用户名: 密码: 验证码:
吉林省不同年代育成大豆品种氮肥利用特性变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验通过对不同年代育成的21个大豆品种不同冠层的植株氮含量、叶片光合特性、植株生物量和产量进行研究,旨在明确大豆遗传改良过程中氮肥利用特性的变化及与产量形成的关系,并探讨氮素光合效率作为评估氮肥利用效率指标的可行性,为以提高氮肥利用效率为目标的大豆生理机制的研究提供方向,进而为大豆氮高效育种和合理施肥的高产栽培技术提供理论依据。
     1、随着大豆品种的遗传改良和产量提高,除R4期植株中上层叶片氮含量与品种育成年代呈不显著负相关,其余时期大豆植株叶片氮含量,茎及叶柄氮含量和荚及籽粒氮含量均明显增加了。研究结果表明,R4期作为大豆营养和生殖生长并进的关键时期,现代品种叶片中氮大量向荚及籽粒转移可能是导致中上层叶片氮含量随年代变化呈下降趋势的一个原因。
     2、在R4期中层叶片氮含量与产量具有显著负相关关系,R4期中上层和R6期的中层荚及籽粒氮含量与产量具有显著正相关关系。研究结果说明,R2期氮素积累对产量形成的作用不大,R4期叶片中的氮向荚及籽粒的转移率可能与高产具有密切相关性,即R4期高的氮素转运及利用能力是高产的关键。
     3、在R2期和R4期不同冠层叶片净光合速率均与品种育成年代均达显著或极显著水平正相关,但R6期的相关性未达显著水平。与净光合速率变化一致,叶片气孔导度和蒸腾速率也随品种育成年代推进有不同程度的增加,而叶片胞间CO2浓度与品种育成年代呈负相关变化,但在3个生育时期3个指标与育成年代的相关均未达显著水平。R2期、R4期和R6期中上层叶片净光合速率与产量均具有显著的正相关关系,因此将此3个时期的中上层叶片作为高产品种的选择指标均具有可靠性。在R4期叶片净光合速率与产量关系最为密切,说明R4期是影响产量形成的关键时期。
     4、在不同年代育成大豆品种,R2期至R6期植株冠层叶片、茎及叶柄和荚及籽粒生物量均随年代推进而增加,其中R4期和R6期中上层叶片、茎及叶柄和荚及籽粒生物量与育成年代呈显著正相关。说明在R4期和R6期现代品种植株比早期品种积累了更多的干物质。研究表明,产量的提高与植株生物量的增加显著相关,而且随生育期的推进,这种相关关系越来越明显,从R4期开始大豆品种植株生物量对产量形成的作用已较为明显,而且越到生育后期植株生物量与产量的相关程度越密切,到R6期几乎全株各器官生物量与产量均有显著正相关关系,特别是R4期和R6期中上层叶片和叶柄的生物量与产量相关最为密切,可作为高产品种的选育指标。
     5、关于植株全氮含量、叶片净光合速率和单株生物量关系的研究表明,无论现代还是早期品种,植株全氮含量与叶片净光合速率均具有极显著或显著的正相关关系,且现代品种的相关程度高于早期品种;叶片净光合速率对单株生物量具有决定作用,且随生育期推进这种作用越加明显,而且现代品种的作用明显高于早期品种。植株全氮含量对单株生物量影响表现为早期品种随生育期推进作用越来越弱,而现代品种随生育期推进作用越来越强,说明,R6期大豆氮素积累能力是提高叶片光合作用、增加植株生物量和产量的关键因素。
     6、在R4期,大豆3层叶片氮素光合效率与氮肥农学利用效率均呈极显著正相关关系,中上层的叶片氮利用效率和中层茎及叶柄氮利用效率与氮肥农学利用效率呈极显著或显著的正相关关系,在R6期,大豆3层荚及籽粒氮利用效率与氮肥农学效率均达显著正相关关系,中层叶片氮利用效率和茎及叶柄氮利用效率与氮肥农学效率也呈显著正相关关系。以R4期叶片氮素光合效率与氮肥农学利用效率的相关性最为密切,可将R4期大豆全株叶片氮素光合效率作为氮高效品种筛选的一个指标。
     7、从R2期到R6期,随氮水平的变化,4个大豆品种的生理特性和产量均表现为低氮促进,高氮抑制的先增加后降低的单峰曲线变化。相近年代育成的不同氮素光合效率品种的比较表明,氮素光合效率高的品种的根系活力、叶片硝酸还原酶活性、叶片净光合速率、单株干物重等指标均在中、低氮(N1-N2)处理阶段高于氮素光合效率低的品种,在高氮(N3-N4)处理阶段低于氮素光合效率低的品种,此差异在R6期达极显著水平(P<0.01),在R2期和R4期多为显著(P<0.05)或不显著水平;叶片全氮含量和叶绿素含量则在所有氮水平均表现氮素光合效率高的品种的显著低于氮素光合效率低的品种。氮水平与不同氮素光合效率品种产量变化具有一致性,可将氮素光合效率作为选择施氮水平,确定最佳施氮量的一个依据。
In our research, the plant nitrogen content, net photosynthetic rate of leaves, plant biomass and yield of different canopy were studied with21soybean varieties which were bred in different years, aiming to understand the correlation between changes in nitrogen-use characteristics and yield with genetic improvement of soybean cultivars, and to explore the feasibility that the nitrogen-photosynthetic efficiency could be as an indicator of nitrogen efficiency. The research aimed to provide direction for the study of soybean physiological mechanisms which aimed to improve nitrogen use efficiency, and then to provide theoretical basis for nitrogen high-efficiency breeding and rational application of fertilizer of soybean.
