用户名: 密码: 验证码:
不同保绿类型玉米叶片光合特性与蛋白质组差异及氮素调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2010-2012年在山东农业大学黄淮海区域玉米技术创新中心和作物生物学国家重点实验室进行。采用两个保绿差异明显的玉米自交系为材料(保绿型:齐319(Q319)、非保绿型:黄早四(HZ4))。采取单株盆栽种植模式。氮素处理分为缺氮(N0)和正常施氮(N40)两种,P、K肥按照大田标准正常施入,正常施氮处理苗期基肥50%+大口期追肥50%。利用叶绿素荧光诱导动力学和820nm光吸收曲线系统研究了不同保绿型玉米花后衰老过程中叶片光合作用衰退的原因及氮素调控机理。同时利用双向电泳技术,分析衰老过程中叶片差异蛋白质组学的变化规律及氮素调控关键位点。主要结果如下:
     1不同保绿型玉米花后叶片光合特性的变化差异
     衰老中前期叶片净光合速率与光系统性能间存在极显著的相关性,该阶段光系统性能是限制叶片净光合速率强弱的主要原因,但两者之间的相关性在衰老中后期呈减弱趋势,同时叶片净光合速率与羧化反应系统性能间的相关性呈现增强趋势,因此在叶片衰老中后期,羧化系统活性成为限制叶片净光合速率强弱的主要因素。两品种相比,保绿型玉米Q319叶片光系统性能在衰老中前期显著高于非保绿型玉米HZ4,高性能维持期也显著长于HZ4;同时,羧化反应性能衰老中后期下降显著低于HZ4,对减缓净光合速率后期下降起到了稳定作用。
     2氮素对玉米花后叶片光合特性的影响
     施氮条件下两品种叶片光系统性能与净光合速率间的相关性关系向衰老后期延续。羧化反应关键酶活性与净光合速率之间呈显著相关性的时期向衰老前期提前,同时向衰老后期延续。氮素对光系统性能和羧化反应系统性能同时提升的作用是维持同化力形成与消耗平衡的关键。品种间相比,HZ4叶片光系统性能和羧化反应关键酶活性在施氮条件下较缺氮处理随略有提高,但不足以改善叶片衰老过程中两系统的整体变化趋势,因此衰老中前期光系统性能下降明显,中后期羧化反应系统性能快速降低,同化力形成与消耗之间存在着不同步现象,客观表现为叶片衰老中前期“稳定态”和“缓降态”维持时间较短,衰老中后期“速降态”过早出现。
     3不同保绿型玉米花后叶片差异蛋白质组变化
     两品种叶片衰老过程中差异蛋白主要分布在叶绿体、细胞间质和细胞膜内。按主要功能分类在整个衰老过程占有比例最高的隶属于碳代谢、光合作用、能量代谢和ATP互变4个领域。其中,占比例最大的两个功能组分别是碳代谢和光合作用功能组,两组的比例在衰老中期和后期显著降低,其中保绿型玉米Q319两组随衰老的降幅显著高于HZ4。两品种差异蛋白中权重蛋白分布也主要集中于光合作用组和碳代谢组。HZ4权重蛋白活性随衰老呈下调趋势,蛋白变化范畴集中于羧化反应酶系,且前期无活性上调现象,而Q319权重蛋白活性则随衰老呈先升后降趋势,蛋白变化范畴广,在羧化反应酶系、光反应酶系及抗氧化酶系中均有表达,尤其是前期光反应相关酶系活性的上调显著。
     4缺氮对玉米花后叶片差异蛋白质组的影响
     缺氮条件下,保绿型玉米Q319叶片在衰老前期差异蛋白质表达量以上调为主,上调蛋白数量显著多于施氮处理,但表达量显著小于施氮处理。该时期表达量上调的差异蛋白主要功能集中于超氧化物清除酶系、光合作用酶系以及碳代谢和能量代谢酶系,其中具有光合作用功能和碳代谢功能的上调蛋白在衰老前期占有比例显著多于其他功能。缺氮处理叶片在衰老中期和后期,具有超氧化物清除、光合作用及碳代谢功能的权重差异蛋白表达数量显著增加,同时表达量下调幅度增大,导致叶片衰老中后期活性氧清除性能下降,光合作用性能降低,同时伴随碳代谢能力下降。
     5不同保绿型花后叶片光/羧相关蛋白质组变化差异
     两品种叶片衰老过程中,隶属于PSI电子传递链末端具有同化力形成功能的蛋白质组活性下降速度显著快于定位于PSII电子传递链前段具有光能/电能转化的蛋白质组活性,导致用于羧化反应的同化力数量下降,与本试验光合生理所阐述的光系统在衰老过程中性能的强弱主要受控于PSI性能的高低结果一致。品种间相比,非保绿型玉米HZ4同化力形成能力下降在衰老过程中明显快于保绿型玉米Q319,与两品种衰老过程中光系统差异结果一致。衰老中前期Q319叶片羧化系统同化力消耗能力显著高于HZ4,利于维持同化力形成与消耗之间的平衡,较好的解释了Q319叶片衰老中前期存在着明显的光合高值持续期,而HZ4则衰老快速下降的分子生物学原因。
     6缺氮对玉米花后叶片光/羧相关蛋白质组的影响
     缺氮条件下,叶片衰老过程中光系统中下调数量最多和下调量最大的差异蛋白主要集中于光合电子传递链末端PSI处,多以具有氧化还原功能的铁硫蛋白和ATP合成蛋白为主,且光系统差异蛋白数量占光/羧总数量的比例显著增加,其中隶属于PSI具有同化力形成功能的蛋白活性下降更为明显。同时,缺氮条件下叶片羧化系统相关差异蛋白的表达量在衰老前期上调幅度显著低于施氮处理,衰老中后期羧化系统相关差异蛋白表达量下调趋势显著高于施氮处理。总体上,氮素显著的提高了叶片衰老前期的羧化系统关键酶的活性,使之消耗同化力的能力增强,同时叶片衰老前期光系统同化力形成能力在施氮条件下显著上升,因此,施氮条件下叶片中前期光系统提供的大量同化力能够被羧化系统充分消耗,从而促进了该阶段叶片光合高值持续时间。
In this research we compared the discrepancy of physiology and biochemistry druingplant senescence in two different stay green maize varieties (Stay green maize variety: Q319;Non stay green maize variety: HZ4), as well as the regulation of two level N-fertilizertreatment by using of chlorophyll a fluorescence transient and light absorbance at820nm, andanalysed the changes of differential proteomics in leaf of two different stay green maizevarietise during senescence and the critical control point under N-fertilizer applied treatment.The experiment was carried out in the