用户名: 密码: 验证码:
生物质热解过程中污染物迁移转化机制的解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物通过自身的生长,可以从富营养化水体中吸收氮磷营养元素,而通过生物吸附过程,又可以吸附水中的重金属等污染物。但是,富含污染物的植物生物质若处理不当,容易造成二次污染。另一方面,随着化石能源的日益耗竭,以及其在使用过程中造成的一系列环境和气候问题日益引起人们的重视。从可再生、环境友好的生物质中获取能源及资源已经成为研究热点,并且具有十分广阔的应用前景。快速热解是一个极具应用潜力的生物质资源化成熟技术,如果将其应用于对污染生物质的处置及资源回收,将会具有重要的环境和经济意义。
     本论文系统研究了植物生物质在污染物去除和热解资源化应用中的一些基础问题,包括生物质表面化学修饰强化污染物去除,污染物在热解过程中迁移转化的机理,热解生物油提质的绿色可持续方法研究,热解biochar功能化制备及其在环境、催化及能源储存方面的应用。论文主要的研究内容和结果如下:
     1.生物质的表面化学修饰强化污染物的去除:以二氯亚砜作为活化剂对EDTA进行活化,再将其用于蒲草生物质的表面化学修饰,以增加其表面羧基和氨基功能基团的含量,从而强化其对污染物的去除能力,并对污染物强化去除的相关机制进行了探讨。结果表明,经过表面修饰的生物质对水溶液中的铅离子具有显著强化的去除能力,其最大吸附能力达到263.9mg/g。远远大于未经修饰的生物质的104.5mg/g。吸附机理主要涉及到离子交换、配位和氢键作用,其中离子交换作用主要是在低pH条件下起作用,而配位和氢键作用主要在高pH值条件下发挥作用。
     2.生物质热解过程中污染物的迁移转化过程及其机理:将吸附了重金属铅的蒲草生物质进行热解,分析了热解过程中重金属铅的迁移,转化和分布情况。结果表明,热解过程中铅的回收率受温度的影响不明显;在整个热解过程,温度从400℃升高至600℃时,铅的回收率为98.8%以上,发现铅的化合物在热解过程中转化为挥发性很弱的氧化铅和金属铅而保存在热解残炭固相中。
     以三种典型的富氮磷湿地植物为代表,研究了热解过程中氮磷营养元素的迁移转化过程及其机理。结果显示,热解所得生物油的主要成分包括酚类、醛酮类、羧酸类以及一些含氮杂环或者胺类化合物。在热解过程中,大量的氮磷元素从有机态转化为无机离子态或者结合态,仍然集中在biochar中,可通过无机盐溶液浸出的方法分级提取,其中平均76%的氮元素和57%的磷元素可以通过此法得以回收。
     将生物质和废弃电子垃圾塑料以一定的比例进行混合进行共热解,研究了热解过程中溴化阻燃剂的迁移,转化过程以及溴元素在热解过程中的分布情况,通过TG-FTIR-MS方法对溴化阻燃剂的转化机理进行了深入的研究。结果显示,生物质和WEEEs塑料在热解过程中的协同作用可以大大提高热解油的产率。机理分析表明,热解过程中产生的溴元素既可以被有机组分捕获形成溴代烃类挥发至热解油和气体相中,也可以被WEEEs塑料和生物质中的无机组分捕获而保留在热解残炭中。
     3.生物油品质提升及其机理研究:提出在常温常压的情况下以零价活泼金属锌对生物油进行原位氢化的方法。结果表明,金属锌对于生物油体系表现出良好的反应性能,可以显著改善生物油的性质,包括降低腐蚀性与提高稳定性和热值等。新生成的主要形成机理包括醛酮类的直接氢化、生成的醇类和生物油中有机酸的酯化以热解木质素碎片的氢化反应等。
     直接热解具有催化作用的重金属铜负载的生物质,通过铜在热解过程的催化作用,使得热解生物油的产率和品质有显著的提升。结果表明,铜催化所产生物油中所含的芳香化合物比普通生物油的芳香化合物含量大为增加。机理分析表明,铜的存在能促进生物质中木质素组分的分解,从而产生大量的芳香化合物。热解过程中,超过90%的铜元素富集在热解残炭中,并可以通过灼烧的方法加以回收。
     4.以生物质作为原料,通过热化学方法合成功能碳材料:以废弃木屑生物质为原料,从海水中吸附氯化镁,再进行热解合成介孔碳负载的氧化镁纳米颗粒,并将合成的材料用于二氧化碳的捕集。材料对二氧化碳的最大捕集量可以达到5.45mol/kg。二氧化碳的捕集机理主要涉及物理吸附和化学相互作用,其中的物理吸附作用随着温度的升高而减弱,而化学相互作用主要包括氢键作用以及二氧化碳和氧化镁的化学反应,是二氧化碳捕集的主要贡献。
     将生物质吸附一定量的氯化铁,通过快速热解获得磁性多孔碳材料,以此为前体,通过磺化反应合成磁性固体酸材料,并将其用于催化有机反应。结果表明,氯化铁的存在可以催化促进热解过程中碳材料的微孔和介孔的生成,而以此法合成的磁性固体酸具有高比表面积和酸强度,并且具有易分离性,高催化活性和循环稳定性。
     以富氮的湿地植物蒲草为原料,通过快速热解和KOH活化的方式,合成氮掺杂的多孔碳材料,并将其作为超级电容器的电极材料,研究其电化学储能特性。结果显示,合成的氮掺杂多孔碳材料比表面积可达到3000m2/g以上,具有良好的电容性能,其比电容最大能达到257F/g,并且具有优异的循环稳定性,可以稳定循环使用6000次。
The plants can construct their fronds by absorbing the nitrogen and phosphorus from the eutrophicated water body, and adsorb heavy metals from the polluted water through biosorption process. However, after these processes, the pollutants are usually enriched in the plant biomass, and may cause secondary pollution problems if the pollutant-enriched biomass is mishandled. On the other hand, due to depletion of fossil energy, and the environmental and climate problems caused by the use of fossil energy, it urgently needs to recover energy and resource from the renewable and environmentally friendly biomass. As a mature and promising technique for the recovery of energy and resource from biomass, it will be great environmental and economical significance if the fast pyrolysis can be used for treating the polluted biomass.
     In this thesis, the enhanced removal of pollutants by biomass, as well as the migration, transformation, and distribution of pollutants during the fast pyrolysis of biomass were investigated systematically. The mechanism for the migration and transformation of the pollutants during biomass pyrolysis process was explored. Based on the above results, we developed two sustainable methods for the upgrading of bio-oil, and applied the biomass as raw materials to synthesize a series of functional carbon materials and explore their applications in the fields of environment, catalysis, and energy storage. The main contents and results of this thesis are as follows:
     1. Surface modification of the biomass to enhance the pollutant removal. A chemically modified Typha angustifolia biomass material with abundant carboxyl and amino groups was prepared using SOCl2-activated EDTA as a modification reagent. The results indicate that the chemical modified biomass exhibited significantly enhanced removal ability towards Pb in wastewater, and the maximum adsoption capacity reached263.9mg/g, much higher than that of the raw biomass (104.5mg/g). The main mechanisms involved in the Pb removal process included ion-exchange, complexation, and hydrogen binding interactions, among which the ion-exchange mainly occurred at a low pH, while the complexation, and hydrogen binding interactions contributed mainly at a high pH.
     2. Migration and transformation of the pollutants in the fast pyrolysis of biomass as well as the related mechanism. The migration, transformation and distribution of Pb in the fast pyrolysis of Pb polluted biomass were investigated. During the whole pyrolysis process, when the temperature was increased from400to600℃, the Pb recovery efficiency exceeded98.8%. The main mechanism for this phenomenon is that during the pyrolysis process, the adsorbed Pb was transformed to PbO and metallic Pb, which could not volatilize and remained in the char phase.
     The migration and transformation of N and P in the fast pyrolysis of three typical N-and P-enriched wetland plants were studied. The main compositions of the obtained bio-oil included phenols, aldehydes, ketones, carboxylic acids, and nitrogen-containing heterocyclic compounds. In the pyrolysis process, a large amount of the organic N and P was converted to inorganic forms and remained in the biochar, which could be recovered by leaching. In average,76%of N and57%of P could be recovered in this case.
     The biomass and plastics of electronic waste were mixed in a certain ratio and co-pyrolyzed, and the fate of brominated flame retardants (BFRs) in the co-pyrolysis process was studied in detail. The mechanism for the transformation of BFRs was further investigated by the TG-FTIR-MS technique. The results show that The synergistic effects between the plastics and biomass can significantly improve the yield of bio-oil. As the mechanism analysis shows, the Br radicals formed in the pyrolysis process can be either captured by the organic species to form brominated hydrocarbons and release to the bio-oil or gas phases, or captured by the inorganic species and remained in the char phase.
     3. The upgrading of bio-oil and its mechanism. A green method for bio-oil upgrading at ambient pressure and temperature through in-situ hydrogenation by the zero-valent Zn was proposed. The results indicate that zero-valent Zn showed favorable reactivity in the complex bio-oil system, which ccould significantly improve the property of bio-oil, including decreased corrosivity, and increased heating value and stability. The formation mechanism of13newly formed compounds in the upgraded bio-oil involved the direct hydrogenation of aldehydes and ketones, esterification of alcohols and organic acids, and hydrogenation of the fragments of lignin.
     A new method for selectively improve the quality of bio-oil with Cu catalysis in the pyrolysis of Cu preloaded biomass was developed. The results indicate that the mono-aromatic compounds contents in the Cu catalytzed bio-oil were greatly higher than those in the non-catalyzed bio-oil. The main mechanism for this phenomenon is that the presence of Cu could promote the decomposition of lignin in the biomass, which minght produce various mono-aromatic compounds. After pyrolysis, more than90%of the preloaded Cu was enriched in the biochar phase, which could be easily recovered by a calcination method.
     4. Synthesis of functional carbon materials by the thermochemical methods using the biomass as raw materials. The waste sawdust biomass was used as adsorbent to adsorb MgCl2from seawater to obtain the MgCl2preloaded biomass, was then pyrolyzed to synthesize mesoporous carbon stabilized MgO NPs, which was further used for CO2capture. The maximum CO2capture capacity of the as-synthesized material was5.45mol/kg. The mechanism involved in the CO2capture process included physical adsorption and chemical interaction, among which the physical adsorption was weaken with the increase in temperature, while the chemical interaction contributed mainly to the CO2capture, which included hydrogen binding and the reaction between CO2and MgO.
     A magnetic porous solid acid material was synthesized by pyrolysis and then sulfonation of FeCl3preloaded biomass. The as-synthesized material was used as a catalyst for the organic reactions. The results indicate that the presence of FeCl3could catalyze the formation of the porous structure in the pyrolysis process. The magnetic solid acid had a high acid strength and large surface area, which exhibited a high catalytic activity, favorable separability and cycle stability.
     The nitrogen-doped porous carbon materials were synthesized from an N-enriched wetland plant biomass by a simple fast pyrolysis and KOH activated method. The as-synthesized materials were used as electrode materials for supercapacitor, and their energy storage performance was evaluated. The as-synthesized materials had porous structure with a surface area higher than3000m2/g, and exhibited favorable performance as a supercapacitor with a high capacity (257F/g), large energy and power density (19.0Wh/kg), and could be reused6,000cycles without significant loss of the capacity.
引文
1.2010, the state of the environment in China (in Chinese). Department of Environmental Protection, People's Republic of China 2011.
    2. Shen, G.; Tao, S.; Wang, W.; Yang, Y.; Ding, J.; Xue, M.; Min, Y.; Zhu, C.; Shen, H.; Li, W., Emission of oxygenated polycyclic aromatic hydrocarbons from indoor solid fuel combustion. Environmental Science & Technology 2011,45, (8),3459-3465.
    3. Atkins, A.; Bignal, K. L.; Zhou, J. L.; Cazier, F., Profiles of polycyclic aromatic hydrocarbons and polychlorinated biphenyls from the combustion of biomass pellets. Chemosphere 2010,78, (11),1385-1392.
    4. Mandalakis, M.; Gustafsson, O.; Alsberg, T.; Egeback, A.-L.; Reddy, C. M.; Xu, L.; Klanova, J.; Holoubek, I.; Stephanou, E. G., Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three european background sites. Environmental Science& Technology 2005,39, (9),2976-2982.
    5. Tian, D.; Hu, Y.; Wang, Y.; Boylan, J. W.; Zheng, M.; Russell, A. G., Assessment of biomass burning emissions and their impacts on urban and regional PM2.5:A Georgia case study. Environmental Science & Technology 2008,43, (2),299-305.
    6. Obrist, D.; Moosmuller, H.; Schurmann, R.; Chen, L. W. A.; Kreidenweis, S. M., Particulate-phase and gaseous elemental mercury emissions during biomass combustion: controlling factors and correlation with particulate matter emissions. Environmental Science& Technology 2007,42, (3),721-727.
    7. Szidat, S., Sources of Asian Haze. Science 2009,323, (5913),470-471.
    8. http://news.163.Com/11/0611/07/768HO54S00014AED.html; http://hjj.mep.gov.cn/stjc/201107/P020110712332691223881.pdf; http://unn.people.com.cn/GB/14748/5847292.html. (Access in Oct-10th-2013).
    9. Yu, H.; Huang, G. H., Effects of sodium acetate as a pH control amendment on the composting of food waste. Bioresource Technology 2009,100, (6),2005-2011.
    10. Lesteur, M.; Bellon-Maurel, V.; Gonzalez, C.; Latrille, E.; Roger, J. M.; Junqua, G.; Steyer, J. P., Alternative methods for determining anaerobic biodegradability:A review. Process Biochemistry 2010,45, (4),431-440.
    11. Nallathambi Gunaseelan, V., Anaerobic digestion of biomass for methane production:A review. Biomass and Bioenergy 1997,13, (1-2),83-114.