     1. With genetic improvement and increase of yield of soybean cultivars, the nitrogen content of soybean leaves, stems and petioles were significantly increased in growth stages, except the nitrogen content of soybean leaves at upper and middle layer were negative correlated with year of release of soybean cultivars at R4. The many studies showed that R4is a very key stage with nutrition growth coordinating with reproductive growth, so the phenomenon that nitrogen content of soybean leaves at upper and middle layer were negative correlated with year of release of modern varieties was result from transfer in nitrogen from leaves to the pod at R4.
     2. The nitrogen content at middle layer and production was significantly negative correlated with yield at R4, and the nitrogen content at upper and middle layer at R4and at middle layer at R6were significantly positive correlated with yield at R4. The results showed that nitrogen-accumulation at earlier stage had little effect on yield, but low nitrogen content in leaf and high nitrogen content in pod at R4is the key to high-yield. The rate of nitrogen transferred from leaves to petioles at R4could be significantly correlated with high-yield.
     3. Net photosynthetic rate of different canopy at R2and R4were significant or highly significant correlated with year of release, but it was not significant at R6. The stomatal conductance and transpiration rate were also inordinately increased with year of release genetic improvement of soybean cultivars. But the intercellular CO2concentration was negative correlated with year of release, and the correlation among stomatal conductance, transpiration rate, intercellular CO2concentration and year of release were not reached significant level at three stages. Our results also showed that net photosynthetic rate at upper and middle layers were all significantly correlated with yield at R2, R4and R6, so it was the feasibility that the net photosynthetic rate at upper and middle layers could be as indicator of high-yield of soybean. It also showed that R4was the key stage.
     4. With the genetic progress of soybean cultivars, the biomass of leaves, stems, petioles and pods had been increased with year of release at R2, R4and R6. The biomass of leaves, stems, petioles and pods at upper and middle layers were significantly correlated with year of release at R4and R6. It indicated that the more dry matter was accumulated among modern cultivars than the early cultivars at R4and R6.With the genetic improvement of soybean cultivars, the increase in yield of soybean were mainly resulted from the increase in organ biomasses, meanwhile, the correlation was more and more significant with the progress of growth stage. Plant biomass of soybean cultivars had significant effect on yield at R4. And the correlation between plant biomass and yield became more and more significant at later growth stages. At R6, almost the correlation between whole organs biomasses of plant and yield reached significant level. The biomass of leaves and petioles at middle layer were most closely correlated with yield at R4and R6, and it could be as breeding indicators of high-yield.
     5. The study on nitrogen content, photosynthesis of leaves, plant biomass showed that the correlation between nitrogen content and net photosynthetic rate were reached significant or highly significant level among all the cultivars, and the more correlation were estimated in modern cultivars than early cultivars. With the progress of growth stage, the effect of net photosynthetic rate on biomass of total plant became obvious, and the effect of modern cultivars was more significant than early cultivars. In concrete, the effect of nitrogen content on plant biomass was decreased among early cultivars with the progress of growth stage, but the effect was increased among modern cultivars with the progress of growth stage. It indicated that it is the key that the effect of high accumulation of nitrogen content on the increase photosynthesis, organ biomass and yield of soybean cultivars.
     6. During R4, the nitrogen photosynthetic efficiency was highly significantly correlated with agronomic use efficiency at three layers. Correlation between nitrogen use efficiency of leaf at upper and middle layers and correlation between nitrogen use efficiency of middle stems and petioles and agronomic use efficiency were reached significant or highly significant level. Correlation between the nitrogen use efficiency of pod at three layers and nitrogen agronomic efficiency was reached significant level at R6, and the correlation between the nitrogen use efficiency of leaves at middle layer and nitrogen agronomic efficiency was reached highly significant level at R6. The results showed that the use efficiency of the nitrogen photosynthetic efficiency was significant correlated with nitrogen agronomy efficiency at R4, so the nitrogen photosynthetic efficiency of whole leaves could be as an indicator to select high nitrogen photosynthetic rate at upper and middle layers could be as indicator of high-yield of soybean. It also showed that R4was the key stage.