Yellow, Huaihe and Haihe River Basin MaizeTechnological Innovation Center and the States Key Laboratory of Crop Biology of ShandongAgricultral University from2010to2012. The experiments take the potted plant growingmethods, providing non-fertilization (N0) and normal fertilization treatment (N40), and the P,K-fertilizer applied as normal treatment. In normal N-fertilizer treatment, the total N-fertilizerwas applied by base fertilizer50%at seeding stage and topdressing50%at anthesis stage.The main results as follow:
     1Discrepancy of photosynthetic characteristics during leaf senescence in two differentstay green maize varieties
     At early and middle senescence stage, the significant correlation was observed betweennet photosynthetic rate (Pn) and photosystem performance, which indicating Pn was restrictedthe photosystem performance at this period. The correlation between Pn and photosystemperformance tended to be weaker from middle to later senescence stage, nevertheless thecorrelation between Pn and carboxylation system performance tended to be stronger as aresult of which the carboxylation system performance restricted Pn at middle and latersenescence stage. Compared to non stay green cultivar HZ4, relatively higher photosystemperformance and longer duration were observed at early and middle senescence stage instay-green cultivar Q319. Meanwhile, relatively lower reduction of carboxylation systemperformance in Q319postponed the reduction of Pn at late senescence stage.
     2Effect of the N fertilizer on leaf photosynthetic characteristics after anthesis
     The significant correlation between the photosystem performance and net photosyntheticrate (Pn) in leaf of the two varieties last to the later senescence stage under N-fertilizerapplied, and the significant correlation between activity of the key carboxylation enzymes andPn the revealed in the early period of senescence and last to the later senescence stage. Theimproved carboxylation and photosystem performance by N-fertilizer applying played a keyrole to maintain the balance between forming and consuming of assimilatory power.Compared with the N-fertilizer lacking treatment, although the perfomance of photosystemand carboxylation of HZ4were both increased under N-fertilizer applied, but the increasedmagnitude did not ameliorate the changes tendency of two system performance in the processof senescence. Therefore, a decreasing tendency of the photosystem performance wasobserved at the early stage of senescence, and the performance of carboxylation declinedrapidly at the later stage, which resulted in the forming and consuming of assimilatory powerout-sync, and showed a short maintaining time for the “stable state” and “slowly declinestate” at the early stage of senescence, but the “rapidly decline state” was presented early atthe later stage of senescence.