    12. Themelis, N. J.; Ulloa, P. A., Methane generation in landfills. Renewable Energy 2007,32, (7),1243-1257.
    13. Dodds, D. R.; Gross, R. A., CHEMISTRY:Chemicals from biomass. Science 2007,318, (5854),1250-1251.
    14. Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W., Renewable chemical commodity Feedstocks from integrated catalytic processing of pyrolysis oils. Science 2010,330, (6008), 1222-1227.
    15. Ates, F.; Miskolczi, N.; Borsodi, N., Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part Ⅰ:Product yields, gas and pyrolysis oil properties. Bioresource Technology 2013,133, (0),443-454.
    16. Garcia, A. N.; Font, R.; Marcilla, A., Kinetic study of the flash pyrolysis of municipal solid waste in a fluidized bed reactor at high temperature. Journal of Analytical and Applied Pyrolysis 1995,31,(0),101-121.
    17. Li, A. M.; Li, X. D.; Li, S. Q.; Ren, Y; Chi, Y.; Yan, J. H.; K.F, Pyrolysis of solid waste in a rotary kiln:influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis 1999,50, (2),149-162.
    18. Velghe, I.; Carleer, R.; Yperman, J.; Schreurs, S., Study of the pyrolysis of municipal solid waste for the production of valuable products. Journal of Analytical and Applied Pyrolysis 2011, 92, (2),366-375.
    19. Buah, W. K.; Cunliffe, A. M.; Williams, P. T., Characterization of products from the pyrolysis of municipal solid waste. Process Safety and Environmental Protection 2007,85, (5),450-457.
    20. Baggio, P.; Baratieri, M.; Gasparella, A.; Longo, G. A., Energy and environmental analysis of an innovative system based on municipal solid waste (MSW) pyrolysis and combined cycle. Applied Thermal Engineering 2008,28, (2-3),136-144.
    21. Luo, S.; Xiao, B.; Hu, Z.; Liu, S., Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International Journal of Hydrogen Energy 2010,35, (1),93-97.
    22. Kageyama, H.; Osada, S.; Nakata, H.; Kubota, M.; Matsuda, H., Effect of coexisting inorganic chlorides on lead volatilization from CaO-SiO2-Al2O3 molten slag under municipal solid waste gasification and melting conditions. Fuel 2013,103, (0),94-100.
    23. Bjorklund, A.; Melaina, M.; Keoleian, G., Hydrogen as a transportation fuel produced from thermal gasification of municipal solid waste:an examination of two integrated technologies. International Journal of Hydrogen Energy 2001,26, (11),1209-1221.
    24. He, M.; Xiao, B.; Liu, S.; Guo, X.; Luo, S.; Xu, Z.; Feng, Y; Hu, Z., Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW):Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. International Journal of Hydrogen Energy 2009,34, (5),2174-2183.
    25. Wang, J.; Cheng, G.; You, Y; Xiao, B.; Liu, S.; He, P.; Guo, D.; Guo, X.; Zhang, G., Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite. International Journal of Hydrogen Energy 2012,37, (8), 6503-6510.
    26. Bellomare, F.; Rokni, M., Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine. Renewable Energy 2013,55, (0),490-500.
    27. Arena, U., Process and technological aspects of municipal solid waste gasification. A review. Waste Management 2012,32, (4),625-639.
    28. Jiang, H.; Zhu, X.; Guo, Q.; Zhu, Q., Gasification of rice husk in a fluidized-bed gasifier without inert additives. Industrial& Engineering Chemistry Research 2003,42, (23),5745-5750.
    29. Toor, S. S.; Rosendahl, L.; Rudolf, A., Hydrothermal liquefaction of biomass:A review of subcritical water technologies. Energy 2011,36, (5),2328-2342.
    30. Zhang, L.; Champagne, P.; Xu, C., Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water. Energy 2011,36, (4), 2142-2150.
    31. Akhtar, J.; Amin, N. A. S., A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews 2011,75, (3), 1615-1624.
    32. Hwang, I.-H.; Aoyama, H.; Matsuto, T.; Nakagishi, T.; Matsuo, T., Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Management 2012,32, (3),410-416.
    33. Bhaskar, T.; Matsui, T.; Kaneko, J.; Uddin, M. A.; Muto, A.; Sakata, Y., Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chemistry 2002,4, (4),372-375.
    34. Huber, G. W.; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews 2006,106, (9),4044-4098.
    35. Czernik, S.; Bridgwater, A. V., Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 2004,18, (2),590-598.
    36. Woolf, D.; Amonette, J. E.; Street-Perrott, F. A.; Lehmann, J.; Joseph, S., Sustainable biochar to mitigate global climate change. Nature Communications 2010,1,56.
    37. Bridgwater, A. V., Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012,38,68-94.
    38. Babu, B. V., Biomass pyrolysis:a state-of-the-art review. Biofuels, Bioproducts and Biorefining 2008,2, (5),393-414.
    39. DeSisto, W. J.; Hill, N.; Beis, S. H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-H.; Stemmler, E. A.; Wheeler, M. C.; Frederick, B. G.; van Heiningen, A., Fast pyrolysis of pine sawdust in a fluidized-bed reactor. Energy & Fuels 2010,24, (4),2642-2651.
    40. Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A., Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews 2012.10.1039/c2cs35188a
    41. Binod, P.; Sindhu, R.; Singhania, R. R.; Vikram, S.; Devi, L.; Nagalakshmi, S.; Kurien, N.; Sukumaran, R. K.; Pandey, A., Bioethanol production from rice straw:An overview. Bioresource Technology 2010,101, (13),4767-4774.
    42. Dhepe, P. L.; Fukuoka, A., Cellulose conversion under heterogeneous catalysis. ChemSusChem 2008,1, (12),969-975.
    43. Rinaldi, R.; Schuth, F., Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2009,2, (12),1096-1107.
    44. Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y., Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 2005,96, (18),1959-1966.
    45. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.; Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 2005,96, (6),673-686.
    46. Bridgwater, A. V.; Meier, D.; Radlein, D., An overview of fast pyrolysis of biomass. Organic Geochemistry 1999,30, (12),1479-1493.
    47. Shen, D. K.; Gu, S.; Bridgwater, A. V., Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR, Journal of Analytical and Applied Pyrolysis 2010,87, (2),199-206.
    48. Peters, B., Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Processing Technology 2011,92, (10),1993-1998.
    49. Peng, Y; Wu, S., The structural and thermal characteristics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis 2010,88, (2),134-139.
    50. Huang, J.; Liu, C.; Tong, H.; Li, W.; Wu, D., Theoretical studies on pyrolysis mechanism of xylopyranose. Computational and Theoretical Chemistry 2012,1001, (0),44-50.
    51. Patwardhan, P. R.; Brown, R. C.; Shanks, B. H., Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 2011,4, (5),636-643.
    52. Sefain, M. Z.; El-Kalyoubi, S. F.; Shukry, N., Thermal behavior of holo-and hemicellulose obtained from rice straw and bagasse. Journal of Polymer Science:Polymer Chemistry Edition 1985,25,(5),1569-1577.
    53. Li, S.; Lyons-Hart, J.; Banyasz, J.; Shafer, K., Real-time evolved gas analysis by FTIR method:an experimental study of cellulose pyrolysis. Fuel 2001,80, (12),1809-1817.
    54. Patwardhan, P. R.; Dalluge, D. L.; Shanks, B. H.; Brown, R. C., Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology 2011,102, (8),5265-5269.
    55. Zhang, X.; Yang, W.; Blasiak, W., Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis 2012,96, (0),110-119.
    56. Banyasz, J. L.; Li, S.; Lyons-Hart, J.; Shafer, K. H., Gas evolution and the mechanism of cellulose pyrolysis. Fuel 2001,80, (12),1757-1763.
    57. Ronsse, F.; Bai, X.; Prins, W.; Brown, R. C., Secondary reactions of levoglucosan and char in the fast pyrolysis of cellulose. Environmental Progress & Sustainable Energy 2012,31, (2), 256-260.
    58. Mettler, M. S.; Paulsen, A. D.; Vlachos, D. G.; Dauenhauer, P. J., Pyrolytic conversion of cellulose to fuels:levoglucosan deoxygenation via elimination and cyclization within molten biomass. Energy & Environmental Science 2012,5, (7),7864-7868.
    59. Lin, Y.-C.; Cho, J.; Tompsett, G. A.; Westmoreland, P. R.; Huber, G. W., Kinetics and mechanism of cellulose pyrolysis. The Journal of Physical Chemistry C 2009,113, (46), 20097-20107.
    60. Luo; Wang; Liao; Cen, Mechanism study of cellulose rapid pyrolysis. Industrial& Engineering Chemistry Research 2004,43, (18),5605-5610.
    61. Wooten, J. B.; Seeman, J. I.; Hajaligol, M. R., Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy & Fuels 2003, 18, (1),1-15.
    62. Vinu, R.; Broadbelt, L. J., A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy & Environmental Science 2012,5, (12), 9808-9826.
    63. Kosa, M.; Ben, H.; Theliander, H.; Ragauskas, A. J., Pyrolysis oils from CO2 precipitated Kraft lignin. Green Chemistry 2011,13, (11),3196.
    64. Chu, S.; Subrahmanyam, A. V.; Huber, G. W., The pyrolysis chemistry of a [small beta]-O-4 type oligomeric lignin model compound. Green Chemistry 2013,15,125-136
    65. Cho, J.; Chu, S.; Dauenhauer, P. J.; Huber, G. W., Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chemistry 2012,14, (2),428-439.
    66. Mu, W.; Ben, H.; Ragauskas, A.; Deng, Y, Lignin Pyrolysis Components and Upgrading-Technology Review. Bioenergy Research 2013,1-22.
    67. Ben, H.; Ragauskas, A. J., NMR characterization of pyrolysis oils from Kraft lignin. Energy & Fuels 2011,25, (5),2322-2332.
    68. Akhtar, J.; Saidina Amin, N., A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews 2012,16, (7),5101-5109.
    69. Pattiya, A., Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresource Technology 2011,102, (2),1959-1967.
    70. Shen, D. K.; Gu, S., The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology 2009,100, (24),6496-6504.
    71. Uzun, B. B.; Putun, A. E.; Putiin, E., Fast pyrolysis of soybean cake:Product yields and compositions. Bioresource Technology 2006,97, (4),569-576.
    72. Fu, Q.; Argyropoulos, D. S.; Tilotta, D. G.; Lucia, L. A., Understanding the pyrolysis of CCA-treated wood:Part Ⅱ. Effect of phosphoric acid. Journal of Analytical and Applied Pyrolysis 2008,82, (1),140-144.
    73. Sanchez, C., Lignocellulosic residues:biodegradation and bioconversion by fungi. Biotechnology Advances 2009,27, (2),185-194.
    74. Zhang, S.; Yan, Y.; Li, T.; Ren, Z., Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology 2005,96, (5),545-550.
    75. Home, P. A.; Williams, P. T., Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 1996,75, (9),1051-1059.
    76. Chan, W.-C. R.; Kelbon, M.; Krieger, B. B., Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 1985,64, (11), 1505-1513.
    77. Strezov, V.; Moghtaderi, B.; Lucas, J. A., Thermal study of decomposition of selected biomass samples. Journal of Thermal Analysis and Calorimetry 2003,72, (3),1041-1048.
    78. Debdoubi, A.; El amarti, A.; Colacio, E.; Blesa, M. J.; Hajjaj, L. H., The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. International Journal of Energy Research 2006,30, (15),1243-1250.
    79. Tsai, W.; Lee, M.; Chang, Y, Fast pyrolysis of rice husk:Product yields and compositions. Bioresource Technology 2007,98, (1),22-28.
    80. Salehi, E.; Abedi, J.; Harding, T., Bio-oil from sawdust:pyrolysis of sawdust in a fixed-bed system. Energy & Fuels 2009,23, (7),3767-3772.
    81. Sensoz, S.; Angm, D., Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake in a fixed-bed reactor:Part 2. Structural characterization of pyrolysis bio-oils. Bioresource Technology 2008,99, (13),5498-5504.
    82. Angm, D., Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology 2013,128, (0),593-597.
    83. Ozbay, N.; Piitiin, A. E.; Piitun, E., Bio-oil production from rapid pyrolysis of cottonseed cake:product yields and compositions. International Journal of Energy Research 2006,30, (7), 501-510.
    84. Ayl6n, E.; Fernandez-Colino, A.; Navarro, M. V.; Murillo, R.; Garcia, T.; Mastral, A. M., Waste tire pyrolysis:Comparison between fixed bed reactor and moving bed reactor. Industrial& Engineering Chemistry Research 2008,47, (12),4029-4033.
    85. Onay, O.; Mete Kockar, O., Fixed-bed pyrolysis of rapeseed (Brassica napus L.). Biomass and Bioenergy 2004,26, (3),289-299.
    86. Encinar, J. M.; Beltran, F. J.; Bernalte, A.; Ramiro, A.; Gonzalez, J. F., Pyrolysis of two agricultural residues:Olive and grape bagasse. Influence of particle size and temperature. Biomass and Bioenergy 1996,11, (5),397-409.
    87. Olukcu, N.; Yanik, J.; Saglam, M.; Yuksel, M., Liquefaction of beypazari oil shale by pyrolysis. Journal of Analytical and Applied Pyrolysis 2002,64, (1),29-41.
    88. Bridgwater, A. V, Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis 1999,51, (1-2),3-22.
    89. Scott, D. S.; Majerski, P.; Piskorz, J.; Radlein, D., A second look at fast pyrolysis of biomass-the RTI process. Journal of Analytical and Applied Pyrolysis 1999,51, (1-2),23-37.
    90. Acikgoz, C.; Onay, O.; Kockar, O. M., Fast pyrolysis of linseed:product yields and compositions. Journal of Analytical and Applied Pyrolysis 2004,71, (2),417-429.