     4. With the genetic progress of soybean cultivars, the biomass of leaves, stems, petioles and pods had been increased with year of release at R2, R4and R6. The biomass of leaves, stems, petioles and pods at upper and middle layers were significantly correlated with year of release at R4and R6. It indicated that the more dry matter was accumulated among modern cultivars than the early cultivars at R4and R6. With the genetic improvement of soybean cultivars, the increase in yield of soybean were mainly resulted from the increase in organ biomasses, meanwhile, the correlation was more and more significant with the progress of growth stage. Plant biomass of soybean cultivars had significant effect on yield at R4. And the correlation between plant biomass and yield became more and more significant at later growth stages. At R6, almost the correlation between whole organs biomasses of plant and yield reached significant level. The biomass of leaves and petioles at middle layer were most closely correlated with yield at R4and R6, and it could be as breeding indicators of high-yield.
     5. The study on nitrogen content, photosynthesis of leaves, plant biomass showed that the correlation between nitrogen content and net photosynthetic rate were reached significant or highly significant level among all the cultivars, and the more correlation were estimated in modern cultivars than early cultivars. With the progress of growth stage, the effect of net photosynthetic rate on biomass of total plant became obvious, and the effect of modern cultivars was more significant than early cultivars. In concrete, the effect of nitrogen content on plant biomass was decreased among early cultivars with the progress of growth stage, but the effect was increased among modern cultivars with the progress of growth stage. It indicated that it is the key that the effect of high accumulation of nitrogen content on the increase photosynthesis, organ biomass and yield of soybean cultivars.
     6. During R4, the nitrogen photosynthetic efficiency was highly significantly correlated with agronomic use efficiency at three layers. Correlation between nitrogen use efficiency of leaf at upper and middle layers and correlation between nitrogen use efficiency of middle stems and petioles and agronomic use efficiency were reached significant or highly significant level. Correlation between the nitrogen use efficiency of pod at three layers and nitrogen agronomic efficiency was reached significant level at R6, and the correlation between the nitrogen use efficiency of leaves at middle layer and nitrogen agronomic efficiency was reached highly significant level at R6. The results showed that the use efficiency of the nitrogen photosynthetic efficiency was significant correlated with nitrogen agronomy efficiency at R4, so the nitrogen photosynthetic efficiency of whole leaves could be as an indicator to select high nitrogen efficiency soybean.
     7. With the changes of nitrogen level, physiological characteristics and yield of four soybean cultivars were promoting at low-nitrogen level and suppressing at high nitrogen level at R2, R4and R6. It was a single peak curve that increasing at the first, then decreasing later. The comparison of different nitrogen use efficiency cultivars which bred in similar years showed that root activity, nitrate reductase activity (NRA), net photosynthetic rate, the weight of dry matter of high nitrogen use efficiency cultivars were higher than low nitrogen use efficiency cultivars at middle-low nitrogen (N1-N2) processing stages, but lower than low nitrogen use efficiency cultivars at high nitrogen (N3-N4) processing stages. It reached highly significant level (P<0.01) at R6, but it reached significant (P<0.05) or not significant level at R2and R4. Nitrogen content and chlorophyll content of leaves among high photosynthetic efficiency cultivars was significantly lower than low photosynthetic efficiency cultivars at all levels. Nitrogen level was consisted with yield of different nitrogen photosynthetic efficiency cultivars. So the nitrogen use efficiency could be as a basis of selecting nitrogenous fertilizer, to determine the optimum nitrogen rate.
引文
[1]乔颖丽,王艳华,梁俊仙.大宗农产品供求变化趋势及应对策略[J].宏观经济管理,2013,1:48-49.
    [2]徐克章.大豆品种产量遗传改良过程中某些生理性状的变化[J].吉林农业大学学报,2008,30(4):407-414.
    [3]庄波,徐克章,杜双洋等.新、老大豆品种冠层产量和光合作用的比较[J].华南农业大学学报,2010,31(1):6-9.
    [4]李大勇,徐克章,张治安等.新老大豆品种叶片光合特性的比较[J].中国油料作物学报,2007,29(3):281-285.
    [5]李大勇,王晓慧,张治安等.半野生和栽培大豆叶片某些光合特性的比较[J].中国油料作物学报2006,28(2):172-175.
    [6]王晓慧,李大勇,徐克章等.3种进化类型大豆叶片的某些生理特性比较[J].植物生理学通讯,42(2):191-194.
    [7]王晓慧,徐克章,张治安等.不同年代育成大豆品种苗期叶片保护酶活性及膜脂过氧化作用[J].中国油料作物学报,2006,28(4):417-420.
    [8]王晓慧,徐克章,李大勇等.不同年代育成大豆品种叶片可溶性糖含量和比叶重的变化[J].大豆科学,2007,26(6):879-884.
    [9]赵洪祥,徐克章,李大勇等.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系[J].南京农业大学学报,2007,30(2):13-17.
    [10]赵洪祥,徐克章,杨光宇等.吉林省82年来育成大豆品种的产量和叶片部分生理特性变化及其相互关系[J].作物学报,2008,34(7):1259-1265.
    [11]孙苗苗,邓宏中,徐克章等.不同年代育成大豆品种根系伤流液重量变化及其与叶片光合的关系[J].大豆科学,2011,30(5):795-799.