     3Changes of differentail proteomics during leaf senescence in two different stay greenmaize varieties
     The differential proteomics of leaf in two varieties was mainly distributed in thechloroplast, interstitial cell and cell membrane. According to the classification of the mainfunction, the differential proteomics during leaf senescence can be distributed in4areas:carbon metabolism, photosynthesis, energy metabolism and ATP interconversion. The largestproportions among these areas were accounted for two functional groups: carbon metabolismand photosynthesis, which decreased significantly in the aging metaphase and anaphase. Intwo different stay green maize varieties, the declined rate of spots number in Q319of twomain groups was significantly higher than HZ4during leaf senescence. The change of weightprotein during senescence showed that, the activity of weight protein in HZ4isdown-regulated with aging, which was mainly concentrated in carboxylation enzymes. Butthe activity of weight protein in Q319was increased first and then decreased with aging, andthe category of these weight protein changes in a wide range, including carboxylationenzymes, photosystem enzymes and antioxidant enzymes. Importantly, the photosystem-related enzyme of Q319was increased significantly at early senescence stage.
     4Effects on leaf differential proteomics after anthesis under nitrogen deficiency
     Under nitrogen deficiency condition, the expression of leaf differential protein in earlyaging of Q319was up-regulated, the number of which was significantly more than N-fertilizerapplied condition, but, the expression quantity was markedly less than N-fertilizer appliedcondition. During early aging period, the function of up-regulated proteins were mainlydistributed in superoxide scavenging, photosynthesis, carbon metabolism and energymetabolism system. Specially, the up-regulated protein with the function of photosynthesisand carbon metabolism group in early aging period was significantly more than other groups.Compared with early senescence stage, the expression number of weight protein with thefunction of superoxide scavenging, photosynthesis and carbon metabolism were significantlyincreased at later senescence stage, but the expression quantity was markedly decreased. As aconsequence, the performance of activated oxygen scavenging, photosynthesis and carbonmetabolism ability of leaf were significantly decreased in later aging period.
     5Changes of photosystem and carboxylation-related differentail proteomics during leafsenescence in two different stay green maize varieties
     In the process of leaf senescence, the quantity of assimilation power provide tocarboxylation was signifcantly decreased, that was caused by the activity of the proteins withassimilatory power synthetic function belong to the end of electron transport chain (ETC) ofPSI declining heavier than that of proteins belong to ETC front with function of translateinglight energy to electronic power. This conclusion was accordant with the photosyntheticphysiology results that showed the photosystem performance was manily controlled by PSIactivity in the process of aging. Varieties compared showed that the capability of assimilationpower forming decreased faster during leaf senescence in HZ4than Q319, this conclusionwas accordant with the photosystem performance results that changed during the process ofsenescence. The details showed, in the early-middle aging period, the dissipation capacity ofassimilation power by carboxylation system was greater higher in Q319than HZ4, it waspropitious to maintain the balance between assimilation power forming and consumption, andexplained the reason why the high Pn could be maintained at the early senescence stage inQ319, but not exsit in HZ4.
     6Effects on photosystem and carboxylation-related proteomics after anthesis undernitrogen deficiency
     Under N-fertilizer deficiency condition, the most down-regulated protein was iron-sulfurprotein and ATP synthetase with the redox capability, and both the expression number andquantity in which mainly centralized in end of ETC of PSI during the process of leafsenescence, and the amount of differential protein in photosystem was significantly more than that in the carboxylation system. In carboxylation system, the expression quantity ofup-regulated differential protein was less under N-fertilizer condition than N-fertilizerapplied in early aging period, but this tendency was turned at middle-last senescence stage. Ingeneral, the activity of key enzyme in carboxylation was markedly increased underN-fertilizer applied in the early aging period. Meanwhile, the capability of assimilation powerconsuming and forming was greater improved too. As a consequence, the performance ofactivated oxygen scavenging, photosynthesis and carbon metabolism ability of leaf weresignificantly decreased in later aging period, under N-fetilizer applied condition, thephotosystem provided large amounts of assimilation power at early senescence stage, andwhich can be consumed by assimilation process in carboxylation system timely. Thereby, theleaf photosynthetic duration of high value was promoted in the early-middle aging period.
