquid separation by ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plants[J]. Wat. Sci. Tech., 1991,23(7-9): 1583-1590
    [55]Jae S, Chung H, Lee W. Effect of powdered activated carbon on the performance of an aerobic membrane bioreactor: comparison between cross-flow and submerged membrane systems[J]. Water Environment Research, 2003,175(4): 300-307
    [56] Jun B H, Miyanaga K, Tanji Y, et al. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment[J]. Biochemical Engineering Journal, 2003,14(1):37-44
    [57]李军,江定国,刘红等.复合式膜生物反应器处理生活污水[J].中国环境科学,2006,26(3):271-274
    [58]李辰,黄廷林,何文杰等.复合淹没式膜生物反应器处理城市污水的中试研究[J].中国给水排水,2007,23(19):103-105
    [59]张竹青,胡明忠,张龙.复合式膜生物反应器处理高浓度氨氮废水可行性试验[J].环境工程,2007,25(3):32-34
    [60] Cheng Wen, Xia Huang, Yi Qian. Domestic Wastewater treatment using an anaerobic bioreactor coupled with membrane filtration[J]. Process Biochemistry, 1999,35(3-4): 335-340
    [61]张军.复合淹没式膜生物反应器脱氮除磷效能研究[J].中国给水排水,2000,16(9):9-11
    [62]马东华,李杰.复合式膜生物反应器处理生活污水的特性研究[J].兰州交通人学学报(自然科学版),2006,25(1):62-64
    [63]Lee J, Ann W-Y, Lee C-H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Res., 2001, 35(10): 2435-2445
    [64]Wang Wenhui, Jung Yongjun, Yoshiaki Kiso, et al. Excess sludge reduction performance of an aerobic SBR process equipped with a submerged mesh filter unit[J]. Process Biochemistry, 2006,41(4):745-751
    [65]Yasutoshi Shimizu, Yuichi Okuno, Katsushi Uryu, et al. Filtration characteristic of hollow fiber micro-filtration membrane bioreactor for domestic wastewater treatment[J], WatRes, 1996,31(10): 2385-2392
    [66]范彬,黄霞,文湘华等.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56
    [67]刘宏波,杨昌柱,濮文虹等.自生生物动态膜反应器在城市污水处理中的应用[J].水处理技术,2007,33(11):67-70
    [68]林新斌,傅大放.非织造布动态膜生物反应器处理生活污水的研究[J].中国给水排水,2007,23(13):66-68
    [69]董春松,樊耀波,李刚等.新型管式动态膜生物反应器及处理垃圾渗滤液的研究[J].环境科学,2007,28(4):747-753
    [70]Wu Y, Huang X, Wen X, et al. Function of dynamic membrane in self-forming dynamic membrane coupled with bioreactor[J]. Water Science & Technology, 2005,51(6-7): 107-109
    [71]Fuchs W, Resch C, Kernstock M, et al. Influence of operational conditions on the performance of a mesh filter activated sludge process[J]. Water Research, 2005,39(5): 803-808
    [72]Park M S, Yoshiaki Kiso, Jung Y J, et al. Sludge thickening performance of mesh filtration process[J]. Water Science and Technology, 2004,50(8): 125-133
    [73]吴桂萍,杜春慧,徐义一.内置转盘式膜-生物反应器处理污水的工艺条件研究[J].环境科学,2006,27(11):2217-2221
    [74]孙京敏,任立人,王路光等.水解酸化-膜生物反应器处理青霉素废水研究[J].哈尔滨工业大学学报,2007,39(8):1241-1244
    [75]Faisal Ibney Hai, Kazuo Yamamoto, Kensuke Fukushi. Development of a submerged membrane fungi reactor for textile wastewater treatment[J]. Desalination, 2006,192(1-3): 315-322
    [76]Faisal Ibney Hai, Kazuo Yamamoto, Kensuke Fukushi. Performance of newly developed hollow fiber module with spacer in integrated anaerobic-aerobic fungi reactor treating textile wastewater[J]. Desalination, 2006,199(1-3): 305-307
    [77]Nagaoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process[J]. Water Science and Technology, 1996,34(9): 165-172
    [78]Laure Defrance, Michel Y. Jaffrin, Bharat Gupta,et al.Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Bioresource Technology,2000,73(2): 105-112
    [79]Lee W, Rang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science, 2003, 216(1-2): 217-227