    91. El harfi, K.; Mokhlisse, A.; Chanaa, M. B., Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. Journal of Analytical and Applied Pyrolysis 1999,48, (2),65-76.
    92. Gercel, H. F., The effect of a sweeping gas flow rate on the fast pyrolysis of biomass. Energy sources 2002,24, (7),633-642.
    93. Gani, A.; Naruse, I., Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy 2007,32, (4),649-661.
    94. Demirbas, A., Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 2004,71, (2),803-815.
    95. Shen, L.; Zhang, D.-k., Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production. Fuel 2005,84, (7-8),809-815.
    96. Pattiya, A.; Suttibak, S., Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. Journal of Analytical and Applied Pyrolysis 2012,95, (0),227-235.
    97. Chen, T.; Wu, C.; Liu, R.; Fei, W.; Liu, S., Effect of hot vapor filtration on the characterization of bio-oil from rice husks with fast pyrolysis in a fluidized-bed reactor. Bioresource Technology 2011,102, (10),6178-6185.
    98. Lu, Q.; Li, W.-Z.; Zhu, X.-F., Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management 2009,50, (5),1376-1383.
    99. Javaid, A.; Ryan, T.; Berg, G.; Pan, X.; Vispute, T.; Bhatia, S. R.; Huber, G. W.; Ford, D. M., Removal of char particles from fast pyrolysis bio-oil by microfiltration. Journal of Membrane Science 2010,363, (1-2),120-127.
    100. Teella, A.; Huber, G. W.; Ford, D. M., Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes. Journal of Membrane Science 2011,378, (1-2),495-502.
    101.Chiaramonti, D.; Bonini, M.; Fratini, E.; Tondi, G.; Gartner, K.; Bridgwater, A. V.; Grimm, H. P.; Soldaini, I.; Webster, A.; Baglioni, P., Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 2:tests in diesel engines. Biomass and Bioenergy 2003, 25,(1),101-111.
    102.Chiaramonti, D.; Bonini, M.; Fratini, E.; Tondi, G.; Gartner, K.; Bridgwater, A. V.; Grimm, H. P.; Soldaini, I.; Webster, A.; Baglioni, P., Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 1:emulsion production. Biomass and Bioenergy 2003, 25, (1),85-99.
    103. Guo, Z.; Wang, S.; Wang, X., Stability mechanism investigation of emulsion fuels from biomass pyrolysis oil and diesel. Energy 2014,66, (0),250-255.
    104. Diebold, J. P.; Czernik, S., Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels 1997,11, (5),1081-1091.
    105. Deng, L.; Yan, Z.; Fu, Y.; Guo, Q.-X., Green solvent for flash pyrolysis oil separation. Energy & Fuels 2009,23, (6),3337-3338.
    106. Nava, R.; Pawelec, B.; Castano, P.; Alvarez-Galvan, M. C;. Loricera, C. V.; Fierro, J. L. G., Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Applied Catalysis B:Environmental 2009,92, (1-2),154-167.
    107. Krar, M.; Kovdcs, S.; Kallo, D.; Hancs6k, J., Fuel purpose hydrotreating of sunflower oil on CoMo/A12O3 catalyst. Bioresource Technology 2010,101, (23),9287-9293.
    108. Srifa, A.; Faungnawakij, K.; Itthibenchapong, V.; Viriya-empikul, N.; Charinpanitkul, T.; Assabumrungrat, S., Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/y-A12O3 catalyst. Bioresource Technology 2014,158, (0),81-90.
    109. Bezergianni, S.; Dimitriadis, A.; Meletidis, G., Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures. Fuel 2014,125, (0), 129-136.
    110. Tang, Y.; Miao, S.; Pham, H. N.; Datye, A.; Zheng, X.; Shanks, B. H., Enhancement of Pt catalytic activity in the hydrogenation of aldehydes. Applied Catalysis A:General 2011,406, (1-2),81-88.
    111. Tang, Y.; Miao, S.; Shanks, B. H.; Zheng, X., Bifunctional mesoporous organic-inorganic hybrid silica for combined one-step hydrogenation/esterification. Applied Catalysis A:General 2010,375, (2),310-317.
    112. Yu, W.; Tang, Y.; Mo, L.; Chen, P.; Lou, H.; Zheng, X., Bifunctional Pd/Al-SBA-15 catalyzed one-step hydrogenation-esterification of furfural and acetic acid:A model reaction for catalytic upgrading of bio-oil. Catalysis Communications 2011,13, (1),35-39.
    113. Wan, H.; Vitter, A.; Chaudhari, R. V.; Subramaniam, B., Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates. Journal of Catalysis 2014,309,(0),174-184.
    114. Xiong, W.-M.; Fu, Y.; Zeng, F.-X.; Guo, Q.-X., An in situ reduction approach for bio-oil hydroprocessing. Fuel Processing Technology 2011,92, (8),1599-1605.
    115. Ying, X.; Tiejun, W.; Longlong, M.; Guanyi, C., Upgrading of fast pyrolysis liquid fuel from biomass over RU/γ-Al2O3 catalyst. Energy Conversion and Management 2012,55,172-177.
    116. Yu, W.; Tang, Y.; Mo, L.; Chen, P.; Lou, H.; Zheng, X., One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresource Technology 2011,102, (17),8241-8246.
    117. Busetto, L.; Fabbri, D.; Mazzoni, R.; Salmi, M.; Torri, C.; Zanotti, V., Application of the Shvo catalyst in homogeneous hydrogenation of bio-oil obtained from pyrolysis of white poplar: New mild upgrading conditions. Fuel 2011,90, (3),1197-1207.
    118. Elkasabi, Y.; Mullen, C. A.; Pighinelli, A. L. M. T.; Boateng, A. A., Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts. Fuel Processing Technology 2014,123, (0),11-18.
    119. Zhong, W.-c.; Guo, Q.-j.; Wang, X.-y.; Zhang, L., Catalytic hydroprocessing of fast pyrolysis bio-oil from Chlorella. Journal of Fuel Chemistry and Technology 2013,41, (5),571-578.
    120. Ben, H.; Mu, W.; Deng, Y.; Ragauskas, A. J., Production of renewable gasoline from aqueous phase hydrogenation of lignin pyrolysis oil. Fuel 2013,103, (0),1148-1153.
    121.Mahfud, F. H.; Ghijsen, F.; Heeres, H. J., Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. Journal of Molecular Catalysis A:Chemical 2007,264, (1-2),227-236.
    122. Bykova, M. V.; Ermakov, D. Y.; Khromova, S. A.; Smirnov, A. A.; Lebedev, M. Y.; Yakovlev, V. A., Stabilized Ni-based catalysts for bio-oil hydrotreatment:Reactivity studies using guaiacol. Catalysis Today 2014,220-222, (0),21-31.
    123. Zhang, X.; Wang, T.; Ma, L.; Zhang, Q.; Jiang, T., Hydrotreatment of bio-oil over Ni-based catalyst. Bioresource Technology 2013,127, (0),306-311.
    124. Kim, T.-S.; Oh, S.; Kim, J.-Y.; Choi, I.-G.; Choi, J. W., Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy 2014,68, (0), 437-443.
    125. Xu, X.; Zhang, C.; Liu, Y.; Zhai, Y.; Zhang, R., Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels. Chemosphere 2013,93, (4),652-660.
    126. Kaewpengkrow, P.; Atong, D.; Sricharoenchaikul, V., Effect of Pd, Ru, Ni and ceramic supports on selective deoxygenation and hydrogenation of fast pyrolysis Jatropha residue vapors. Renewable Energy 2014,65, (0),92-101.
    127. Echeandia, S.; Pawelec, B.; Barrio, V. L.; Arias, P. L.; Cambra, J. F.; Loricera, C. V.; Fierro, J. L. G., Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils. Fuel 2014,117, Part B, (0), 1061-1073.
    128. Deng, L.; Li, J.; Lai, D.-M.; Fu, Y.; Guo, Q.-X., Catalytic Conversion of Biomass-Derived Carbohydrates into y-Valerolactone without Using an External H2 Supply. Angewandte Chemie International Edition 2009,48, (35),6529-6532.
    129. Bond, J. Q.; Upadhye, A. A.; Olcay, H.; Tompsett, G. A.; Jae, J.; Xing, R.; Alonso, D. M.; Wang, D.; Zhang, T.; Kumar, R.; Foster, A.; Sen, S. M.; Maravelias, C. T.; Malina, R.; Barrett, S. R. H.; Lobo, R.; Wyman, C. E.; Dumesic, J. A.; Huber, G. W., Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy & Environmental Science 2014,7, (4),1500-1523.
    130. Carlson, T. R.; Cheng, Y.-T.; Jae, J.; Huber, G. W., Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy & Environmental Science 2011,4, (1), 145-161.
    131.Iliopoulou, E. F.; Antonakou, E. V.; Karakoulia, S. A.; Vasalos, I. A.; Lappas, A. A.; Triantafyllidis, K. S., Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chemical Engineering Journal 2007, 134, (1-3),51-57.
    132. Zhang, H.; Carlson, T. R.; Xiao, R.; Huber, G. W., Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. Green Chemistry 2012,14, (1),98-110.
    133. Veses, A.; Aznar, M.; Martinez, I.; Martinez, J. D.; Lopez, J. M.; Navarro, M. V.; Callen, M. S.; Murillo, R.; Garcia, T., Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresource Technology 2014,162, (0),250-258.
    134. Naqvi, S. R.; Uemura, Y.; Yusup, S. B., Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production:The role of temperature and catalyst. Journal of Analytical and Applied Pyrolysis 2014,106, (0),57-62.
    135. Zheng, Y.; Chen, D.; Zhu, X., Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3. Journal of Analytical and Applied Pyrolysis 2013,104, (0),514-520.
    136. Shadangi, K. P.; Mohanty, K., Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel 2014,115, (0),434-442.
    137. Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Wu, H.; Wang, X.; He, F.; Li, H., Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. Journal of Molecular Catalysis A:Chemical 2014,383-384, (0),23-30.
    138. Mante, O. D.; Agblevor, F. A.; McClung, R., A study on catalytic pyrolysis of biomass with Y-zeolite based FCC catalyst using response surface methodology. Fuel 2013,108, (0),451-464.
    139. Mullen, C. A.; Boateng, A. A.; Mihalcik, D. J.; Goldberg, N. M., Catalytic Fast Pyrolysis of White Oak Wood in a Bubbling Fluidized Bed. Energy & Fuels 2011,25, (11),5444-5451.
    140. Zhang, H.; Nie, J.; Xiao, R.; Jin, B.; Dong, C.; Xiao, G., Catalytic co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor. Energy & Fuels 2014,28, (3),1940-1947.
    141. Lu, Q.; Tang, Z.; Zhang, Y.; Zhu, X.-f., Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts. Industrial& Engineering Chemistry Research 2010,49, (6), 2573-2580.
    142. Thangalazhy-Gopakumar, S.; Adhikari, S.; Gupta, R. B., Catalytic pyrolysis of biomass over H+ZSM-5 under hydrogen pressure. Energy & Fuels 2012,26, (8),5300-5306.
    143. Srinivasan, V.; Adhikari, S.; Chattanathan, S. A.; Park, S., Catalytic pyrolysis of torrefied biomass for hydrocarbons production. Energy& Fuels 2012,26, (12),7347-7353.
    144. Shabaker, J.; Huber, G.; Dumesic, J., Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. Journal of Catalysis 2004,222, (1),180-191.
    145. Davda, R.; Shabaker, J.; Huber, G.; Cortright, R.; Dumesic, J., A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B:Environmental 2005,55,(1),171-186.
    146. Huber, G. W; Chheda, J.; Barrett, C.; Dumesic, J. A., Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 2005,308,1446-2079.
    147. Chheda, J. N.; Huber, G. W.; Dumesic, J. A., Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition 2007,46, (38),7164-7183.
    148. Borg,(?).; Hammer, N.; Enger, B. C.; Myrstad, R.; Lindvag, O. A.; Eri, S.; Skagseth, T. H.; Rytter, E., Effect of biomass-derived synthesis gas impurity elements on cobalt Fischer-Tropsch catalyst performance including in situ sulphur and nitrogen addition. Journal of Catalysis 2011, 279, (1),163-173.
    149. Zwart, R. W.; Boerrigter, H., High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomass. Energy& Fuels 2005,19, (2), 591-597.
    150. Wright, M. M.; Brown, R. C.; Boateng, A. A., Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels, Bioproducts and Bioreflning 2008, 2, (3),229-238.
    151. Tijmensen, M. J.; Faaij, A. P.; Hamelinck, C. N.; van Hardeveld, M. R., Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy 2002,23, (2),129-152.
    152. Salt, D. E.; Blaylock, M.; Kumar, N. P.; Dushenkov, V.; Ensley, B. D.; Chet, I.; Raskin, I., Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology 1995,13, (5),468-474.
    153. Padmavathiamma, P. K.; Li, L. Y., Phytoremediation technology:hyper-accumulation metals in plants. Water, Air, Soil Pollution 2007,184, (1-4),105-126.
    154. McGrath, S.; Zhao, F.; Lombi, E., Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 2001,232, (1-2),207-214.
    155. Huang, J. W.; Blaylock, M. J.; Kapulnik, Y.; Ensley, B. D., Phytoremediation of uranium-contaminated soils:role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science & Technology 1998,32, (13),2004-2008.
    156. Rugh, C. L.; Senecoff, J. F.; Meagher, R. B.; Merkle, S. A., Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology 1998,16, (10),925-928.
    157. Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schreurs, S.; Yperman, J., Flash pyrolysis of heavy metal contaminated biomass from phytoremediation:Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. Journal of Analytical and Applied Pyrolysis 2010,87, (1),1-7.
    158. Stals, M.; Carleer, R.; Reggers, G.; Schreurs, S.; Yperman, J., Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation:Characterisation of biomass, pyrolysis oil and char/ash fraction. Journal of Analytical and Applied Pyrolysis 2010,89, (1),22-29.