引文
安凤秋,吴云锋,孙秀芹.小麦蓝矮病植原体延伸因子(EF-Tu) tuf基因序列的同源性分析.中国农业科学,2006,39(1):74-80
    程建峰,沈允钢.循环光合磷酸化.植物生理学通讯,2008,44(5):844-52
    曹树青,翟虎渠,张荣铣.高产杂交籼稻优129光合碳同化特性的研究.杂交水稻,2001,16(1):46-50
    陈晓梅,郭顺星.植物抗病性物质的研究进展.植物学通报,1999,16(6):658-664
    戴小枫,孟宪学,刘世珍,叶志华,梅方权.养活2030年16亿人口需要新的农业科技革命.中国农学通报,1998,14(2):7-9
    董树亭,王空军,胡昌浩,玉米品种更替过程中群体光合特性的演变.作物学报,2000,26(2):200-204
    高玲,叶茂炳,徐朗莱.小麦旗叶老化期间的内肤酶.植物生理学报,1998,24:183-188
    何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究,中国农业科学1998,31(3):1-4
    何水林,郑金贵,王晓峰.植物次生代谢:功能、调控及其基因工程.应用与环境生物学报,2002,8(5):558-563
    黄聪聪.植物微管结合蛋白的研究进展.植物学通报,2008,25(3):354-362
    黄锦文,李忠,陈军,张志兴,李奇松,郑家团,林文雄.不同杂交水稻籽粒灌浆期叶片蛋白的差异表达分析.中国生态农业学报,2011,19(1):75-81
    贾士芳,李从锋,董树亭,张吉旺.弱光胁迫影响夏玉米光合效率的生理机制初探.植物生态学报,2010,34(12):1439–1447
    焦德茂,季本华.光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化.作物学报,1996,22(1):43-48
    李耕,高辉远,刘鹏,杨吉顺,董树亭,张吉旺,王敬锋.氮素对玉米灌浆期叶片光合性能的影响.植物营养与肥料学报,2010,16(3):536-542.
    李耕,高辉远,赵斌,董树亭,张吉旺,杨吉顺,王敬锋,刘鹏.灌浆期干旱胁迫对玉米叶片光系统活性的影响.作物学报,2009,35(10):19161922.
    李瑞,周玮,李丽.水稻叶片自然衰老过程中Rubisco大亚基的含量变化.中国水稻科学,2009,23(5):555-558
    李卫华,郝乃斌. C3植物中C4途径研究进展.植物学通报,1999,16(2):97-106
    李卫华,卢庆陶,郝乃斌,戈巧英.大豆C4途径与光系统II光化学功能的相互关系.植物学报,2000,42(7):689-692
    李艳君,我国玉米进口贸易现状及前景展望.农业展望,2011,6:47-50
    梁秋霞,曹刚强,苏明杰,等.植物叶片衰老研究进展.植物生理科学,2006,22(8):282-285
    林久生,王根轩,渗透胁迫诱导的小麦叶片细胞程序性死亡植物生理学报.2001,27(3):221-225
    刘景辉,王志敏,李立军,张海明.超高产是中国未来粮食安全的基本技术途径.农业现代化研究,2003,24(3):161-165
    米国华,陈范骏,春亮,郭亚芬,田秋英,张福锁.玉米氮高效品种的生物学特征.植物营养与肥料学报,2007,13(1):155-159
    彭新湘,彭少兵.水稻叶片在自然衰老过程中1,5-二磷酸核酮糖羧化酶/加氧酶的降解.植物生理学报,2000,26(1):46-52
    邵彩虹,谢金水,黄永兰.孕穗期水稻不同功能叶的发育蛋白质组学分析.中国水稻科学,2009,23(5):456-462
    沈成国,张福锁,毛达如.植物叶片衰老过程中基因的表达与调控.植物生理学通讯,1998,34:304-311
    孙群,郎少兰,杨玉秀.郁金香衰老过程中几种保护酶活性的变化.西北植物学报,1998,18(4):561-565
    王空军,胡昌浩,董树亭,刘开昌,孙庆泉.我国不同年代玉米品种开花后叶片保护酶活性及膜脂过氧化作用的演进.作物学报,1999,25(6):700-706
    王丽华,谭学林,张峰.水稻灌浆期种子贮藏物相关基因表达谱的微阵列分析.浙江大学学报:农业与生命科学版,2003,29(4):392-398
    王庆成.株型紧凑对玉米群体光合速率和产盆的影响.作物学报,1996,2:221-225
    韦存虚,兰盛银,徐珍秀.水稻胚乳发育中ATP酶的超微细胞化学定位和功能分析.中国农业科学,2003,36(3):259-262
    魏爱丽,王志敏,翟志席,龚元石.土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响.中国农业科学,2003,36(5):508-512
    徐伟平,张树滨.2011年上半年玉米市场形势分析及后市展望.农业展望,2011,7:11-15
    许大全.植物光胁迫研究中的几个问题.植物生理学通讯,2003,39(5):493-495
    易建华,孙在.军烟草光合作用对低温的响应.作物学报,2004,30(6):582-588
    粘金沯,张光恒,李仕贵,钱前,水稻叶片保绿性的分子遗传研究进展.分子植物育种,2011,(9)1:1-8
    周春菊,张嵩午,王长发.杂种小麦901某些光合生理特性的研究.西北农业大学学报,1998,26(5):1-4
    朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系.中国水稻科学,2002,16(4):326-330
    Allen JF. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain.Trends Plant Sci,2003,8(1):15-9
    Anderson N L, and Anderson N G. Proteome and proteomics: New technologies, newconcepts, and new words. Electrophoresis,1998,19(11):1853-1861
    Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K. A transcriptionaltimetable of autumn senescence. Genome Biol2004;5: R24
    Aple K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Annual Review of Plant Biology,2004,55:373-399
    Arnon D I. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgarisL..Plant Physiology,1949,24:1-15
    Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. inactivation, proteindamage and turnover. Biochimica et Biophysica Acta, Bioenergetics,1993,1143:113-134
    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipationof excess photons, Ann Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    B1ackstock W P, Weir M P, Proteomics: Quantitative and physical mapping of cellularproteim. Trends Biotechnol,1999,17(3):12l-127
    Barber J. Photosystem II: A multisubunit membrane proteinthat oxidises water. Curr OpStruct Biol,2002,14:523-530
    Barreneche T, Bahrman N. Two dimensional gel electrophoresis confirms the low level ofgenetic differentiation between quercus robur1. And quercus petraea (matt.)1iebl. ForestGenetics,1996,3(2):89-92
    Bshailendra K B, Thomas E E, Jeffrey E H. Heat-stress induced synthesis of chloroplastprotein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line. Planta,2001,212:359-366
    Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G. Comparativetranscription analysis reveals significant differences in gene expression and signalingpathways between development and dark/starvation-induced senescence in Arabidopsis.Plant J.2005;42:567-85
    Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot,1997,48:181-199
    Campo S, Carrascal M, Coca M, Abián J, San Segundo B. The defense response ofgerminating maize embryos against fungal infection: A proteomics approach. Proteomics,2004,4:383-396
    Carrillo N, Ceccarelli E A. Open questions in ferredoxin-NADP+reductase catalyticmechanism. European Journal of Biochemistry,2003,270:1900-1915
    Chivasa S, Simon W J, Yu X L, Yalpani N, Slabas A R. Pathogen elicitor-induced changes inthe maize extracellular matrix proteome. Proteomics,2005,5(18):4894-4904
    Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stressresponses in rice seedlings. Proteomics,2005,5(12):3162-3172
    Damodara R, Ivana M, Satoru K. Chaperone activity of recombinant maize chloroplastprotein synthesis elongation factor, EF-Tu Eur. Biochem,2004,271:3684-3692
    Dangl J L, Dietrich R A, Thomas H. Senescence and programmed cell death. In: Buchanan BB, Gruissem W and Jones R L (eds) Biochemistry and Molecular Biology of Plants.American Society of Plant Physiologists, Rockville, M D,2000,1044-1100
    Del Rio L A, Pastori G M, Palma J M, Sandalio L M, Sevilla F, Corpas F J, Jiménez A,López-Huertas E, Hernández J A. The activated oxygen role of Peroxisomes inSenescence. Plant Physiology,1998,116:1195-1200
    Diner BA and Babcock GT. Structure, dynamics, and energy conversion efficiency inPhotosystem II. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The LightReactions,1996, pp213-247, Kluwer Academic Publishers, Dordrecht
    Echarte L, Rothstein S, Tollenaar M, The response of leaf photosynthesis and dry matteraccumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci,2008,48:656-665
    Elizabete A C, Salvucci M E. The activity of Rubisco’s molecular chaperone, Rubiscoactivase, in leaf extracts Photosynth Res,2011,108:143-155
    Ellis R J. The most abundant protein in the world. Trends Biochem Sci,1979,4:241-244
    Gan S, Amasino R M. Making sense of senescence. Molecular genetic regulation andmanipulation of leaf senescence. Plant Physiol,1997,113:313-319
    He P, Osaki M, Takebe M, Shinano T. Changes of photosynthetic characteristics in relation toleaf senescence in two maize hybrids with different senescent appearance. Photosynthetica,2002,40(4):547-552
    He P, Osaki M, Takebe M, Shinano T. Comparison of whole system of carbon and nitrogenaccumulation between two maize hybrids differing in leaf senescence. Photosynthetica,2003,41(3):399-405
    Herbik A, Giritch A, Horstmann C, Becker R, Balzer H J, B umlein H, Stephan U W. Ironand copper nutrition-dependent changes in protein expression in a tomato wild type andthe nicotianamine-free mutant chloronerva. Plant Physiol,1996,111(2):533-540
    Hibberd J M, Quick W P. Characteristics of C4photosynthesis in stems and petioles of C3flowering plants. Nature,2002,415:451-453
    Hisashi H.Screening of rice genes from a cDNA catalog based on the sequence data-file ofproteins separated by two-dimensional electrophoresis. Breeding Science,1997,47(3):245-251
    Hochholdinger F, Guo L, Schnable P S. Cytoplasmic regulation of the accumulation ofnuclear-encoded proteins in the mitochondrial proteome of maize. Plant Journal,2004b,37:199-208
    Hochholdinger F, Guo L, Schnable P S.Lateral roots affect the proteome of the primary rootof maize. Plant Mol Biol.2004a,56:397-412
    Hochholdinger F, Woll K, Guo L, Schnable P S. The accumulation of abundant solubleproteins changes early in the development of the primary roots of maize. Proteomics,2005,5:4885-4893
    H rtensteiner S, Feller U, Nitrogen metabolism and remobilization during senescence. J ExpBot,2002,53:927-937
    Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis:morphological and biochemical aspects of light capture. J Exp Bot2000;51:475
    Jagendorf AT. Chance, luck and photosynthesis research: an inside story. Photosynth Res,1998,57:217-27
    Joliot P, Joliot A. Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA,2005,102:4913-8
    Jorrín J V, Maldonado A M, Castillejo M A. Plant proteome analysis: A2006update.Proteomics,2007,7(16):2947-2962