    [80]林红军,陆晓峰,段伟等.膜生物反应器中膜过滤特征及膜污染机理的研究[J].环境科 学,2006,27(12):2511-2517
    [81]王勇,孙寓娇,黄霞.膜-生物反应器中活性污泥沉降性能与膜污染相关性研究[J].环境科学学报,2005,25(3):396-400
    [82]李娜,李志东,李国德等.膜生物反应器处理生活污水中膜污染的研究[J].水处理技术,2007,33(8):16-19
    [83]杨期勇.颗粒填料复合式膜生物反应器运行参数对膜污染的影响[J].膜科学与技术,2008,28(1):35-39
    [84]Tae-Hyun Bae, Tae-Moon Tak. Effect of TiO_2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration[J]. Journal of Membrane Science,2005,249(1-2): 1-8
    [85]朱振中,周艳,李秀芬等.好氧颗粒污泥膜生物反应器的运行特性[J].环境科学,2006,27(1):57-62
    [86]Jinling Wu, Le-Clech P, Stuetz R M, et al. Effects of relaxation and backwashing conditions on fouling in membrane bioreactor[J].Journal of Membrane Science, 2008, 324(1-2):26-32
    [87]Haifeng Zhang, Baosheng Sun, Xinhua Zhao, et al. Effect of ferric chloride on fouling in membrane bioreactor[J]. Separation and Purification Technology, 2008,63(2):341-347
    [88]Song K G, Kim Y, Ann K H. Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor[J]. Desalination, 2008,221(l-3):467-474 [89]Jinling Wu, Futai Chen, Xia Huang, et al. Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor[J]. Desalination, 2006,197(1-3):124-136
    [1]Preeti Mathur, Atul Thakur, M Singh. Effect of nanoparticles on the magnetic properties of Mn-Zn soft ferrite[J]. Journal of Magnetism and Magnetic Materials, 2008,320(7):1364-1369
    [2]李康,魏群,古宏晨.水热法合成六角片状钡铁氧体[J].华东理工大学学报,2003,29(4):413-415
    [3]Dan Chen, Yizhong Yu, Huajun Zhu, et al. Ferrite process of electroplating sludge and enrichment of copper by hydrothermal reaction[J]. Separation and Purification Technology, 2008, 62(2): 297-303
    [4]Chao Chen, Jinrong Cheng, Shengwen Yu, et al.Hydrothermal synthesis of perovskite bismuth ferrite crystallites[J]. Journal of Crystal Growth, 2006,291(1):135-139
    [5]李东伟,袁雪,王克浩等.化学沉淀-铁氧体法处理重金属废水试验研究[J].重庆建筑大学学报,2007,29(2):90-91
    [6]Ji Yang, Juan Peng, Kaicheng Liu, et al. Synthesis of ferrites obtained from heavy metal solutions using wet method[J]. Journal of Hazardous Materials, 2007,143(1-2): 379-385
    [7]Ji Yang, Juan Peng, Rui Guo, et al. Optimization and thermodynamic assessment of ferrite (Fe_3O_4) synthesis in simulated wastewater[J]. Journal of Hazardous Materials, 2007, 149,(1):106-114
    [1]汪模辉,邓天龙,廖梦霞.含砷金矿的磁场强化生物预氧化[J].应用化学,2000,17(4):362-365
    [2]郭银松.城市污水磁化处理的试验研究[J].上海环境科学,1996,15(7):33-35
    [3]麻海珍,吴国庆,牛志卿.磁场对紫色非硫光合细菌脱氢酶活性的影响[J].环境科学,1995,16(3):4-7
    [4]Agnieszka Tomska, Lidia Wolny. Enhancement of biological wastewater treatment by magnetic field exposure[J].Desalination, 2008,222(1-3): 368-373
    [5]Hulya Yavuz, Serdar S Celebi. Effects of magnetic field on activity of activated sludge in wastewater treatment[J]. Enzyme and Microbial Technology, 2000,26(1): 22-27
    [6]Jens Meinhold, Eva Arnold, Steven Isaacs. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Wat. Res., 1999,33(8): 1871-1883
    [7]Yoon S H, Kim H S, Yeom I T. The optimum operational condition of membrane bioreactor (MBR): cost estimation of aeration and sludge treatment[J]. Wat. Res., 2004,38(1): 37-46
    [8]李晓璐,谢勇丽,邓仕槐等.SBR系统中pH与MLSS对同步硝化反硝化的影响[J].四川环境,2006,25(6):1-4
    [9]刘爱萍,李开明,陈中颖等.膜生物反应器同步脱氮除磷研究进展[J].工业水处理,2006,26(7):1-3
    [10]张军,王宝贞,张立秋等.复合淹没式膜生物反应器脱氮除磷效能研究[J].中国给水排水,2000,16(9):9-11
    [11]郑祥,樊耀波.影响MBR处理效果及膜通量的冈素研究[J].中国给水排水,2002,18(1):19-22
    [12]朴芬淑,赵玉华,张莉莉.膜生物反应器低温自补偿作用的探讨[J].沈阳大学学报,2006,18(2):67-69