    159. Lievens, C.; Carleer, R.; Cornelissen, T.; Yperman, J., Fast pyrolysis of heavy metal contaminated willow:Influence of the plant part. Fuel2009,88, (8),1417-1425.
    160. Lievens, C.; Yperman, J.; Cornelissen, T.; Carleer, R., Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis:Part Ⅱ: Characterisation of the liquid and gaseous fraction as a function of the temperature. Fuel 2008,87, (10-11),1906-1916.
    161. Lievens, C.; Yperman, J.; Vangronsveld, J.; Carleer, R., Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis:Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 2008, 57,(10-11),1894-1905.
    162. Koppolu, L.; Agblevor, F. A.; Clements, L. D., Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅱ:Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy 2003,25, (6),651-663.
    163. Koppolu, L.; Prasad, R.; Davis Clements, L., Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅲ:pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy 2004,26, (5),463-472.
    164. Ren, Q.; Zhao, C., NOx and N2O Precursors from biomass pyrolysis:Nitrogen transformation from amino acid. Environmental Science & Technology 2012,46, (7),4236-4240.
    165. Ren, Q.; Zhao, C., NOx and N2O Precursors from biomass pyrolysis:Role of cellulose, hemicellulose and lignin. Environmental Science& Technology 2013,47, (15),8955-8961.
    166. Becidan, M.; Skreiberg,(?).; Hustad, J. E., NOx and N2O Precursors (NH3 and HCN) in pyrolysis of biomass residues. Energy & Fuels 2007,21, (2),1173-1180.
    167. Chang, L.; Xie, Z.; Xie, K.-C.; Pratt, K. C.; Hayashi, J.-i.; Chiba, T.; Li, C.-Z., Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN. Fuel 2003,82, (10),1159-1166.
    168. Li, C.-Z.; Tan, L. L., Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel 2000,79,(15),1899-1906.
    169. Tan, L. L.; Li, C.-Z., Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅰ. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis. Fuel 2000,79, (15),1883-1889.
    170. Tian, F.-J.; Wu, H.; Yu, J.-l.; McKenzie, L. J.; Konstantinidis, S.; Hayashi, J.-i.; Chiba, T.; Li, C.-Z., Formation of NOx precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH3 and HCN during the pyrolysis and gasification of Victorian brown coal in steam. Fuel 2005,84, (16),2102-2108.
    171. Hu, B.; Wang, K.; Wu, L.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M., Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials 2010,22, (7),813-828.
    172. Titirici, M.-M.; Thomas, A.; Antonietti, M., Back in the black:hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 2007,31, (6),787-789.
    173. Hu, B.; Yu, S.-H.; Wang, K.; Liu, L.; Xu, X.-W., Functional carbonaceous materials from hydrothermal carbonization of biomass:an effective chemical process. Dalton Transactions 2008, (40),5414-5423.
    174. Titirici, M.-M.; Antonietti, M.; Baccile, N., Hydrothermal carbon from biomass:a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chemistry 2008,10, (11),1204-1212.
    175. Xu, Y. J.; Weinberg, G.; Liu, X.; Timpe, O.; Schlogl, R.; Su, D. S., Nanoarchitecturing of activated carbon:facile strategy for chemical functionalization of the surface of activated carbon. Advanced Functional Materials 2008,18, (22),3613-3619.
    176. Titirici, M.-M.; White, R. J.; Falco, C.; Sevilla, M., Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science 2012,5, (5),6796-6822.
    177. Mohamad Nor, N.; Lau, L. C.; Lee, K. T.; Mohamed, A. R., Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-a review. Journal of Environmental Chemical Engineering 2013,1, (4),658-666.
    178. Ioannidou, O.; Zabaniotou, A., Agricultural residues as precursors for activated carbon production-a review. Renewable and Sustainable Energy Reviews 2007,11, (9),1966-2005.
    179. Carrott, P.; Ribeiro Carrott, M., Lignin-from natural adsorbent to activated carbon:A review. Bioresource Technology 2007,98, (12),2301-2312.
    180. Sun, K., Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass and Bioenergy 2010,34, (4),539-544.
    181. Nuithitikul, K.; Srikhun, S.; Hirunpraditkoon, S., Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon. Bioresource Technology 2010,101, (1),426-429.
    182. Sumathi, S.; Bhatia, S.; Lee, K.; Mohamed, A., Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO Process study. Chemical Engineering Journal 2010,162, (1),51-57.
    183. Nowicki, P.; Wachowska, H.; Pietrzak, R., Active carbons prepared by chemical activation of plum stones and their application in removal of NO2. Journal of Hazardous Materials 2010,181, (1),1088-1094.
    184. Nowicki, P.; Pietrzak, R.; Wachowska, H., Sorption properties of active carbons obtained from walnut shells by chemical and physical activation. Catalysis Today 2010,150, (1),107-114.
    185. Sayan, E., Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell:An optimization study on removal of Cu2+from aqueous solution. Chemical Engineering Journal 2006,115, (3),213-218.
    186. Demirbas, A., Agricultural based activated carbons for the removal of dyes from aqueous solutions:A review. Journal of Hazardous Materials 2009,167, (1-3),1-9.
    187. Arancon, R. A.; Barros Jr, H. R.; Balu, A. M.; Vargas, C.; Luque, R., Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification/transesterification of waste oils. Green Chemistry 2011,13, (11),3162.
    188. Balakrishnan, M.; Batra, V. S.; Hargreaves, J. S. J.; Pulford, I. D., Waste materials-catalytic opportunities:an overview of the application of large scale waste materials as resources for catalytic applications. Green Chemistry 2011,13, (1),16.
    189. Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S., From dead leaves to high energy density supercapacitors. Energy & Environmental Science 2013,6, (4),1249-1259.
    190. Guo, Y.; Qi, J.; Jiang, Y.; Yang, S.; Wang, Z.; Xu, H., Performance of electrical double layer capacitors with porous carbons derived from rice husk. Materials Chemistry and Physics 2003,80, (3),704-709.
    191. Wu, F.-C.; Tseng, R.-L.; Hu, C.-C.; Wang, C.-C., Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. Journal of Power Sources 2004,138, (1),351-359.
    192. Wu, F.-C.; Tseng, R.-L.; Hu, C.-C.; Wang, C.-C., Effects of pore structure and electrolyte on the capacitive characteristics of steam-and KOH-activated carbons for supercapacitors. Journal of Power Sources 2005,144, (1),302-309.
    193. Kim, Y.-J.; Lee, B.-J.; Suezaki, H.; Chino, T.; Abe, Y.; Yanagiura, T.; Park, K. C; Endo, M., Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon 2006,44, (8),1592-1595.
    194. Subramanian, V.; Luo, C.; Stephan, A.; Nahm, K.; Thomas, S.; Wei, B., Supercapacitors from activated carbon derived from banana fibers. The Journal of Physical Chemistry C 2007,111, (20), 7527-7531.
    195.Balathanigaimani, M.; Shim, W.-G.; Lee, M.-J.; Kim, C.; Lee, J.-W.; Moon, H., Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications 2008,10, (6),868-871.
    196. Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q., Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications 2008,10, (10),1594-1597.
    197. Kalpana, D.; Cho, S.; Lee, S.; Lee, Y.; Misra, R.; Renganathan, N., Recycled waste paper-A new source of raw material for electric double-layer capacitors. Journal of Power Sources 2009, 190, (2),587-591.
    198. Raymundo-Pinero, E.; Cadek, M.; Beguin, F., Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Advanced Functional Materials 2009,19, (7),1032-1039.
    199. Rufford, T. E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z.; Lu, G. Q., Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. Journal of Power Sources 2010,195, (3),912-918.
    200. Ismanto, A. E.; Wang, S.; Soetaredjo, F. E.; Ismadji, S., Preparation of capacitor's electrode from cassava peel waste. Bioresource Technology 2010,101, (10),3534-3540.
    201. Li, X.; Xing, W.; Zhuo, S.; Zhou, J.; Li, F.; Qiao, S.-Z.; Lu, G.-Q., Preparation of capacitor's electrode from sunflower seed shell. Bioresource Technology 2011,102, (2),1118-1123.
    1. Qiu, J., China faces up to groundwater crisis. Nature 2010,466, (7304),308-308.
    2. Godfray, H. C. J.; Beddington, J. R.; Crute, I. R.; Haddad, L.; Lawrence, D.; Muir, J. F.; Pretty, J.; Robinson, S.; Thomas, S. M.; Toulmin, C., Food security:the challenge of feeding 9 billion people. Science 2010,327, (5967),812-818.
    3. Chen, Q.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M., Precipitation of heavy metals from wastewater using simulated flue gas:Sequent additions of fly ash, lime and carbon dioxide. Water Research 2009,43, (10),2605-2614.
    4. Vukojevic Medvidovic, N.; Peric, J.; Trgo, M.; Muzek, M. N., Removal of lead ions by fixed bed of clinoptilolite-The effect of flow rate. Microporous and Mesoporous Materials 2007,105, (3),298-304.
    5. Maeda, Y.; Morinaga, Y.; Tomita, Y.; Kobayashi, K., Photoanodic response of iron oxide electrode in aqueous solution and its application to Pb2+ removal under visible light irradiation. Electrochim Acta 2009,54, (6),1757-1761.
    6. Nagendran, A.; Vijayalakshmi, A.; Arockiasamy, D. L.; Shobana, K. H.; Mohan, D., Toxic metal ion separation by cellulose acetate/sulfonated poly(ether imide) blend membranes:Effect of polymer composition and additive. Journal of Hazardous Materials 2008,755, (3),477-485.
    7. Agunbiade, F. O.; Olu-Owolabi, B. I.; Adebowale, K. O., Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresource Technology 2009,100, (19), 4521-4526.
    8. Wang, J.; Chen, C., Biosorption of heavy metals by Saccharomyces cerevisiae:A review. Biotechnology Advances 2006,24, (5),427-451.
    9. Wang, J.; Chen, C., Biosorbents for heavy metals removal and their future. Biotechnology Advances 2009,27, (2),195-226.
    10. Rao, R. A. K.; Khan, M. A.; Rehman, F., Utilization of Fennel biomass (Foeniculum vulgari) a medicinal herb for the biosorption of Cd(II) from aqueous phase. Chemical Engineering Journal 2010,156, (1),106-113.
    11. Ozdemir, S.; Kilinc, E.; Poli, A.; Nicolaus, B.; Guven, K., Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis:Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal 2009,152, (1),195-206.
    12. Oliveira, W. E.; Franca, A. S.; Oliveira, L. S.; Rocha, S. D., Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. Journal of Hazardous Materials 2008,152, (3),1073-1081.
    13. Gurgel, L. V. A.; Gil, L. F., Adsorption of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research 2009,43, (18),4479-4488.
    14. Das, S. K.; Das, A. R.; Guha, A. K., A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environmental Science & Technology 2007,41, (24),8281-8287.
    15. Repo, E.; Warchol, J. K.; Kurniawan, T. A.; Sillanpaa, M. E. T., Adsorption of Co(Ⅱ) and Ni(Ⅱ) by EDTA-and/or DTPA-modified chitosan:Kinetic and equilibrium modeling. Chemical Engineering Journal 2010,161, (1-2),73-82.
    16. Dai, J.; Yan, H.; Yang, H.; Cheng, R., Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions. Chemical Engineering Journal 2010,165, (1),240-249.
    17. Luo, F.; Liu, Y.; Li, X.; Xuan, Z.; Ma, J., Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere 2006,64, (7),1122-1127.
    18. Sillanpaa, M.; Orama, M.; Ramo, J.; Oikari, A., The importance of ligand speciation in environmental research:a case study. Science of The Total Environment 2001,267, (1-3),23-31.
    19. Nagib, S.; Inoue, K.; Yamaguchi, T.; Tamaru, T., Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan. Hydrometallurgy 1999,51, (1),73-85.
    20. Yu, J.; Tong, M.; Sun, X.; Li, B., Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast. Bioresource Technology 2008,99, (7),2588-2593.
    21. Boehm, H. P., Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994,32, (5),759-769.
    22. Munagapati, V. S.; Yarramuthi, V.; Nadavala, S. K.; Alla, S. R.; Abburi, K., Biosorption of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) by Acacia leucocephala bark powder:Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal 2010,157, (2-3),357-365.
    23. Ho, Y. S.; McKay, G., Pseudo-second order model for sorption processes. Process Biochemistry 1999,34, (5),451-465.
    24. Wu, F.-C.; Tseng, R.-L.; Juang, R.-S., Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research 2001,35, (3),613-618.
    25. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 1918,40, (9),1361-1403.
    26. Wang, L.; Yang, L.; Li, Y.; Zhang, Y.; Ma, X.; Ye, Z., Study on adsorption mechanism of Pb(Ⅱ) and Cu(Ⅱ) in aqueous solution using PS-EDTA resin. Chemical Engineering Journal 2010, 163, (3),364-372.
    27. H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys. Chem. (1906) 57A 385-470.
    28. Plazinski, W.; Rudzinski, W., Modeling the effect of pH on kinetics of heavy metal ion biosorption. A theoretical approach based on the statistical rate theory. Langmuir 2008,25, (1), 298-304.
    29. W.D. Schecher, D.C. McAvoy, MINEQL+:a chemical equilibrium program for personal computers (Version 4.5), Environmental Research Software, Hallowell, Maine, USA,2001.
    30. J.A. Dean, Lange's Hand Book of Chemistry,15th ed., McGraw-Hill Book Company, USA, 1999.
    31. Tan, G.; Yuan, H.; Liu, Y.; Xiao, D., Removal of lead from aqueous solution with native and chemically modified corncobs. Journal of Hazardous Materials 2010,174, (1-3),740-745.
    32. Iqbal, M.; Saeed, A.; Zafar, S. I., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+and Pb2+ removal by mango peel waste. Journal of Hazardous Materials 2009,164, (1),161-171.