    Ke Y., Han G., He H., Li J. Differential regulation of proteins and phosphoproteins in riceunder drought stress. Biochem Biophys Res Commun,2009,379(1):133-138
    Kobmann J, Sonnewald U, Willmitzer L. Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. PlantJ.1994;6:637-50
    Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from greenand etio1ated shoots of rice: Towards a rice proteome. Electrophoresis,1999,20(3):630-636
    Komatsu S, Rakwal R, Li Z J. Separation and characterization of proteins in rice suspensioncultured cells. P1ant Cell, Tissue and organ culture,1998,55(3):183-192
    Kong Z S, Li M N, Yang W Q. A novel nuclear-localized CCCH-type zinc finger protein,OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol,2006,141(4):1376-1388
    Kumudini S, Hume D J, Chu G. Genetic improvement in short-season soybeans. Crop Sci,2002,42:141-145
    Li K, Xu C, Zhang K, Yang A, Zhang J. Proteomic analysis of roots growth and metabolicchanges under phosphorus deficit in maize(zea mayz) plants. Proteomics,2007,7(9):1501-15l2
    Lilley R M, Walker D A. An improved spectrophotometric assay for ribulose bisphosphatecarboxylase. Biochimica et Biophysica Acta,1974,358:226-229
    Lim P O, Woo H R, Nam H G. Molecular genetics of leaf senescence in Arabidopsis. TrendsPlant Sci2003;8:272-8
    Lonosky P M, Zhang X S, Honavar V G, Dobbs D L, Fu A G, Rodermel S R. A proteomicanalysis of maize chloroplast biogenesis. P1ant Physiol,2004,134(2):560-574
    Ma B L, Dwyer L M. Nitrogen uptake and use of two contrasting maize hybrids differing inleaf senescence Plant and Soil,1998,199:283-291
    Mayfield J A, Fiebig A, Johnstone S E, Preuss D. Gene families from the Arabidopsisthaliana pollen coat proteome. Science,2001,292(5526):2482-2485
    Munekage Y, Hashimoto M, Miyake C, et al. Cyclic electron flow around photosys tem I isessential for photosynthesis. Nature,2004,429:579-82
    Munekage Y, Shikanai T. Cyclic electron transport through photosystem I. Plant Biotechnol,2005,22:361-9
    Navabpour S, Morris K, Allen R, Harrison E, A-H Mackerness S, Buchanan-Wollaston V.Expression of senescence-enhanced genes in response to oxidative stress. Journal ofExperimental Botany,2003,54:2285-2292
    Nedbal L, Soukupova J, Kaftan D, Whitmarsh J. and Trtilek M.2000. Kinetic imaging ofchlorophyll fluorescence using modulated light. Photosynth. Res.66:3-12
    Osaki M, Morikawa K, Matsumoto M, Shinano T, Iyoda M, Tadano T. Productivity ofhigh-yielding crops. III. Accumulation of ribulose-1,5-bisphosphatecarboxylase/oxygenase and chlorophyll in relation to productivity of highyielding crops.Soil Sci. Plant Nutr,1993,39:399-408
    Osaki M, Shinano T, Tadono T. Effect of nitrogen application on the accumulation ofribulose-1,5-bisphosphate carboxylase oxygenase and chlorophyll in several field crops.Soil Sci Nut,1993,39:427-436
    Palma J M, Sandalio L M, Corpas F J, Romero-Puertas M C, McCarthy I, Del Rio L A. Plantproteases, protein degradation,and oxidative stress: role of peroxisomes. Plant Physiologyand Biochemistry,2002,40:521-530
    Pandey A, Mann M, Proteomics to study genes and genomes, Nature,2000,405(6788):837-846
    Patricia M. Lonosky, Xiaosi Zhang, Vasant G. Honavar, Drena L. Dobbs, Aigen Fu, andSteve R. Rodermel. A Proteomic Analysis of Maize Chloroplast Biogenesis, PlantPhysiology,2004,134:560-574
    Patterson D T. Effect of temperature and photoperiod on growth and reproductivedevelopment of goatsrue. Range Manage,1992,45:449-453
    Peltier J B, Ytterberg A J, Sun Q, Van Wijk K J. New functions of the thylakoid membraneproteome of Arabidopsis thaliana revealed a simple, fast, and versatile fractionationstrategy. Journal of Biolchem,2004,279(47):49367-49383
    Peng S B, Huang J L, Zhong X H. Challenge and opportunity in improving fertilizer nitrogenuse efficiency of irrigated rice in China. Agric Sci China,2002,1(7):776-758
    Porubleva L, Vander V K, Kothari S, Oliver DJ, Chitnis PR. The proteome of maize leaves:use of gene sequences and expressed sequence tag data for identification of Proteins withpeptide mass finger prints. Electrophoresis,2001,22:1724-1738