    [12]姚琳,徐克章,张治安等.吉林省不同年代育成大豆品种根瘤数量、鲜重和体积的变化[J].中国油料作物学报,2009,31(2):196-201.
    [13]田伟华,徐克章,邴鑫等.吉林省不同年代育成大豆品种某些农艺性状的变化[J].中国油料作物学报,2007,29(4):397-401.
    [14]郑洪兵,徐克章,赵洪祥等.吉林省不同年代育成大豆品种某些株型性状的演变[J].中国油料作物学报,2006,28(3):276-281.
    [15]邴鑫,张治安,徐克章等.不同叶运动能力大豆品种叶枕结构的比较研究[J].南京农业大学学报,2009, 32(4):18-22.
    [16]Liu G N, Zhang Z A, Xu K Z,et al. Changes of some physiological characteristics and agronomic traits during genetic improvement of soybean cultivars in Jilin Prov:ince of China[J].Soybean Science,2009,28(3), 415-420.
    [17]郑洪兵,徐克章,赵洪祥等.吉林省不同年代育成大豆品种主要农艺性状的变化[J].作物学报,2008,34(6):1042-1050.
    [18]郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报,2007,27(1):171-181.
    [19]Cechin I, Fumis T F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse[J].Plant Science,2004,166:1379-1385.
    [20]苗以农,石连旋.大豆生理学[M].长春:吉林科学技术出版社,2008:110-111.
    [21]Salvagiotti F, Cassman K G, Specht J E, et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans:A review[J].Field Crops Research,2008,108:1-13.
    [22]Hungria M, Franchini J C, Campo R J, et al. Nitrogen nutrition of soybean in Brazil:contributionsof biological N2 fixation and N fertilizer to grain yield[J].Can. J. Plant Sci,2006,86:927-939.
    [23]董守坤,龚振平,祖伟.氮素营养水平对大豆氮素积累及产量的影响[J].植物营养与肥料学报,2010,16(1):65-70.
    [24]Barker D W, Sawyer J E. Nitrogen application to soybean at early reproductive development[J].Agron J,2005,97:615-619.
    [25]王树起,韩晓增,乔云发,等.施氮对大豆根系形态和氮素吸收积累的影响[J].中国生态农业学报,2009,17(6):1069-1073.
    [26]Wesley T L, Lamond R E, Martin V L, et al. Effects of late season nitrogen fertilizer on irrigated soybean yield and composition[J].J Prod Agric,1998,11:331-336.
    [27]李俊华,董志新,刘建国,等.不同基因型大豆氮效率的研究[J].土壤通报,2005,36(3):352-356.
    [28]刘晓冰,金剑,张秋英,等.不同大豆基因型氮肥积累运转研究简报[J].大豆科学,2001,20(4):298-301.
    [29]Imsande J. Nitrogen deficit during soybean pod fill and increased plant biomass by vigorous N2 fixation [J]. European Journal of Agronomy,1998,8:1-11.
    [30]郭海龙,马春梅,董守坤,等.春大豆生长中对不同氮源的吸收利用[J].核农学报,2008,22(3):338-342.
    [31]张含彬,任万军,杨文钰,等.不同施氮量对套作大豆根系形态与生理特性的影响[J].作物学报,2007,33(1):107-112.
    [32]刘玉平,李志刚,李瑞平.不同密度与施氮水平对高油大豆产量及品质的影响[J].大豆科学,2011,30(1):79-82.
    [33]Salvagiotti F, Specht J E, Cassman K G, et al. Growth and nitrogen fixation in high-yield soybean:impact of nitrogen fertilzation[J]. Agron J,2009,101:958-970.
    [34]Boussadia O, Steppe K, Zgallai H, et al.Effects of nitrogen deficiency on leaf photosynthesis, carbo-hydrate status and biomass production in two olive cultivars 'Meski' and 'Koroneiki'[J].Scientia Horti-culturae,2010,123:336-342.
    [35]Araya T, Noguchi K, Terashima I.Effect of nitrogen nutrition on the carbohydrate repression of photo-synthesis in leaves of Phaseolus vulgaris L. [J].Journal of Plant Res,2010,123:371-379.
    [36]Hikosaka K.Interspecific difference in the photosynthesis nitrogen relationship:patterns, physiological causes, and ecological importance[J] Journal of Plant Research,2004,117:481-494.
    [37]Garnier E, Gobin O,Poorter H.Nitrogen Productivity Depends on Photosynthetic Nitrogen Use Efficiency and on Nitrogen Allocation Within the Plant [J].Annals of Botany,1995,76(6):667-672.
    [38]徐克章,黑田喜荣,平野贡.水稻开花后叶片氮含量与光合作用的动态变化及其关系[J].作物学报,1995,21(2):171-175.
    [39]Shangguan Z H P, Sha M G and Dyckmans E. Effects of Nitrogen Nutrition and Water Deficit on Net Photosynthetic Rate and Chlorophyll Fluorescence in Winter Wheat[J].J Plant Physiol,2000,156:46-51.
    [40]吴平.水稻氮素光合效率及有关叶片参数的测定[J].浙江农业学报,1994,6(2):131-134.