    33. Zheng, J.-C.; Feng, H.-M.; Lam, M. H.-W.; Lam, P. K.-S.; Ding, Y.-W.; Yu, H.-Q., Removal of Cu(Ⅱ) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. Journal of Hazardous Materials 2009,171, (1-3),780-785.
    34. Yang, F.; Liu, H.; Qu, J.; Paul Chen, J., Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. Bioresource Technology 2011,102, (3),2821-2828.
    35. Lim, S.-F.; Zheng, Y.-M.; Zou, S.-W.; Chen, J. P., Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology 2008,42, (7),2551-2556.
    36. Toupin, M.; Belanger, D., Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir 2008,24, (5),1910-1917.
    37. Zhou, J.-H.; Sui, Z.-J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y.-C.; Yuan, W.-K., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007,45, (4), 785-796.
    38. Vazquez, G.; Calvo, M.; Sonia Freire, M.; Gonzalez-Alvarez, J.; Antorrena, G., Chestnut shell as heavy metal adsorbent:Optimization study of lead, copper and zinc cations removal. Journal of Hazardous Materials 2009,172, (2-3),1402-1414.
    39. Godelitsas, A.; Astilleros, J. M.; Hallam, K.; Harissopoulos, S.; Putnis, A., Interaction of Calcium carbonates with lead in aqueous solutions. Environmental Science& Technology 2003, 37, (15),3351-3360.
    1. Sud, D.; Mahajan, G.; Kaur, M., Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-A review. Bioresource Technology 2008, 99, (14),6017-6027.
    2. Farooq, U.; Kozinski, J. A.; Khan, M. A.; Athar, M., Biosorption of heavy metal ions using wheat based biosorbents-A review of the recent literature. Bioresource Technology 2010,101, (14),5043-5053.
    3. Park, D.; Yun, Y.-S.; Jo, J. H.; Park, J. M., Biosorption process for treatment of electroplating wastewater containing Cr (VI):Laboratory-scale feasibility test. Industrial& Engineering Chemistry Research 2006,45, (14),5059-5065.
    4. Vilar, V. J. P.; Botelho, C. M. S.; Boaventura, R. A. R., Lead and copper biosorption by marine red algae Gelidium and algal composite material in a CSTR ("Carberry" type). Chemical Engineering Journal 2008,138, (1-3),249-257.
    5. Yu, J.; Tong, M.; Sun, X.; Li, B., Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast. Bioresource Technology 2008,99, (7),2588-2593.
    6. Mata, Y. N.; Blazquez, M. L.; Ballester, A.; Gonzalez, F.; Munoz, J. A., Sugar-beet pulp pectin gels as biosorbent for heavy metals:Preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal 2009,150, (2-3),289-301.
    7. Koppolu, L.; Agblevor, F. A.; Clements, L. D., Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅱ:Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy 2003,25, (6),651-663.
    8. Koppolu, L.; Prasad, R.; Davis Clements, L., Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅲ:pilot-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass and Bioenergy 2004,26, (5),463-472.
    9. Stals, M.; Carleer, R.; Reggers, G.; Schreurs, S.; Yperman, J., Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation:Characterisation of biomass, pyrolysis oil and char/ash fraction. Journal of Analytical and Applied Pyrolysis 2010,89, (1),22-29.
    10. Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schreurs, S.; Yperman, J., Flash pyrolysis of heavy metal contaminated biomass from phytoremediation:Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. Journal of Analytical and Applied Pyrolysis 2010,87, (1),1-7.
    11. Westerhof, R. J. M.; Brilman, D. W. F.; van Swaaij, W. P. M.; Kersten, S. R. A., Effect of Temperature in Fluidized Bed Fast Pyrolysis of Biomass:Oil Quality Assessment in Test Units. Industrial & Engineering Chemistry Research 2009,49, (3),1160-1168.
    12. Mehrabani, J. V.; Noaparast, M.; Mousavi, S. M.; Dehghan, R.; Rasooli, E.; Hajizadeh, H., Depression of pyrite in the flotation of high pyrite low-grade lead-zinc ore using Acidithiobacillus ferrooxidans. Mineral Engineering 2010,23, (1),10-16.
    13. Schindler, D. W.; Hecky, R. E., Eutrophication:More nitrogen data needed. Science 2009, 324, (5928),721-722.
    14. Zhu, G.; Peng, Y.; Zhai, L.; Wang, Y.; Wang, S., Performance and optimization of biological nitrogen removal process enhanced by anoxic/oxic step feeding. Biochemical Engineering Journal 2009,43, (3),280-287.
    15. Kumar, M.; Lin, J.-G., Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues. Journal of Hazardous Materials 2010,178, (1-3),1-9.
    16. Yang, S.; Yang, F.; Fu, Z.; Wang, T.; Lei, R., Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. Journal of Hazardous Materials 2010,175, (1-3),551-557.
    17. Guo, C. H.; Stabnikov, V.; Ivanov, V., The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresource Technology 2010,101, (11),3992-3999.
    18. Vohla, C.; Alas, R.; Nurk, K.; Baatz, S.; Mander, U., Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland. Science of The Total Environment 2007,380, (1-3),66-74.
    19. Yousefi, Z.; Mohseni-Bandpei, A., Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecological Engineering 2010,36, (6), 777-782.
    20. Spieles, D. J.; Mitsch, W. J., The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low-and high-nutrient riverine systems. Ecological Engineering 1999,14, (1-2),77-91.
    21. Hart, M. R.; Quin, B. F.; Nguyen, M. L., Phosphorus Runoff from Agricultural Land and Direct Fertilizer Effects. Journal of Environmental Quality 2004,33, (6),1954-1972.
    22. Longhi, D.; Bartoli, M.; Viaroli, P., Decomposition of four macrophytes in wetland sediments: Organic matter and nutrient decay and associated benthic processes. Aquatic Botany 2008,89, (3), 303-310.
    23. Kuehn, K. A.; Suberkropp, K., Decomposition of standing litter of the freshwater emergent macrophyteJuncus effusus. Freshwater Biology 1998,40, (4),717-727.
    24. Masi, F., Water reuse and resources recovery:the role of constructed wetlands in the Ecosan approach. Desalination 2009,246, (1-3),27-34.
    25. Meuleman, A. F. M.; van Logtestijn, R.; Rijs, G. B. J.; Verhoeven, J. T. A., Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment. Ecological Engineering 2003,20, (1),31-44.
    26. Verma, V. K.; Singh, Y. P.; Rai, J. P. N., Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource Technology 2007,98, (8),1664-1669.
    27. Leterme, P.; Londono, A. M.; Munoz, J. E.; Suarez, J.; Bedoya, C. A.; Souffrant, W. B.; Buldgen, A., Nutritional value of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell) in pigs. Animal Feed Science and Technology 2009,149, (1-2),135-148.
    28. Kalita, P.; Mukhopadhyay, P. K.; Mukherjee, A. K., Evaluation of the nutritional quality of four unexplored aquatic weeds from northeast India for the formulation of cost-effective fish feeds. Food Chemistry 2007,103, (1),204-209.
    29. Czernik, S.; Bridgwater, A. V., Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 2004,18, (2),590-598.
    30. Zheng, S.; Yang, Z.; Sun, M., Pollutant removal from municipal sewage in winter via a modified free-water-surface system planted with edible vegetable. Desalination 2010,250, (1), 158-161.
    31. Dupont, C.; Commandre, J.-M.; Gauthier, P.; Boissonnet, G.; Salvador, S.; Schweich, D., Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073K and 1273K. Fwel 2008,87, (7),1155-1164.
    32. Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K., Prediction of heating values of biomass fuel from elemental composition. Analytica ChimicaActa 2005,544, (1-2),191-198.
    33. DeSisto, W. J.; Hill, N.; Beis, S. H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-H.; Stemmler, E. A.; Wheeler, M. C.; Frederick, B. G.; van Heiningen, A.,'Fast pyrolysis of pine sawdust in a fluidized-bed reactor. Energy & Fuels 2010,24, (4),2642-2651.
    34. Wang, P.; Zhan, S.; Yu, H.; Xue, X.; Hong, N., The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresource Technology 2010,101, (9),3236-3241.
    35. Heo, H. S.; Park, H. J.; Park, Y.-K.; Ryu, C.; Suh, D. J.; Suh, Y.-W.; Yim, J.-H.; Kim, S.-S., Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource Technology 2010,101, (1), S91-S96.
    36. Boateng, A. A.; Cooke, P. H.; Hicks, K. B., Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls. Fuel 2007,86, (5-6), 735-742.
    37. Ren, Q.; Zhao, C., NOx and N2O Precursors from biomass pyrolysis:Nitrogen transformation from amino acid. Environmental Science & Technology 2012,46, (7),4236-4240.
    38. Becidan, M.; Skreiberg,(?).; Hustad, J. E., NOx and N2O Precursors (NH3 and HCN) in pyrolysis of biomass residues. Energy & Fuels 2007,21, (2),1173-1180.
    39. Al-Salem, S. M.; Lettieri, P.; Baeyens, J., Recycling and recovery routes of plastic solid waste (PSW):A review. Waste Management 2009,29, (10),2625-2643.
    40. Robinson, B. H., E-waste:An assessment of global production and environmental impacts. Science of The Total Environment 2009,408, (2),183-191.
    41. A. Tukker, H. de Groot, L. Simons and S. Wiegersma, Chemical recycling of plastic waste: PVC and other resins, European Commission, DG Ⅲ, Final Report, STB-99-55 Final. Del, The Netherlands,1999.
    42. Taurino, R.; Pozzi, P.; Zanasi, T., Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling. Waste Management 2010, 30, (12),2601-2607.
    43. Choi, J.; Kim, O.; Kwak, S.-Y, Suppression of dioxin emission in co-incineration of poly(vinyl Chloride) with TiO2-encapsulating polystyrene. Environmental Science & Technology 2001,41, (16),5833-5838.
    44. Wager, P. A.; Schluep, M.; Miiller, E.; Gloor, R., RoHS regulated substances in mixed plastics from waste electrical and electronic equipment. Environmental Science& Technology 2011,46, (2),628-635.
    45. Tian, H.; Gao, J.; Lu, L.; Zhao, D.; Cheng, K.; Qiu, P., Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environmental Science & Technology 2012,46,(18),10364-10371.
    46. Baytekin, B.; Baytekin, H. T.; Grzybowski, B. A., Retrieving and converting energy from polymers:deployable technologies and emerging concepts. Energy & Environmental Science 2013.
    47. Alston, S. M.; Arnold, J. C., Environmental impact of pyrolysis of mixed WEEE plastics part 2:Life cycle assessment. Environmental Science & Technology 2011,45, (21),9386-9392.
    48. Bhaskar, T.; Matsui, T.; Kaneko, J.; Uddin, M. A.; Muto, A.; Sakata, Y., Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chemistry 2002,4, (4),372-375.
    49. Yang, X.; Sun, L.; Xiang, J.; Hu, S.; Su, S., Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE):A review. Waste Management 2013,33, (2), 462-473.
    50. Alston, S. M.; Clark, A. D.; Arnold, J. C.; Stein, B. K., Environmental impact of pyrolysis of mixed WEEE plastics part 1:Experimental pyrolysis data. Environmental Science & Technology 2011,45, (21),9380-9385.
    51. Undri, A.; Frediani, M.; Rosi, L.; Frediani, P., Reverse polymerization of waste polystyrene through microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis,2014,105, 35-42
    52. Wu, F.; Guo, J.; Chang, H.; Liao, H.; Zhao, X.; Mai, B.; Xing, B., Polybrominated diphenyl ethers and decabromodiphenylethane in sediments from twelve lakes in China. Environmental Pollution 2012,162,262-268.
    53. Abdullah, H.; Mediaswanti, K. A.; Wu, H., Biochar as a fuel:2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy & Fuels 2010,24, (3),1972-1979.
    54. Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Li, P.; Zhang, J.; Zheng, C., Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy & Fuels 2009, 23, (9),4605-4611.
    55. Salehi, E.; Abedi, J.; Harding, T., Bio-oil from sawdust:pyrolysis of sawdust in a fixed-bed system. Energy & Fuels 2009,23, (7),3767-3772.
    56. Sonobe, T.; Worasuwannarak, N.; Pipatmanomai, S., Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Processing Technology 2008,89, (12),1371-1378.
    57. Li, C.-Z.; Nelson, P. F., Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor. Energy& Fuels 1996,10, (5),1083-1090.
    58. Liu, W.-J.; Zeng, F.-X.; Jiang, H.; Yu, H.-Q., Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresource Technology 2011,102, (3), 3471-3479.
    59. Yuan, S.; Chen, X.-l.; Li, W.-f.; Liu, H.-f.; Wang, F.-c., Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal. Bioresource Technology 2011,102, (21),10124-10130.
    60. Brebu, M.; Jakab, E.; Sakata, Y., Effect of flame retardants and Sb2O3 synergist on the thermal decomposition of high-impact polystyrene and on its debromination by ammonia treatment. Journal of Analytical and Applied Pyrolysis 2007,79, (1-2),346-352.
    61. Hall, W. J.; Mitan, N. M. M.; Bhaskar, T.; Muto, A.; Sakata, Y.; Williams, P. T., The co-pyrolysis of flame retarded high impact polystyrene and polyolefins. Journal of Analytical and Applied Pyrolysis 2007,80, (2),406-415.
    62. Jung, S.-H.; Kim, S.-J.; Kim, J.-S., Fast pyrolysis of a waste fraction of high impact polystyrene (HPS) containing brominated flame retardants in a fluidized bed reactor:The effects of various Ca-based additives (CaO, Ca(OH)2 and oyster shells) on the removal of bromine. Fuel 2012,95,(0),514-520.
    63. Jakab, E.; Uddin, M. A.; Bhaskar, T.; Sakata, Y, Thermal decomposition of flame-retarded high-impact polystyrene. Journal of Analytical and Applied Pyrolysis 2003,68-69, (0),83-99.