    Powles S B. Photoinhibition of photosynthesis induced by visible light. Annual Reviews inPlant Physiology,1984,35:15-44
    Prime T A, Sherrier D J, Mahon P, Packman L C, Dupree P. A proteomic analysis oforganelles from arabidopsis thaliana. Electrophoresis,2000,21(16):3488-3499
    Proehazkova D, Sairam R K, Srivastava G C, Singh D V. Oxidative stress and antioxidantactivity as the basis of senescence in maize leaves. Plant Seience,2001,161:765-771
    Quirino B F, Noh Y S, Himelblau E, Amasino R M. Molecular aspects of leaf senescence.Trends Plant Sci2000;5:278-82
    Requejo R, Tena M. Maize response to acute arsenic toxicity as revealed by proteomeanalysis of plant shoots. Proteomics,2006,6:5156-5162
    Riccardi F, Gazeau P, Vienne D, Zivy M. Protein changes in response to progressive waterdeficit in maize. Quantitative variation and polypeptide identification. Plant Physiol,1998,117(4):1253-1263
    Robert F. Proteomics, Can Celera do it again? Science,2000,287(5461):2136-2138
    Robinson S P, Portis A R Jr. Adenosine-triphosphate hydrolysis by purified Rubisco activase.Arch Biochem Biophys,1989,268:93-99
    Russell W A. Evaluation for plant, ear, and grain traits of maize cultivars representingdifferent eras of breeding. Maydica.1985(30):85-96
    Schansker G, Srivastava A G, Strasser R J. Characterization of the820-nm transmissionsignal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leave. Functional PlantBiology,2003(30):785-796
    Shikanai T. Cyclic electron transport around photosystem I: genetic approaches. Annu RevPlant Biol,2007,58:199-217
    Shin SY, Lee HS, Kwon SY, Kwon ST, Kwak SS. Molecular characterization of a cDNAencoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta.Plant Physiol Biochem.2005;43:55-60
    Sinclair TR, Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: areview. Crop Sci,1989,29:90-98
    Sivasankar A, Bansal K C, Abrol Y P. Nitrogen in relation to leaf area development. In: YPAbrol (ed) Nitrogen,1993, pp75-84. Proc Ind Nat Sci Acad, New Delhi
    Sivasankar A, Lakkineni K C, Jain V, Abrol Y P. Differential response of two wheatgenotypes to nitrogen supply. I. Ontogenic changes in laminae growth and photosynthesis.J Agron Crop Sci,1998,181:21-27
    Smart C M. Gene expression during leaf senescence. New Phytologist,1994,126:419-448
    Sonoike K, Terashima I. Mechanism of photosystem-I photoinhibition in leaves of Cucumissativus L. Planta,1994,194:287-293
    Sonoike K. Photoinhibition of photosystem I: its physiological significance in the chillingsensitivity of plants. Plant and Cell Physiology,1996,37(3):239-247
    Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystemand photosystem I and photosystem II. Journal of Photochemistry and Photobiology B:Biology,1999,48:136-141
    Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool tocharacterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P(eds).Probing photosynthesis: Mechanism, regulation and adaptation. London: Taylor andFrancis Press,2000, chapter25:445-483
    Strasser R J, Tsimill-Michael M, Srivastava. Analysis of the chlorophyll a fluorescencetransient. In: Papageorgiou G and Govindjee (eds). Advances in Photosynthesis andRespiration. Netherlands: KAP Press,2004, chapter12,1-47
    Subedi K D, Ma B L. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids.Crop Sci,2005,45:740-747
    Suzuki Y, Miyamoto T, Yoshizawa R. Rubisco content and photosynthesis of leaves atdifferent positions in transgenic rice with an overexpression of RBCS. Plant, Cell&Environment,2009,32:417-427
    Sylvain Aubry, Jan Mani, Stefan H rtensteiner Stay-green protein, defective in Mendel’sgreen cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase inthe chlorophyll catabolic pathway. Plant Mol. Biol.2008(67):243-256
    Takabayashi A, Kishine M, Asada K. Differential use of two cyclic electron flows aroundphotosystem I for driving CO2-concentration mechanism in C4photosynthesis. Proc NatlAcad Sci USA,2006,102:16898-903
    Tang Y L, Chen M, Xu Y N, Kuang T Y. Changes in thermostability of photosystem II andleaf lipid composition of rice mutant with deficiency of light-harvesting chlorophyll a/bprotein complexes. Journal of Integrative Plant Biology.2007,49,515-522.