    [41]曾建敏,彭少兵,崔克辉等.热带水稻光合特性及氮素光合效率的差异研究[J].作物学报,2006,32(12):1817-1822.
    [42]范秀凤,吕小明,陈莉莉等.菜用大豆荚皮性状与产量形成的关系[J].大豆科学,2004,23(4):264-267.
    [43]张伟,谢甫绨,宋显军等.大豆上部节位叶片生产效率的初步研究[J].作物学报,2007,33(5):853-856.
    [44]毕远林.大豆干物质积累与氮、磷、钾吸收与分配的研究[J]大豆科学,1999,4:331-335.
    [45]徐仲伟,徐克章,张治安等.吉林省不同年代育成大豆品种植株地上器官生物量的变化[J].南京农业大学学报,2011,34(3):7-12.
    [46]陈丽华,李杰,刘丽君等.大豆蛋白质的积累动态及其与产质量形成的关系[J].东北农业大学学报,2002,33(2):116-124.
    [47]徐本生,籍玉尘,杨建堂.夏大豆的干物质积累和氮磷钾吸收分配动态的研究[J].大豆科学,1989,8(1):48-54.
    [48]董钻,谢甫娣.大豆氮磷钾吸收动态及模式的研究[J].作物学报,1996,2(1):89-95.
    [49]程素贞,罗孝荣.大豆对钼与氮、磷、钾的吸收分配动态及相互关系的初步研究[J].1990,9(3):241-246.
    [50]张性坦,赵存,柏惠侠等.夏大豆诱处4号公顷产4500kg生理指标研究[J].中国农业科学,1996,29(6):46-54.
    [51]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径[J].中国水稻科学,2002,16(3):261-264.
    [52]HanwayJ J,Weber C.R.Accumulation of N, P and K by soybean[Glycine max. (L.) Merr.]Plants[J].Agron J,1971,63:406-408.
    [53]史占忠.大豆植株全氮磷钾含量变化分析[J].1989,9(4):369-373.
    [54]王立刚,刘景辉,刘克礼.大豆对氮肥吸收规律的研究[J].土壤肥料科学,2004,20(6):162-166.
    [55]徐克章,黑田喜荣,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系[J].作物学报,1995,21(2):171-75.
    [56]Muraoka H, Noda H, Uchida M,et al.Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctictundra ecosystem,Ny-Alesund,Svalbard:implications for their role in ecosystem carbon gain[J].J Plant Res,2008,121:137-145.
    [57]Evans LT,Fischer R A. Yield potential:its definition, measurement and significance[J].Crop Sci.1999, 39:1544-1551.
    [58]Viktor R T, Meszaros I, Veres S,et al.Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field[J].J Plant Physiol,2002,159:627-634.
    [59]Cheng L L, Fuchigami L H.Rubisco activation state decreases with increasing nitrogen content in apple leaves[J].J of experimental Botany,2000,51(351):1687-1694.
    [60]Buttery B R, Buzzell R I, Findlay W I.Relationships among photosynthetic rate.bean yield and other characters ing field-grown cultivars of soybean[J].Can. J. Plant Sci,1980,61:191-198.
    [61]王晨阳,朱云集,夏国军等.氮肥后移对超高产小麦产量及生理特性的影响[J].作物学报,1998,24(1):978-983.
    [62]蔡瑞国,张敏,戴忠民等.施氮水平对优质小麦旗叶光合特性和子粒生长发育的影响[J].植物营养与肥料学报,2006,12(1):49-55.
    [63]Cassman K G, Peng S, O lk D C, et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Res,1998,56:7-39.
    [64]宋英博.施氮对大豆叶片生理指标的影响[J].中国农学通报,2010,26(15):243-246.
    [65]黄正来,武立权,韩立德.花期追施氮肥对菜用大豆AC10生理指标及产量影响的研究[J].激光生物学报,2005,14(3):193-196.
    [66]罗新宁,陈冰,张巨松等.南疆地区不同施氮量棉花叶片光合特性及产量表现[J].干早地区农业研究,2011,29(2):40-44.
    [67]Berryman C A.The influence of CO2 enrichment on growth,nutrient and biomass allocation of Maranthes corymbosa [J].Australian Journal of Botany,1993,41:195-209.
    [68]Evans J K.The relationship between electron transport components and photosynthetic capacity in pea leaves grown at different irradiances[J]. Australian Journal of Botany,1987,14:157-170.
    [69]陈振武,钱朗,王海英等.花期追施氮肥对不同株型黑豆品种生殖生长期叶片生理生化特性的影响.大豆科学,2010,29(4):623-626.
    [70]张其德,卢从明,张群等.不同氮素水平下CO2倍增对大豆叶片荧光诱导动力学参数的影响[J].植物营养与肥料学报,1997,3(1):24-29.
    [71]刘卫群,郭群召,汪庆昌等.不同施氮水平对烤烟干物质、氮素积累分配及产质的影响[J].河南农业科学,2004:25-28.