    64. Peil, S.; Seisel, S.; Schrems, O., FTIR-spectroscopic studies of polar stratospheric cloud model surfaces:Characterization of nitric acid hydrates and heterogeneous reactions involving N2O5 and HBr. Journal of Molecular Structure 1995,348, (0),449-452.
    65. Gomez, L.; Tran, H.; Jacquemart, D., Line mixing calculation in the v6 Q-branches of N2-broadened CH3Br at low temperatures. Journal of Molecular Spectroscopy 2009,256, (1), 35-40.
    66. Edreis, E. M. A.; Luo, G.; Li, A.; Chao, C.; Hu, H.; Zhang, S.; Gui, B.; Xiao, L.; Xu, K.; Zhang, P.; Yao, H., CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique. Bioresource Technology 2013,136, (0),595-603.
    67. Wang, Z.; Guo, Q.; Liu, X.; Cao, C., Low Temperature pyrolysis characteristics of oil sludge under various heating conditions. Energy & Fuels 2007,21, (2),957-962.
    68. Chanunpanich, N.; Ulman, A.; Strzhemechny, Y M.; Schwarz, S. A.; Janke, A.; Braun, H. G.; Kraztmuller, T., Surface modification of polyethylene through bromination. Langmuir 1999,15, (6),2089-2094.
    69. Majumder, P.; Paul, P.; Sengupta, P.; Bhattacharya, S., Formation of organopalladium complexes via C-Br and C-C bond activation. Application in C-C and C-N coupling reactions. Journal of Organometallic Chemistry 2013,736, (0),1-8.
    70. Undri, A.; Frediani, M.; Rosi, L.; Frediani, P., Reverse Polymerization of Waste Polystyrene through Microwave Assisted Pyrolysis. Journal of Analytical and Applied Pyrolysis 2013.2014, 105,35-42
    71. Kannan, P.; Biernacki, J. J.; Visco Jr, D. P.; Lambert, W., Kinetics of thermal decomposition of expandable polystyrene in different gaseous environments. Journal of Analytical and Applied Pyrolysis 2009,84, (2),139-144.
    72. Birch, A. M.; Groombridge, S.; Law, R.; Leach, A. G.; Mee, C. D.; Schramm, C., Rationally Designing safer anilines:The challenging case of 4-aminobiphenyls. Journal of Medicinal Chemistry 2012,55, (8),3923-3933.
    73. Vishnoi, S.; Agrawal, V.; Kasana, V. K., Synthesis and structure-activity relationships of substituted cinnamic acids and amide analogues:A new class of herbicides. Journal of Agricultural and Food Chemistry 2009,57, (8),3261-3265.
    74. Yazdanbakhsh, M. R.; Mohammadi, A.; Mohajerani, E.; Nemati, H.; Nataj, N. H.; Moheghi, A.; Naeemikhah, E., Novel azo disperse dyes derived from N-benzyl-N-ethyl-aniline:Synthesis, solvatochromic and optical properties. Journal of Molecular Liquids 2010,151, (2-3),107-112.
    75. Ahamad, T.; Alshehri, S. M., TG-FTIR-MS (Evolved Gas Analysis) of bidi tobacco powder during combustion and pyrolysis. Journal of Hazardous Materials 2012,199-200, (0),200-208.
    76. Feng, Y.; Jiang, X.; Chi, Y.; Li, X.; Zhu, H., Volatilization behavior of fluorine in fluoroborate residue during pyrolysis. Environmental Science & Technology 2011,46, (1),307-311.
    77. Brown, M. E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R.; Sempere, J.; Burnham, A.; Opfermann, J.; Strey, R.; Anderson, H. L.; Kemmler, A.; Keuleers, R.; Janssens, J.; Desseyn, H. O.; Li, C.-R.; Tang, T. B.; Roduit, B.; Malek, J.; Mitsuhashi, T., Computational aspects of kinetic analysis:Part A:The ICTAC kinetics project-data, methods and results. Thermochim Acta 2000, 355, (1-2),125-143.
    78. Jung, S.-H.; Kim, S.-J.; Kim, J.-S., The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile-butadiene-styrene using a fluidized bed reactor. Fuel Processing Technology 2013,116, (0),123-129.
    79. Grause, G.; Karakita, D.; Ishibashi, J.; Kameda, T.; Bhaskar, T.; Yoshioka, T., TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere 2011,55, (3),368-373.
    80. Hutson, N. D.; Attwood, B. C.; Scheckel, K. G., XAS and XPS Characterization of mercury binding on brominated activated carbon. Environmental Science & Technology 2007,41, (5), 1747-1752.
    81. Zhang, Y. C.; Tang, J. Y.; Zhou, W. D., Green hydrothermal synthesis and optical properties of cuprous bromide nanocrystals. Materials Chemistry and Physics 2008,108, (1),4-7.
    1. Huber, G. W.; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass:0 chemistry, catalysts, and engineering. Chemical Reviews 2006,106, (9),4044-4098.
    2. Czernik, S.; Bridgwater, A. V., Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 2004,18, (2),590-598.
    3. Edward L.Kunkes et al., Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel Classes. Science 2008,322,417.
    4. Mohan, D.; Pittman, C. U.; Steele, P. H., Pyrolysis of wood/biomass for bio-oil:A critical Review. Energy & Fuels 2006,20, (3),848-889.
    5. Tang, Z.; Lu, Q.; Zhang, Y.; Zhu, X.; Guo, Q., One Step bio-oil ppgrading through hydrotreatment, esterification, and cracking. Industrial & Engineering Chemistry Research 2009, 48, (15),6923-6929.
    6. Sipila, K.; Kuoppala, E.; Fagernas, L.; Oasmaa, A., Characterization of biomass-based flash pyrolysis oils. Biomass and Bioenergy 1998,14, (2),103-113.
    7. Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K., Prediction of heating values of biomass fuel from elemental composition. Analytica ChimicaActa 2005,544, (1-2),191-198.
    8. Edward, F., Catalytic hydrodeoxygenation. Applied Catalysis A:General 2000,199, (2), 147-190.
    9. Li, N.; Tompsett, G. A.; Huber, G. W., Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/Zirconium phosphate catalysts. ChemSusChem 2010,3, (10),1154-1157.
    10. Vispute, T. P.; Huber, G. W., Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chemistry 2009,11, (9),1433.
    11. de Miguel Mercader, F.; Groeneveld, M. J.; Kersten, S. R. A.; Geantet, C.; Toussaint, G.; Way, N. W. J.; Schaverien, C. J.; Hogendoorn, K. J. A., Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science 2011,4, (3),985.
    12. Zhao, H. Y.; Li, D.; Bui, P.; Oyama, S. T., Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A:General 2011,391, (1-2),305-310.
    13. Wang, W.; Yang, Y.; Luo, H.; Hu, T.; Liu, W., Amorphous Co-Mo-B catalyst with high activity for the hydrodeoxygenation of bio-oil. Catalysis Communications 2011,12, (6),436-440.
    14. Rao, T. V. M.; Clavero, M. M.; Makkee, M., Effective gasoline production strategies by catalytic cracking of rapeseed vegetable oil in refinery conditions. ChemSusChem 2010,3, (7), 807-810.
    15. Zhang, Z.; Wang, Q.; Tripathi, P.; Pittman Jr, C. U., Catalytic upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts. Green Chemistry 2011,13, (4),940.
    16. Rioche, C.; Kulkarni, S.; Meunier, F. C.; Breen, J. P.; Burch, R., Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Applied Catalysis B: Environmental 2005,61, (1-2),130-139.
    17. Czernik, S.; French, R.; Feik, C.; Chornet, E., Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial& Engineering Chemistry Research 2002,41, (17),4209-4215.
    18. Yu, W.; Tang, Y.; Mo, L.; Chen, P.; Lou, H.; Zheng, X., One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresource Technology 2011,102, (17),8241-8246.
    19. Tang, Y.; Yu, W.; Mo, L.; Lou, H.; Zheng, X., One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional Pt catalysts:A model reaction as novelroute for catalytic upgrading of fast pyrolysis bio-oil. Energy & Fuels 2008,22, (5),3484-3488.
    20. Mahfud, F. H.; Ghijsen, F.; Heeres, H. J., Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. Journal of Molecular Catalysis A:Chemical 2007,264, (1-2),227-236.
    21. Reuter, R.; Wegner, H. A., Synthesis and isomerization studies of cyclotrisazobiphenyl. Chemistry-A European Journal 2011,17, (10),2987-2995.
    22. Parks, D. J.; Parsons, W. H.; Colburn, R. W.; Meegalla, S. K.; Ballentine, S. K.; Hlig, C. R.; Qin, N.; Liu, Y.; Hutchinson, T. L.; Lubin, M. L.; Stone, D. J.; Baker, J. F.; Schneider, C. R.; Ma, J.; Damiano, B. P.; Flores, C. M.; Player, M. R., Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. Journal of Medicinal Chemistry 2010,54, (1),233-247.
    23. Marvania, B.; Lee, P.-C.; Chaniyara, R.; Dong, H.; Suman, S.; Kakadiya, R.; Chou, T.-C.; Lee, T.-C.; Shah, A.; Su, T.-L., Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorganic Medicinal Chemistry 2011,19, (6),1987-1998.
    24. Chanda, K.; Maiti, B.; Chung, W.-S.; Sun, C.-M., Novel approach towards 2-substituted aminobenzimidazoles on imidazolium ion tag under focused microwave irradiation. Tetrahedron 2011,67, (34),6214-6220.
    25. Trost, B. M.; O'Boyle, B. M.; Torres, W.; Ameriks, M. K., Development of a flexible Strategy towards FR900482 and the mitomycins. Chemistry-A European Journal 2011,17, (28), 7890-7903.
    26. Hu, M.; Li, L.; Wu, H.; Su, Y.; Yang, P.-Y.; Uttamchandani, M.; Xu, Q.-H.; Yao, S. Q., Multicolor, One-and two-photon imaging of enzymatic activities in live cells with fluorescently quenched activity-based probes (qABPs). Journal of the American Chemical Society 2011,133, (31),12009-12020.
    27. Clemmensen, E., Chemische Berichte 1913,46,1837.
    28. Di Vona, M. L.; Floris, B.; Luchetti, L.; Rosnati, V., Single electron transfers in zinc-promoted reactions. The mechanisms of the clemmensen reduction and related reactions. Tetrahedron Letters 1990,31, (42),6081-6084.
    29. Xu, S.; Toyama, T.; Nakamura, J.; Arimoto, H., One-pot reductive cleavage of exo-olefin to methylene with a mild ozonolysis-Clemmensen reduction sequence. Tetrahedron Letters 2010,51, (34),4534-4537.
    30. Tee, Y.-H.; Grulke, E.; Bhattacharyya, D., Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Industrial& Engineering Chemistry Research 2005, 44,(18),7062-7070.
    31. Scholze, B.; Meier, D., Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. Journal of Analytical and Applied Pyrolysis 2001,60, (1),41-54.
    32. Peralta, M. A.; Sooknoi, T.; Danuthai, T.; Resasco, D. E., Deoxygenation of benzaldehyde over CsNaX zeolites. Journal of Molecular Catalysis A:Chemical 2009,312, (1-2),78-86.
    33. Ausavasukhi, A.; Sooknoi, T.; Resasco, D. E., Catalytic deoxygenation of benzaldehyde over gallium-modified ZSM-5 zeolite. Journal of Catalysis 2009,268, (1),68-78.
    34. Okamoto, M.; Hirao, T.; Yamaai, T., Polymers as novel modifiers for supported metal catalyst in hydrogenation of benzaldehydes. Journal of Catalysis 2010,276, (2),423-428.
    35. Saadi, A.; Merabti, R.; Rassoul, Z.; Bettahar, M. M., Benzaldehyde hydrogenation over supported nickel catalysts. Journal of Molecular Catalysis A:Chemical 2006,253, (1-2),79-85.
    36. Radhakrishan, R.; Do, D. M.; Jaenicke, S.; Sasson, Y.; Chuah, G.-K., Potassium phosphate as a solid base catalyst for the catalytic transfer hydrogenation of aldehydes and Ketones. ACS Catalysis 2011,1, (11),1631-1636.
    37. M. B. Smith and J. March, March's Advanced Organic Chemistry,5th ed,. March's Advanced Organic Chemistry,5th ed, John Wiley & Sons 2001.
    38. Fahmi, R.; Bridgwater, A. V.; Donnison, I.; Yates, N.; Jones, J. M., The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 2008,87, (7), 1230-1240.
    39. Kosa, M.; Ben, H.; Theliander, H.; Ragauskas, A. J., Pyrolysis oils from CO2 precipitated Kraft lignin. Green Chemistry 2011,13, (11),3196.
    40. DeSisto, W. J.; Hill, N.; Beis, S. H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-H.; Stemmler, E. A.; Wheeler, M. C.; Frederick, B. G.; van Heiningen, A., Fast pyrolysis of pine sawdust in a fluidized-bed Reactor. Energy & Fuels 2010,24, (4),2642-2651.
    41. Mullen, C. A.; Strahan, G. D.; Boateng, A. A., Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy. Energy & Fuels 2009,23, (5),2707-2718.
    42. Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M., The catalytic valorization of lignin for the production of renewable Chemicals. Chemical Reviews 2010,110, (6), 3552-3599.
    43. Patwardhan, P. R.; Brown, R. C.; Shanks, B. H., Understanding the fast pyrolysis of lignin. ChemSusChem 2011,4, (11),1629-1636.
    44. Calvo-Flores, F. G.; Dobado, J. A., Lignin as renewable raw material. ChemSusChem 2010,3, (11),1227-1235.
    45. Petrus, L.; Noordermeer, M. A., Biomass to biofuels, a chemical perspective. Green Chemistry 2006,8, (10),861.
    46. Sergeev, A. G.; Hartwig, J. F., Selective, Nickel-catalyzed hydrogenolysis of aryl ethers. Science 2011,332, (6028),439-443.