    [13]Kyu-Hong Ann, Kyung-Guen Song, Eulsaeng Choa, et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process[J]. Desalination, 2003,157(1-3): 345-352
    [1]Noriatsu Ozaki, Kazuo Yamamoto.Hydraulic effects on sludge accumulation on membrane surface in crossflow filtration[J]. Water Research, 2001,35(13):3137-3146
    [2]张风君,周海林,沈福东等.复合式膜生物反应器膜污染机理研究[J].环境污染与防治,2005,27(9):666-669
    [3]Ognier S, Wisniewski C, Grasmick A.Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept[J]. Journal of Membrane Science, 2004,229(1-2):171-177
    [4]俞开昌,文湘华,卜庆杰等.次临界操作下的膜污染机理研究[J].环境污染治理技术与设备,2004,5(1):23-27
    [5]Kwon D Y, Vigneswaran S, Fane A G, et al.Experimental determination of critical flux in cross-flow microfiltration[J]. Separation and Purification Technology, 2000,19(3):169-181
    [6]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2000
    [1]Heran M, Wisniewski C, Orantes J, et al. Measurement of kinetic parameters in a submerged aerobic membrane bioreactor fed on acetate and operated without biomass discharge[J]. Biochemical Engineering Journal, 2008,38(1):70-77
    [2]Xianghua Wen, Chuanhong Xing, Yi Qian. A kinetic model for the prediction of sludge formation in a membrane bioreactor[J]. Process Biochemistry, 1999, 35(3-4):249-254
    [3]徐微,吕锡武,詹旭等.IMBR中污泥增殖动力学特征与温度的相关性研究[J].安全与环境工程,2007,14(3):61-64
    [4]刘锐.一体式膜-生物反应器的微生物代谢特性及膜污染控制[D].北京:清华大学,2000
    [1]Kwon D Y, Vigneswaran S, Fane A G, et al.ExperimentaI determination of critical flux in cross-flow microfiltration[J].Separation and Purification Technology, 2000,19(3): 169-181
    [2] Katayon S, Megat Mohd Noor M J, Ahmad J, et al. Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater[J]. Desalination, 2004,167(15):153-158
    [3] Le-Clech P, Jefferson B, Judd S J.Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor[J].Journal of Membrane Science, 2003, 218(1-2):117-129
    [4]卜庆杰,文湘华,黄霞.新型膜-生物反应器在不同通量下的膜污染特性研究[J].环境污染治理技术与设备,2005,6(3):85-90
    [5]Yang Qiyong, Chen Jihua, Zhang Feng.Membrane fouling control in a submerged membrane bioreactor with porous, flexible suspended carriers[J]. Desalination, 2006,189(1-3):292-302
    [6]付婉霞,张璐璐,吕柏超.三种一体式MBR的膜污染趋势比较[J].中国给水排水,2005,21(2):50-52
    [7]王雪梅,刘燕,华志浩等.胞外聚合物对浸没式膜-生物反应器膜过滤性能的影响[J].环境科学学报,2005,25(12):1602-1607
    [8]顾志明,赵军,王连军.一体式膜生物反应器膜污染研究[J].水处理技术,2005,3l(11):43-45
    [9]Chang I S, Bag S O, Lee C H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge[J]. Process Biochemistry, 2001,36(8-9):855-860
    [10]王晓明,史文祥,赵莹等.等离子体室内空气净化技术研究进展[J].高电压技术,2004,30(1):48-51
    [11]Geyter N D, Morent R, Leys C. Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure[J]. Surface and Coatings Technology, 2006, 201(6):2460-2466
    [12]Jie Li, Zhigang Zhou, Huijuan Wang, et al. Research on decoloration of dye wastewater by combination of pulsed discharge plasma and TiO_2 nanoparticles[J]. Desalination, 2007, 212(1-3):123-128
    [13]胡建杭,方志,章程等.介质阻挡放电材料表面改性研究进展[J].材料导报,2007,21(9):71-76
    [14]张传义,黄霞,王丽萍.长期运行条件下膜生物反应器的膜污染特性[J].水处理技术,2005,31(5):42-45
    [15]Wisniewski C, Grasmick A., Cruz A L. Critical particle size in membrane bioreactors: Case of a denitrifying bacterial suspension[J] Journal of Membrane Science, 2000,178(1-2): 141-150
    [16]王勇,孙寓姣,黄霞.膜-生物反应器中活性污泥沉降性能与膜污染相关性研究[J].环境科学学报,2005,25(3):396-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700