    [72]李永孝,季佩班.底肥量追肥期对夏大豆产量性状的影响[J].大豆科学,1995,14(2):119-125.
    [73]金剑,刘晓冰,王光华等.大豆生殖生长期根系形态性状与产量关系研究[J].大豆科学,2004,23(4):253-257.
    [74]陈锦坤.播期和肥料运筹对专用高蛋白大豆产量和品质的调节效应[J].南京农业大学,2004:3-4.
    [75]倪丽,章建新,金加伟.氮肥施用对高产大豆根系、干物质积累及产量的影响[J].新疆农业大学学报,2004,27(2):36-39.
    [76]胡润芳,张广庆,滕振勇等.不同形态氮素对大豆硝酸还原酶和谷氨酰胺合成酶活性及蛋白质含量的影响[J].东北农业大学学报,2012,43(1):31-35.
    [77]张磊,宋秋来,马春梅,董守坤,龚振平等.大豆叶片硝酸还原酶活性动态研究[J].东北农业大学学报,2008,39(6):3-76.
    [78]葛文婷,金喜军,马春梅等.大豆硝酸还原酶活性及其与施氮关系的研究[J].核农学报,2011,25(5):1036-1041.
    [79]刘丽君,孙聪姝,刘艳等.氮肥对大豆结瘤及叶片氮素积累的影响[J].东北农业大学学报,2003,36(2):133-137.
    [80]章建新,倪丽,翟云龙.施氮对高产春大豆氮素吸收分配的影响[J].大豆科学,2005,24(1):38-42.
    [81]胡根海,章建新,唐长青.北疆春大豆生长动态及干物质积累与分配[J].新疆农业科学,2002,39(5):264-267.
    [82]沈润平,王中孚,郭进耀等.氮磷钾营养对春大豆产量品质效应的研究[J].江西农业大学学报,1998,20(1):51-55.
    [83]邸伟,金喜军,马春梅等.施氮水平对大豆氮素积累与产量影响的研究[J].核农学报,2010,24(3):612-617.
    [84]丁洪,郭庆元.氮肥对不同大豆品种氮积累和产量品质的影响[J].土壤通报,1995,26(1):18-21.
    [85]孙继颖,高聚林,吕小红.施氮量对大豆抗旱生理特性及水分利用效率的影响[J].大豆科学,2007,26(4):517-522.
    [86]Otieno P E, Muthomi J W. et al. Effect of Rhizobia inoculation farm yard manure and nitrogen fertilizer on nodulation and yield of food grain legumes[J]. Journal of Biological Sciences,2009,9(4):326-332.
    [87]董钻.大豆产量生理[M].北京:中国农业出版社.2000
    [88]甘银波,本佳婉.不同氮肥管理对毛豆共生固氮及产量的影响[J].中国油料作物学报,1996,1:34-37.
    [89]宋海星,王萍,申斯乐.大豆共生固氮与叶片全氮含量之间关系的研究[J].吉林农业科学,2000,25(6):9-11.
    [90]杨继余,赵爱莉,付艳华等.大豆共生固氮及氮肥施用改良方法[J].农业与技术,1995,3:29-31.
    [91]田艳洪,刘元英,张文钊等.不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响[J].东北农业大学学报,2008,39(5):15-19.
    [92]Afza R,Hardarson C,Zapala F,et al.Effects of delayed soil and foliar Nfertilization on yield and N2 fixation of soybean[J].Plant and Soil,1987,(3):361-368.
    [93]赵双进,张孟臣,杨春燕.追肥时期对夏大豆植株养分和株型性状及产量的影响[J].中国农业科学,1999,32:112-116.
    [94]王丹等.播期、密度、氮肥用量对菜用大豆产量和品质的效应[J].浙江大学学报,2001,6-8.
    [95]马春梅,唐远征,龚振平等.不同施氮量对大豆吸收化肥氮效率的影响[J].大豆科学,2005,24(1):34-37.
    [96]刘莉,周俊初,陈华癸.不同化合态氮浓度对大豆根瘤菌结瘤和固氮作用的影响[J].中国农业科学,1998,31(4):87-89.
    [97]范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展[J].山东农业科学,2001,4:47-50.
    [98]Kanampiu F K, et al.Effect of nitrogen rate on plant nitrogen loss in winter varieties[J].Plant Nutr,1997,20: 389-404.
    [99]Bufogle A.Rice variety differences in dry matter and nitrogen accumulation as related to plant stature and maturity group[J].Plant Nutri,1997,20:1203-1224.
    [100]Kamprath E J, et al.Effects of nitrogen fertilization and recurrent selection on performance of hybrid populations of corn[J].Agron J,1982,74:955-958.
    [101]程建峰,戴廷波,曹卫星.东稻种资源苗期氮素营养效率的分类、鉴定与评价[J].作物学报,2005,31(12):1640-1647.
    [102]章履孝.提高玉米氮肥利用效率的遗传改良.作物杂志,1998(增刊):124-126.