    47. Ryden, M.; Johansson, M.; Lyngfelt, A.; Mattisson, T., NiO supported on Mg-ZrO2 as oxygen carrier for chemical-looping combustion and chemical-looping reforming. Energy & Environmental Science 2009,2, (9),970-981.
    48. Matsumura, Y.; Ishibe, H., High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts. Applied Catalysis B:Environmental 2009,91, (1-2),524-532.
    49. Lee, Y.; Hoveyda, A. H., Efficient Boron-Copper Additions to Aryl-substituted alkenes promoted by NHC-based catalysts. Enantioselective Cu-catalyzed hydroboration reactions. Journal of the American Chemical Society 2009,131, (9),3160-3161.
    50. Roy, P.; Periasamy, A. P.; Liang, C.-T.; Chang, H.-T., Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environmental Science& Technology 2013,47, (12),6688-6695.
    51. Xu, F.; Deng, S.; Xu, J.; Zhang, W.; Wu, M.; Wang, B.; Huang, J.; Yu, G., Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environmental Science & Technology 2012,46, (8),4576-4582.
    52. Janas, J.; Gurgul, J.; Socha, R. P.; Dzwigaj, S., Effect of Cu content on the catalytic activity of CuSiBEA zeolite in the SCR of NO by ethanol:Nature of the copper species. Applied Catalysis B:Environmental 2009,91, (1-2),217-224.
    53. Lin, Y.-C.; Huber, G. W., The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy & Environmental Science 2009,2, (1),68-80.
    54. Zheng, M.-Y; Wang, A.-Q.; Ji, N.; Pang, J.-F.; Wang, X.-D.; Zhang, T., Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 2010,3, (1),63-66.
    55. Kunkes, E. L.; Simonetti, D. A.; West, R. M.; Serrano-Ruiz, J. C.; Gartner, C. A.; Dumesic, J. A., Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 2008,322, (5900),417-421.
    56. Fan, Y.; Xiao, H.; Shi, G.; Liu, H.; Bao, X., A novel approach for modulating the morphology of supported metal nanoparticles in hydrodesulfurization catalysts. Energy & Environmental Science 2011,4, (2),572.
    57. Landong, L.; Jixin, C.; Shujuan, Z.; Fuxiang, Z.; Naijia, G.; Tianyou, W.; Shuliang, L., Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in-situ synthesized Cu-ZSM-5/cordierite. Environmental Science & Technology 2005,39, (8),2841-2847.
    58. Chang, S. H.; Yeh, J. W.; Chein, H. M.; Hsu, L. Y, PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon. Environmental Science & Technology 2008,42, (15),5727-5733.
    59. Skutil, K.; Czechowicz, D.; Taniewski, M., Nitrogen-rich natural gases as a potential Direct feedstock for some novel methane transformation processes. Part 2:Non-oxidative processes. Energy& Fuels 2009,23, (9),4449-4459.
    60. Zhang, H.; Xiao, R.; Wang, D.; Zhong, Z.; Song, M.; Pan, Q.; He, G., Catalytic fast Pyrolysis of biomass in a fluidized bed with fresh and spent fluidized catalytic cracking (FCC) catalysts. Energy& Fuels 2009,23, (12),6199-6206.
    61. Singh, S. K.; Srinivasa Reddy, M.; Mangle, M.; Ravi Ganesh, K., Cu(Ⅰ)-mediated deoxygenation of N-oxides to amines. Tetrahedron 2007,63, (1),126-130.
    62. Cho, J.; Davis, J. M.; Huber, G. W., The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. ChemSusChem 2010,3, (10),1162-1165.
    63. Wang, P.; Zhan, S.; Yu, H.; Xue, X.; Hong, N., The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresource Technology 2010,101, (9),3236-3241.
    64. Amen-Chen, C.; Pakdel, H.; Roy, C., Production of monomeric phenols by thermochemical conversion of biomass:a review. Bioresource Technology 2001,79, (3),277-299.
    65. Tsai, W.; Lee, M.; Chang, Y, Fast pyrolysis of rice husk:Product yields and compositions. Bioresource Technology 2007,98, (1),22-28.
    66. Azeez, A. M.; Meier, D.; Odermatt, J. r.; Willner, T., Fast pyrolysis of african and european lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy& Fuels 2010,24, (3),2078-2085.
    67. Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F., Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis 2007,249, (2),185-194.
    1. Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences 2009,106, (6), 1704-1709.
    2. Woolf, D.; Amonette, J. E.; Street-Perrott, F. A.; Lehmann, J.; Joseph, S., Sustainable biochar to mitigate global climate change. Nature Communications 2010,1,56.
    3. Broda, M.; Kierzkowska, A. M.; Muller, C. R., Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic ca-Based CO2 sorbents. Environmental Science & Technology 2012,46, (19),10849-10856.
    4. Allen, M. R.; Frame, D. J.; Huntingford, C.; Jones, C. D.; Lowe, J. A.; Meinshausen, M.; Meinshausen, N., Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009,458, (7242),1163-1166.
    5. Wang, S.; Yan, S.; Ma, X.; Gong, J., Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy & Environmental Science 2011,4, (10),3805-3819.
    6. Jimenez, V.; Ramirez-Lucas, A.; Diaz, J. A.; Sanchez, P.; Romero, A., CO2 capture in different carbon materials. Environmental Science & Technology 2012,46, (13),7407-7414.
    7. Wang, J.; Long, D.; Zhou, H.; Chen, Q.; Liu, X.; Ling, L., Surfactant promoted solid amine sorbents for CO2 capture. Energy & Environmental Science 2012,5, (2),5742-5749.
    8. Valverde, J. M.; Perejon, A.; Perez-Maqueda, L. A., Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions. Environmental Science & Technology 2012, 46, (11),6401-6408.
    9. Feng, B.; An, H.; Tan, E., Screening of CO2 adsorbing materials for zero emission power generation systems. Energy & Fuels 2007,21, (2),426-434.
    10. Bhagiyalakshmi, M.; Lee, J. Y.; Jang, H. T., Synthesis of mesoporous magnesium oxide:Its application to CO2 chemisorption. International Journal of Greenhouse Gas Control 2010,4, (1), 51-56.
    11. Meis, N. N. A. H.; Bitter, J. H.; de Jong, K. P., Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial & Engineering Chemistry Research 2009, 49, (3),1229-1235.
    12. Bian, S.-W.; Baltrusaitis, J.; Galhotra, P.; Grassian, V. H., A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. Journal of Materials Chemistry 2010,20, (39), 8705-8710.
    13. Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A., Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2009,2, (1), 18-45.
    14. de Villiers, S.; Dickson, J. A. D.; Ellam, R. M., The composition of the continental river weathering flux deduced from seawater Mg isotopes. Chemical Geology 2005,216, (1-2), 133-142.
    15. Huang, Q.; Lu, G.; Wang, J.; Yu, J., Thermal decomposition mechanisms of MgCl2-6H2O and MgC12-H2O. Journal of Analytical and Applied Pyrolysis 2011,91, (1),159-164.
    16. Liu, W.-J.; Tian, K.; Jiang, H.; Zhang, X.-S.; Ding, H.-S.; Yu, H.-Q., Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass:Take copper (Cu) as an example. Environmental Science & Technology 2012,46,7849-7856.
    17. Liu, W.-J.; Zeng, F.-X.; Jiang, H.; Zhang, X.-S.; Yu, H.-Q., Techno-economic evaluation of the integrated biosorption-pyrolysis technology for lead (Pb) recovery from aqueous solution. Bioresource Technology 2011,102, (10),6260-6265.
    18. F. Rouquerol, J. R., K. Sing, Adsorption by Powders and Porous Solids, Academic Press, London,1999.
    19. Valente, J. S.; Tzompantzi, F.; Prince, J.; Cortez, J. G. H.; Gomez, R., Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides. Applied Catalysis B:Environmental 2009,90, (3-4),330-338.
    20. Dawson, R.; Stockel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I., Microporous organic polymers for carbon dioxide capture. Energy & Environmental Science 2011,4, (10),4239-4245.
    21. Xiao, G.; Singh, R.; Chaffee, A.; Webley, P., Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures. International Journal of Greenhouse Gas Control 2011,5, (4),634-639.
    22. Lee, S. C.; Chae, H. J.; Lee, S. J.; Choi, B. Y.; Yi, C. K.; Lee, J. B.; Ryu, C. K.; Kim, J. C., Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low Temperatures. Environmental Science & Technology 2008,42, (8),2736-2741.
    23. Qi, G.; Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A.-H. A.; Li, W.; Jones, C. W.; Giannelis, E. P., High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science 2011,4, (2), 444-452.
    24. Sevilla, M.; Fuertes, A. B., Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science 2011,4, (5),1765-1771.
    25. Mason, J. A.; Sumida, K.; Herm, Z. R.; Krishna, R.; Long, J. R., Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science 2011,4, (8),3030-3040.
    26. Wei, H.; Deng, S.; Hu, B.; Chen, Z.; Wang, B.; Huang, J.; Yu, G., Granular bamboo-derived activated carbon for high CO2 adsorption:The dominant role of narrow micropores. ChemSusChem 2012,5, (12),2354-2360.
    27. Li, L.; Wen, X.; Fu, X.; Wang, F.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y, MgO/Al2O3 sorbent for CO2 capture. Energy & Fuels 2010,24, (10),5773-5780.
    28. Bhagiyalakshmi, M.; Hemalatha, P.; Ganesh, M.; Mei, P. M.; Jang, H. T., A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel 2011,90, (4),1662-1667.
    29. Martavaltzi, C. S.; Lemonidou, A. A., Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous and Mesoporous Materials 2008,110, (1), 119-127.
    30. Cui, S.; Cheng, W.; Shen, X.; Fan, M.; Russell, A.; Wu, Z.; Yi, X., Mesoporous amine-modified SiO2 aerogel:a potential CO2 sorbent. Energy & Environmental Science 2011,4, (6),2070-2074.
    31. Li, L.; King, D. L.; Nie, Z.; Li, X. S.; Howard, C., MgAl2O4 spinel-stabilized calcium oxide absorbents with improved durability for high-temperature CO2 capture. Energy& Fuels 2010,24, (6),3698-3703.
    32. Thomas E. Rufford, D. H.-J., Zhonghua Zhu and Gao Qing Lu A comparative study of chemical treatment by FeCl3, MgCl2, and ZnCl2 on microstructure, surface chemistry, and double-layercapacitance of carbons from waste biomass. Journal of Materials Research 2010,25, 1451-1459.
    33. Morishita, T.; Soneda, Y.; Tsumura, T.; Inagaki, M., Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon 2006, 44, (12),2360-2367.
    34. Morishita, T.; Tsumura, T.; Toyoda, M.; Przepiorski, J.; Morawski, A. W.; Konno, H.; Inagaki, M., A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 2010, 48, (10),2690-2707.
    35. Konno, H.; Onishi, H.; Yoshizawa, N.; Azumi, K., MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes. Journal of Power Sources 2010,195, (2),667-673.
    36. Xing, W.; Liu, C.; Zhou, Z.; Zhang, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Gao, H.; Wang, G.; Qiao, S. Z., Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy & Environmental Science 2012,5, (6),7323-7327.
    37. Zhang, Z.; Xu, M.; Wang, H.; Li, Z., Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia. Chemical Engineering Journal 2010,160, (2), 571-577.
    38. Zhou, J.-H.; Sui, Z.-J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y.-C.; Yuan, W.-K., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007,45, (4), 785-796.
    39. Wakiya, N.; Kuroyanagi, K.; Xuan, Y.; Shinozaki, K.; Mizutani, N., An XPS study of the nucleation and growth behavior of an epitaxial Pb(Zr,Ti)O3/MgO(100) thin film prepared by MOCVD. Thin Solid Films 2000,372, (1-2),156-162.
    40. Christopher D. Daub, G. N. P., D. B. Jack, and A. K. Sallabi, Monte Carlo simulations of the adsorption of CO2 on the MgO(100) surface Journal of Chemical Physics 2006,124,114706.
    41. Jensen, M. B.; Pettersson, L. G. M.; Swang, O.; Olsbye, U., CO2 sorption on MgO and CaO surfaces:A comparative quantum chemical cluster study. The Journal of Physical Chemistry B 2005,109, (35),16774-16781.
    42. Miao, S., Investigation on NIR, coating mechanism of PS-b-PAA coated calcium carbonate particulate. Applied Surface Science 2003,220, (1-4),298-303.
    43. Zhou, C.-H.; Xia, X.; Lin, C.-X.; Tong, D.-S.; Beltramini, J., Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews 2011,40, (11), 5588.
    44. Hara, M., Biomass conversion by a solid acid catalyst. Energy & Environmental Science 2010,3, (5),601.
    45. Taarning, E.; Osmundsen, C. M.; Yang, X.; Voss, B.; Andersen, S. I.; Christensen, C. H., Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science 2011,4, (3),793.
    46. Tanabe, K.; Holderich, W. F., Industrial application of solid acid-base catalysts. Applied Catalysis A:General 1999,181, (2),399-434.
    47. Takagaki, A.; Tagusagawa, C.; Hayashi, S.; Hara, M.; Domen, K., Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy & Environmental Science 2010,3, (1),82.
    48. Nakajima, K.; Hara, M., Amorphous carbon with SO3H groups as a solid br(?)nsted acid catalyst. ACS Catalysis 2012,2, (7),1296-1304.
    49. Xing, R.; Liu, N.; Liu, Y.; Wu, H.; Jiang, Y.; Chen, L.; He, M.; Wu, P., Novel solid acid catalysts:Sulfonic acid group-functionalized mesostructured polymers. Advanced Functional Materials 2007,17, (14),2455-2461.
    50. Liu, F.; Kong, W.; Qi, C.; Zhu, L.; Xiao, F.-S., Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catalysis 2012,2, (4),565-572.