    Tao Y Z, Mcintyre C L, Henzell R G. Applications of molecular markers to Australiansorghum breeding programs. L Construction of a RFLP map usin sorghum recombinantinbred lines. Proceedings of the Third Australian Sorghum Conference, Tamworth,20-22February1996. AIAS-Occasional-publication.1996,93,443-450
    Taylor T C, Andersson I. The structure of the complex between rubisco and its naturalsubstrate ribulose1,5-bisphosphate. J Mol Biol,1997,265:432-144
    Teicher H B, Muller B L, Scheller H V. Photoinhibition of photosystem I in field-grownbarley(Hordeum vulgare L.): Induction, recovery and acclimation. PhotosynthesisResearch,2000,64:53-61
    Thomas H. Canopy survival (ed.): Crop Photosynthesis: Spatial and Temporal Determinants,1992, pp.11-41.Elsevier, Amsterdam
    Tollenaar M, Daynard T B, Leaf senescence in short-season maize hybrids, Can. J. Plant Sci,1978,58:869-874
    Tompson J E, Froese C D, Madey E, Simth M D, Hong Y. Lipid metabolism during plantsenescence. Progress in Lipid Resareh,1998,37:119-141
    Tsugita A, Kawakami T, Uchiyama Y, Kamo M, Miyatake N, Nozu Y. Separation andcharacterization of rice proteins. Electrophoresis,1994, l5(5):708-720
    van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U, Kunze R. Transcriptionanalysis of Arabidopsis membrane transporters and hormone pathways duringdevelopmental and induced leaf senescence. Plant Physiol2006;141:776-92
    Vanacker H, Sandalio L M, Jiménez A, Palma J M, Corpas F J, Meseguer V, Gómez M,Sevilla F, Leterrier M, Foyer C H, Del Rio L A. Roles for redox regulation in leafsenescence of pea plants grown on different sources of nitrogen nutrition. Journal ofExperimental Botany,2006,57:1735-1745
    Von Wiren N, Peltier J B, Rouquie D, Rossignol M, Briat J F. Four root plasmalemmapolypeptides under-resented in the maize mutant ys1accumulate in a Fe-efficientgenotype in response to iron-deficiency. Plant Physiol Biochem,1997,35(12):945-950
    Vos J, Putten P E, Birch C J. Effect of nitrogen supply on leaf appearance, leaf growth, leafnitrogen economy and photosynthetic capacity in maize (Zea mays L.). Field CropsResearch,2005,93:64-73
    Waggoner P E, Berger R D. Defoliation, disease, and growth. Phytopathology.1987,77:393-398
    Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomicsprofiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics,2008,8(22):4808-4821
    Weaver L M, Gan S, Quirino B, Amasino R M. A comparison of the expression patterns ofseveral senescence-associated genes in response to stress and hormone treatment. PlantMol Biol,1998,37:455-469
    Wollaston V. The molecular biology of leaf senescence. Journal of Experimental Botany,1997,48:181-199
    Yan H, Saika H, Maekawa M. Rice tillering dwarf mutant dwarf3has increased leaflongevity during darkness-induced senescence or hydrogen peroxide-induced celldeath.Genes&Genetic Systems,2007,82(4):361-366
    Yang P F, Chen H, Liang Y, Shen S H. Proteomic analysis of de-etiolated rice seedlings uponexposure to light. Proteomics,2007,7(14):2459-2468
    Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol2003;6:79-84
    Zapata J, Guóra A, Esteban-Carrasco A, Martin M, Sabater B. Chloroplasts regulate leafsenescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death andDifferentiation,2005,12:1277-1284
    Zhu J M, Chen S X, Alvarez S, Asirvatham V S, Schachtman D P, Wu Y J, Sharp R E. Cellwall proteome in the maize primary root elongation zone. I. extraetion and identificationof water-soluble and lightly ionically bound proteins. Plant Physiology.2006,140:311-325
    Zhu M, Dai S, McClung S, Yan X, Chen S. Functional differentiation of brassica napus guardcells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics,2009,8(4):752-766

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700