    [103]Wue H, Wang Z Q,Fan Z Q, et al.Effeets of different Concentrations and form ratios of nitrogen on chlorophyll biosynthesis, Photosynthesis and biomass Partitioning in Fraxinus mandshurica seedlings[J].Plant Biology,2003,27(6):771-779.
    [104]戴建军,程岩.黑龙江省南部黑土施氮对大豆氮肥利用率的影响[J].东北农业大学学报,2000,31(2):125-128.
    [105]卢艳丽,陆卫平,刘小兵等.糯玉米氮肥利用效率的基因型差异[J].作物学报,2006,32(7):1031-1037.
    [106]Garnier E, Gobin O,Poorter H.Nitrogen Productivity Depends on Photosynthetic Nitrogen Use Efficiency and on Nitrogen Allocation Within the Plant [J].Annals of Botany,1995,76(6):667-672.
    [107]吴平.水稻氮素光合效率及有关叶片参数的测定[J].浙江农业学报,1994,6(2):131-134.
    [108]程建峰,戴廷波,曹卫星等.氮素对不同生态型稻种资源苗期氮素利用效率差异性的影响[J].科技导报,2006,24,(4):12-14.
    [109]Duvick D N. Genetic contributions to advances in yield in U.S. maize[J]. Maydica,1992,37:69-79.
    [110]Eyherabide G H, Damilano A L, Colazo J C. Genetic gain for grain yield of maize in Argentina. Maydica,1994,39:207-211.
    [111]Ivanovic M,Kojic L. Grain yield of maize hybrids in different periods of breeding[J].Informatsionnyi Byulleten po Kukuruza,1990,8:93-101.
    [112]Russell W A. Genetic improvement of maize yields[J]. Adv, Agron,1991,46:245-298.
    [113]Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988[J].Crop Sci,1991,31:119-124.
    [114]张治安,陈展宇.《植物生理学实验指导》[M].吉林大学出版社,2008.
    [115]Sinclair T R, Horie T. Leaf nitrogen, photosynthesis and cropradiation use efficiency:A review[J].Crop Science,1989,29:90-98.
    [116]金剑,刘晓冰,王光华等.美国大豆品种改良过程中生理特性变化的研究进展[J].大豆科学,2003,22(2):137-141.
    [117]Rajcan I, Tollenaar M.Source:sink ratio and leaf senescence in maize:I. Dry matt er accumulat ion and part itioning during grain filling[J].Field Crops Res,1999,60:245-253.
    [118]金剑,王光华,刘晓冰等.50年黑龙江省大豆遗传改良的产量及品质变化[J].农业现代化研究,2007,28(6):757-759.
    [119]杨琪,王金陵.不同类型大豆干物质及氮的动态变化研究[J].中国农业科学,1995,28(增刊):108-114.
    [120]Kumudimi S, Hume D J, Chu G. Genetic improvement in short season soybeans:I.Dry matter accumula-tion, partitioning, and leaf area duration[J].Crop Science,2001,41:391-398.
    [121]Mann C C.Genetic engineerings aim to soup up crop photosynthesis[J].Seience,1999,283:314-316.
    [122]Bhagsari A,Brown R H.Leaf Photosynthesis and its correlation with leaf eara[J].Crop Science,1986,26: 127-132.
    [123]Lawlor D W.Photosynthesis,production and environment[J].Jounal of Experimental Botany,1995,46: 1389-1396.
    [124]Dunean W G. Net Photosynthetic rate relative leaf growth rates and leaf numbers of 22 races of maize grown at eight temperature[J]. Crop Sci,1968:8670-8674.
    [125]Hanson W D.Selcetion for differential produetivity among Juvenile Maize Plants:Accociate net photo-synthetic rate and leaf area changes[J].Crop Sci,1971:11334-11339.
    [126]Larson E M, Hesketh J D, Wboley J T.Seasonal variation in apparent photosynthesis among plant stands of different soybean cultivars [J]. Photosynth.Res,1981,2:3-20.
    [127]Nelson C J.Genetic assoeiations between photosynthesis characteristics and yield:Review of the evidence[J].Plant physiol biochem,1988,26:543-554.
    [128]CoxT S,Shroyer J P,Liu B H,et al.Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987[J].Crop Sci,1988,28:756-760.
    [129]李永孝.夏大豆光合速率与叶龄及水肥条件的关系[J].大豆科学,1992,11(1):36-42.
    [130]郝乃斌.高光效大豆光合特性的研究[J].大豆科学,1989,8(3):283-287.
    [131]Makine A,Mac T,Chira K. Changes in photosynthetic capacity in rice leaves from emergence through Senescence Analysis from ribulose 1,5-bisphosphate carboxylase and leaf conductance[J].Plant physiol,1984,25:511-521.
    [132]Patterson T G,Hoss D N. Enzymatic changes during the senescence of field-grown wheat[J].Crop Sci, 1980,20:19-23.
    [133]杜维广等.大豆光合作用与产量关系的研究[J].大豆科学,1999,18(2):154-159.
    [134]邹冬生,郑玉尧.大豆叶片光合、蒸腾等生理特性的品种间比较研究[J].大豆科学,1990,9(1):25-31.