    51. Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa, S., Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Advanced Materials 2011,23, (29),3294-3297.
    52. Tagusagawa, C.; Takagaki, A.; Iguchi, A.; Takanabe, K.; Kondo, J. N.; Ebitani, K.; Hayashi, S.; Tatsumi, T.; Domen, K., Highly active mesoporous Nb-W oxide solid-acid catalyst. Angewandte Chemie International Edition 2010,49, (6),1128-1132.
    53. Li, W.; Jiang, Z.; Ma, F.; Su, F.; Chen, L.; Zhang, S.; Guo, Y., Design of mesoporous SO42-/ZrO2-SiO2(Et) hybrid material as an efficient and reusable heterogeneous acid catalyst for biodiesel production. Green Chemistry 2010,12, (12),2135.
    54. Giirbuz, E. I.; Gallo, J. M. R.; Alonso, D. M.; Wettstein, S. G.; Lim, W. Y.; Dumesic, J. A., Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angewandte Chemie International Edition 2013,52, (4),1270-1274
    55. Hu, X.; Lievens, C.; Li, C.-Z., Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery. ChemSusChem 2012,5, (8),1427-1434.
    56. Lange, J.-P.; vande Graaf, W. D.; Haan, R. J., Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem 2009,2, (5),437-441.
    57. Wang, J.; Ren, J.; Liu, X.; Xi, J.; Xia, Q.; Zu, Y.; Lu, G.; Wang, Y., Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chemistry 2012,14, (9), 2506-2512.
    58. Shuai, L.; Pan, X., Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy& Environmental Science 2012,5, (5),6889.
    59. Arancon, R. A.; Barros Jr, H. R.; Balu, A. M.; Vargas, C.; Luque, R., Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification/transesterification of waste oils. Green Chemistry 2011,13, (11),3162.
    60. Gill, C. S.; Price, B. A.; Jones, C. W., Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. Journal of Catalysis 2007,251, (1),145-152.
    61. Lai, D.-m.; Deng, L.; Guo, Q.-x.; Fu, Y., Hydrolysis of biomass by magnetic solid acid. Energy & Environmental Science 2011,4, (9),3552.
    62. Feyen, M.; Weidenthaler, C.; Schuth, F.; Lu, A.-H., Synthesis of structurally stable colloidal composites as magnetically recyclable acid catalysts. Chemistry of Materials 2010,22, (9), 2955-2961.
    63. Zillillah, Z.; Tan, G.; Li, Z., Highly Active, Stable, and recyclable magnetic nano-size solid acid catalysts:Efficient esterification of free fatty acid in grease to produce biodiesel. Green Chemistry 2012,14, (11),3077-3086.
    64. Zafiropoulos, N. A.; Ngo, H. L.; Foglia, T. A.; Samulski, E. T.; Lin, W, Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks. Chemical Communications 2007,0, (35), 3670-3672.
    65. Jones, C. W.; Tsuji, K.; Davis, M. E., Organic-functionalized molecular sieves as shape-selective catalysts. Nature 1998,393, (6680),52-54.
    66. Eberts T J, Sample R H, Glick M R, et al. A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clinical Chemistry,1979,25(8):1440-1443..
    67. Tong, D. S.; Xia, X.; Luo, X. P.; Wu, L. M.; Lin, C. X.; Yu, W. H.; Zhou, C. H.; Zhong, Z. K., Catalytic hydrolysis of cellulose to reducing sugar over acid-activated montmorillonite catalysts. Applied Clay Science 2013,74,3-9.
    68. Tagusagawa, C.; Takagaki, A.; Iguchi, A.; Takanabe, K.; Kondo, J. N.; Ebitani, K.; Tatsumi, T.; Domen, K., Synthesis and characterization of mesoporous Ta-W oxides as strong solid acid catalysts. Chemistry of Materials 2010,22, (10),3072-3078.
    69. Liu, Z.; Zhang, F.-S., Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresource Technology 2010,101, (7), 2562-2564.
    70. Maldonado-H6dar, F. J.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y; Yamada, Y, Catalytic graphitization of carbon aerogels by transition metals. Langmuir 2000,16, (9), 4367-4373.
    71. Lim, S.-F.; Zheng, Y.-M.; Zou, S.-W.; Chen, J. P., Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology 2008,42, (7),2551-2556.
    72. Toupin, M.; Belanger, D., Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir 2008,24, (5),1910-1917.
    73. Liu, F.; Sun, J.; Zhu, L.; Meng, X.; Qi, C.; Xiao, F.-S., Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry 2012,22, (12),5495.
    74. Macia-Agullo, J. A.; Sevilla, M.; Diez, M. A.; Fuertes, A. B., Synthesis of carbon-based Solid acid microspheres and their application to the production of biodiesel. ChemSusChem 2010,3, (12),1352-1354.
    75. Li, X.; Jiang, Y; Shuai, L.; Wang, L.; Meng, L.; Mu, X., Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. Journal of Materials Chemistry 2012,22, (4),1283.
    76. Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L., Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry 2010,12, (4),696.
    77. Lam, E.; Majid, E.; Leung, A. C. W.; Chong, J. H.; Mahmoud, K. A.; Luong, J. H. T., Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts. ChemSusChem 2011,4, (4),535-541.
    78. Agirrezabal-Telleria, I.; Requies, J.; Guemez, M. B.; Arias, P. L., Furfural production from xylose + glucose feedings and simultaneous N2-stripping. Green Chemistry 2012,14, (11), 3132-3140.
    79. Simon, P.; Gogotsi, Y, Materials for electrochemical capacitors. Nature Materials 2008,7, (11),845-854.
    80. Aricd, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 2005,4, (5), 366-377.
    81. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009,38, (9),2520-2531.
    82. Simon, P.; Gogotsi, Y, Materials for electrochemical capacitors. Nature Materials 2008,7, (11),845-854.
    83. Miller, J. R.; Simon, P., Electrochemical capacitors for energy management. Science Magazine 2008,321, (5889),651-652.
    84. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006,313, (5794), 1760-1763.
    85. Zhao, L.; Fan, L.-Z.; Zhou, M.-Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M.-M., Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Advanced Materials 2010,22, (45),5202-5206.
    86. Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D., Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angewandte Chemie International Edition 2011,50, (37),8753-8757.
    87. Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y; Xie, S.; Tong, Y, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy & Environmental Science 2011,4, (8),2915-2921.
    88. Xie, K.; Qin, X.; Wang, X.; Wang, Y.; Tao, H.; Wu, Q.; Yang, L.; Hu, Z., Carbon nanocages as supercapacitor electrode materials. Advanced Materials 2012,24, (3),347-352.
    89. Wang, L.; Mu, G.; Tian, C.; Sun, L.; Zhou, W.; Yu, P.; Yin, J.; Fu, H., Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. ChemSusChem 2013,6, (5),880-889.
    90. Noked, M.; Okashy, S.; Zimrin, T.; Aurbach, D., Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors. Angewandte Chemie International Edition 2012,51, (7),1568-1571.
    91. Lota, G.; Fic, K.; Frackowiak, E., Carbon nanotubes and their composites in electrochemical applications. Energy & Environmental Science 2011,4, (5),1592-1605.
    92. Weng, Z.; Su, Y; Wang, D.-W; Li, F.; Du, J.; Cheng, H.-M., Graphene-cellulose paper flexible supercapacitors. Advanced Energy Materials 2011,1, (5),917-922.
    93. Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J., Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore Volume for high-performance supercapacitor. Advanced Materials 2012,24, (41),5610-5616.
    94. Bordjiba, T.; Mohamedi, M.; Dao, L. H., New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Advanced Materials 2008,20, (4),815-819.
    95. Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J., Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Advanced Functional Materials 2009,19, (3), 438-447.
    96. Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M., Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 2011,5, (5),4112-4117.
    97. Hulicova-Jurcakova, D.; Puziy, A. M.; Poddubnaya, O. I.; Suarez-Garcia, F.; Tascon, J. M.; Lu, G. Q., Highly stable performance of supercapacitors from phosphorus-enriched carbons. Journal of the American Chemical Society 2009,131, (14),5026-5027.
    98. Guo, H.; Gao, Q., Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. Journal of Power Sources 2009,186, (2),551-556.
    99. Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z. H.; Lu, G. Q., Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Advanced Functional Materials 2009,19, (11),1800-1809.
    100. Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H., Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012,6, (8),7092-7102.
    101. Kim, N. D.; Kim, W.; Joo, J. B.; Oh, S.; Kim, P.; Kim, Y; Yi, J., Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. Journal of Power Sources 2008,180, (1),671-675.
    102. Hulicova, D.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kodama, M., Supercapacitors prepared from melamine-based carbon. Chemistry of Materials 2005,17, (5),1241-1247.
    103. Beguin, F.; Szostak, K.; Lota, G.; Frackowiak, E., A Self-Supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Advanced Materials 2005,17, (19),2380-2384.
    104.Zhong, M.; Kim, E. K.; McGann, J. P.; Chun, S.-E.; Whitacre, J. F.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T., Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. Journal of the American Chemical Society 2012,134, (36),14846-14857.
    105. Hu, B.; Wang, K.; Wu, L.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M., Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials 2010,22, (7),813-828.
    106. Iamchaturapatr, J.; Yi, S. W.; Rhee, J. S., Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecological Engineering 2007,29, (3),287-293.
    107. Liu, W.-J.; Zeng, F.-X.; Jiang, H.; Yu, H.-Q., Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresource Technology 2011,102, (3), 3471-3479.
    108. Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Advanced Functional Materials 2012,22, (12),2632-2641.
    109. Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X. W., Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Advanced Energy Materials 2012,2, (10), 1188-1192.
    110. Huber, G. W; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews 2006,106, (9),4044-4098.
    111. Armandi, M.; Bonelli, B.; Geobaldo, F.; Garrone, E., Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous and Mesoporous Materials 2010, 132, (3),414-420.
    112. Wang, J.; Kaskel, S., KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry 2012,22, (45),23710-23725.
    113. Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X.; Xu, Z.; Wang, H.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D., Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Advanced Energy Materials 2012,2, (4),431-437.
    114. Pollak, E.; Salitra, G.; Soffer, A.; Aurbach, D., On the reaction of oxygen with nitrogen-containing and nitrogen-free carbons. Carbon 2006,44, (15),3302-3307.
    115. Paraknowitsch, J. P.; Thomas, A., Doping carbons beyond nitrogen:an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science 2013.
    116. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K., Mesopore-modifled zeolites:preparation, characterization, and applications. Chemical Reviews 2006,106, (3),896-910.
    117. Qie, L.; Chen, W.; Xu, H.; Xiong, X.; Jiang, Y; Zou, F.; Hu, X.; Xin, Y.; Zhang, Z.; Huang, Y, Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy & Environmental Science 2013,10.1039/c3ee41638k
    118. Zhao, Q.; Wagner, H. D., Raman spectroscopy of carbon-nanotube-based composites. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences 2004,362, (1824),2407-2424.
    119. Ferrari, A. C.; Robertson, J., Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences 2004,362, (1824), 2477-2512.
    120. Ferrari, A.; Robertson, J., Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 2001,64, (7),075414.
    121. Raymundo-Pinero, E.; Leroux, F.; Beguin, F., A High-Performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials 2006,18, (14),1877-1882.
    122. Raymundo-Pinero, E.; Cadek, M.; Beguin, F., Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Advanced Functional Materials 2009,19, (7),1032-1039.
    123. Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G., Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Advanced Energy Materials 2011,1, (3),356-361.
    124. Frackowiak, E., Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics 2007,9, (15),1774-1785.
    125. B. E. Conway Electrochemical Supercapacitors, Vol.1, Kluwer Academic/Plenum Publishers, New York, USA 1999.
    126.Kim, Y. J.; Abe, Y.; Yanagiura, T.; Park, K. C.; Shimizu, M.; Iwazaki, T.; Nakagawa, S.; Endo, M.; Dresselhaus, M. S., Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 2007,45, (10),2116-2125.
    127. Beguin, F.; Szostak, K.; Lota, G.; Frackowiak, E., A Self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Advanced Materials 2005,17, (19),2380-2384.
    128. Lota, G.; Lota, K.; Frackowiak, E., Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochemistry Communications 2007,9, (7),1828-1832.
    129. Frackowiak, E.; Lota, G.; Machnikowski, J.; Vix-Guterl, C.; B6guin, F., Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim. Acta 2006,51, (11),2209-2214.
    130. Li, W.; Chen, D.; Li, Z.; Shi, Y.; Wan, Y; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z., Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochemistry Communications 2007,9, (4),569-573.
    131. Su, F.; Poh, C. K.; Chen, J. S.; Xu, G.; Wang, D.; Li, Q.; Lin, J.; Lou, X. W., Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy & Environmental Science 2011,4, (3),717-724.
    132. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Advanced Functional Materials 2013,23, (18),2322-2328.
    133. Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X., Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010,4, (5),2822-2830.
    134. Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S., Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive Behavior. ACS Nano 2010,4, (7),4247-4255.
    135. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., Carbon-based supercapacitors produced by activation of graphene. Science 2011,332, (6037),1537-1541.
    136. Liu, C.; Li, F.; Ma, L.-P.; Cheng, H.-M., Advanced materials for energy storage. Advanced Materials 2010,22, (8), E28-E62.
    137. Lin, Y.-H.; Wei, T.-Y; Chien, H.-C.; Lu, S.-Y, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material. Advanced Energy Materials 2011,1, (5), 901-907.
    138. Wang, L.; Ye, Y.; Lu, X.; Wen, Z.; Li, Z.; Hou, H.; Song, Y, Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Scientific Reports2013,3.
    139. Li, X.; Rong, J.; Wei, B., Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 2010,4, (10),6039-6049.
    140. Ania, C. O.; Khomenko, V.; Raymundo-Pifiero, E.; Parra, J. B.; Beguin, F., The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Advanced Functional Materials 2007,17, (11),1828-1836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700