    [135]楚奎锡.高产大豆叶面积消长规律和光合势、净同化率与产量相关模型的研究[J].大豆科学,1988,7(3):215-222.
    [136]许大全,沈允钢.光合作用与作物产量,作物高产光效生理研究进展[J].科学出版社,1992
    [137]Ojima M.Improvement of leaf Photosynthesis in soybean varieties[J].Bull.Natl.Inst.Agrie.Sci.Ser,1972, 23:97-154.
    [138]Buttery B R,Buzzel R I.Some differences between soybean cultivars observed by growth analysis[J]. Can.J.Plant Sci,1972,52:13-20.
    [139]Morrison M J.Voldeng H D,Cober E R.Physiological ehanges from 58 years of genetic improvement of short season soybean cultivars in Canada[J].Agron.J.,1999,91:685-689.
    [140]Purcell L C. Soybean canopy coverage and light interception mersurements using digital imagery [J]. Crop Science,2000,40:834-837.
    [141]常耀中.大豆的合理摆布与产量关系的研究[J].大豆科学,1981,2:22-26.
    [142]Frederick J R, Woolley J T, Hesketh J D, et al.Seed yield and agronomic traits of old and modern soybean cultivars under irrigation and soil water deficit [J]. Field Crops Res,1991,27:71-82.
    [143]翟俊峰.吉林省不同年代育成大豆品种某些农艺性状的变化[D].长春:吉林农业大学,2008:1-45.
    [144]黄中文,赵团结,盖钧镒.大豆不同产量水平生物量积累与分配的动态分析[J].作物学报,2009,35(8):1483-1490.
    [145]董钻.大豆的器官平衡与产量[J].辽宁农业科学,1981(3):14-21.
    [146]张恒善,刘金印,赵正清.关于丰产大豆主要生理指标的探讨[J].大豆科学,1985,4(4):285-292.
    [147]Cui Z L, Carter T E, Burton J W. Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995 [J].Crop Sci,2000,40:1470-1481.
    [148]Karmakar P G, Bhatnagar P S. Genetic improvement of soybean varieties released in India from 1969 to 1993[J]. Euphytica.,1996,90:95-103.
    [149]孙贵荒,刘晓丽,董丽杰等.高产大豆干物质积累与产量关系的研究[J].大豆科学,2002,21(3):199-202.
    [150]马占峰,赵淑文,杨琪等.生物产量--大豆高产育种的物质基础[J].东北农业大学学报,1995,26(1):125-130.
    [151]王光华,刘晓冰,杨恕平等.生殖生长期源库改变对大豆籽粒产量和品质的影响[J].大豆科学,1999,16(3):236-241.
    [152]王英典,徐克章,张志安.大豆不同叶位叶柄维管组织的比较研究[J].大豆科学,1993,12(3):100-107
    [153]Broadbent F E, De Datta S K, Laureles E V. Measurement of nitrogenutilization efficiency in rice genotypel [J]. Agronomy J,1987,79:786-791.
    [154]De Datta S K, Broadbent F E.Methodology for evaluating nitrogen utilizationefficiency by rice genotypes[J].Agronomy J,1988,80:793-798.
    [155]单玉华,王余龙,黄建晔等.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报,2001,4(3):42-45.
    [156]朴钟泽,韩龙植,高熙宗等.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
    [157]韩晓增,裴宇峰,王守宇等.水氮耦合对大豆生长发育的影响[J].大豆科学,2006,25(2):103-108.
    [158]吴魁斌,戴建军,赵久明等.不同施氮水平对大豆产量及氮肥利用率的影响[J].东北农业大学学报,1999,30(4):339-341.
    [159]徐凤花,崔占利,刘永春等.保护性施氮对大豆氮素同化影响的研究[J].土壤学报,1998,35(4):536-544.
    [160]Kumar S, Narula A, Abdin M Z,et al.Enhancement in biomass and berberine concentration by neem cake and nitrogen(urea) and sulphur nutrients in Tinospora cordifolia Miers [J]. Physiol. Mol. Biol.Plants, 2004,10:243-251.
    [161]Zhou X J, Liang Y, Chen H,et al.Effects of rhizobia inoculation and nitrogen fertilization on photo-synthetic physiology of soybean[J].Photosynthetica,2006,44(4):530-535.
    [162]李彦生,杜明,刘晓冰等.氮素用量对菜用大豆生殖生长期根系及鲜荚产量的影响[J].大豆科学,2012,31(1):47-51.
    [163]陈振武,钱朗,王海英等.花期追施氮肥对不同株型黑豆品种生殖生长期叶片生理生化特性的影响[J].大豆科学,2010,29(4):623-626.
    [164]Osborne S L,Riedell W E.Starter nitrogen fertilizer impact on soybean yield and quality in the Northern Great Plains [J].Agronomy Journal,2006,(98):1569-1574.
    [165]姚玉波,马春梅,张磊等.施氮水平对大豆吸收利用氮素及产量的影响[J].东北农业大学学报,2009,40(4):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700