用户名: 密码: 验证码:
电纺氮掺杂碳纳米纤维的改性及其氧还原催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池作为清洁、高效且可持续的新能源体系已经成为解决全球性能源危机和环境污染问题的有效途径之一,然而,其大规模的商业应用仍然受到高制造成本的限制。其中,阴极和阳极上使用的贵金属Pt类催化剂其价格占整个燃料电池组造价的一半以上,是导致燃料电池高造价的主要因素之一。燃料电池的阴极氧还原反应(ORR)比起快速的阳极氢氧化反应(HOR),其反应动力学过程较慢,反应的交换电流密度小,往往需要负载更多的贵金属催化剂对其进行催化反应以提高电池整体电流密度。因此,开发低廉高效的非贵金属阴极氧还原催化剂以取代或部分取代Pt基催化剂对降低催化剂成本、促进燃料电池大规模的商业应用具有更重要的意义。
     氮掺杂纳米碳作为新型ORR催化剂通常仅在碱性介质中表现出良好的ORR催化活性,而在酸性介质中的活性则很差,以致于限制了该类材料更为广泛的应用,如在PEMFC中的应用。本论文通过表面改性处理或引入过渡金属元素等手段,尝试提高该类催化剂的ORR催化活性,尤其是在酸性介质中催化ORR性能。
     本论文采用不同的表面处理方式,包括浓酸氧化处理、NH3气氛中高温刻蚀处理以及这两种处理方式的结合,对电纺聚丙烯腈(PAN)基氮掺杂碳纳米纤维(NCNFs)进行表面改性以提高其在酸性介质中的催化ORR活性。结果表明,在上述三种表面处理方式中,以先经3/1(v/v)浓H2SO4/HNO3混酸60oC时氧化处理3h,再经NH3气氛中900oC刻蚀处理的效果最好,所制备的NCNF催化剂样品在酸性和碱性电解液中都显示出良好的ORR催化活性,而且该表面改性NCNFs在碱性介质中表现出很好的稳定性,在酸性介质中的稳定性相对较低,但仍比商业Pt/C催化剂稳定。
     本论文通过碳化双组分聚合物基纳米纤维制备含微孔结构的NCNFs,然后采用上述的表面处理方式对NCNF样品进行表面改性,所得无金属催化剂在酸性和碱性电解液中的催化ORR活性得到进一步提高。以PAN为碳基体,以其他四种热塑性聚合物,包括CA、PVP、PMMA或PVDF为第二组分。混纺制备的双组分聚合物纳米纤维经碳化后,碳纤维内部存在不同程度的由于热塑性聚合物被热解所致的微孔结构,这些微孔结构对浓酸氧化和NH3刻蚀处理有一定的促进作用,进而促进表面改性NCNF催化剂活性的提高。研究表明,PAN/CA和PAN/PVP双组分聚合物基NCNF样品的催化ORR活性要高于PAN/PMMA和PAN/PVDF基NCNF样品。
     本论文还以电纺FeC2O4/PAN纳米纤维为前驱体制备了非贵金属Fe-N共掺杂碳纳米纤维(Fe-N/CNF)催化剂,并研究了各种热处理气氛对该催化剂催化ORR性能的影响。结果表明,NH3气氛中二次热处理制备的Fe-N/CNF催化剂显示出仅比商业Pt/C催化剂低40mV的ORR起始电势和相近的动力学电流密度,以及远高于后者的酸性介质中的稳定性。同时,该Fe-N/CNF催化剂在碱性电解液中也表现出与商业Pt/C催化剂接近的催化ORR性能。N2气氛中直接碳化制备的Fe-N/CNF催化剂尽管有更正的催化ORR起始电势,但产生的电流密度较小,而N2/H2混合气氛中制备的Fe-N/CNF催化剂则ORR起始电势稍负30mV。研究不同草酸铁含量对Fe-N/CNFs催化活性的影响时,发现在60~300mg的含量范围内,草酸含量越高所得催化剂活性越好,草酸铁含量为300mg时效果最好。研究还发现,对于同样是PAN和草酸铁含量为别为600mg和300mg的纺丝溶液前驱体,溶液配置方式不同导致最终所制得的Fe-N/CNF催化剂形貌也大为不同,然而其催化ORR活性相当。
     比较分析各NCNFs和Fe-N/CNFs的ORR催化活性与其纤维形貌、结构以及表面电子性质的相互关系时发现,活性较高的Fe-N/CNFs或表面改性NCNFs,其纤维表面和内部都呈现出高密度大孔结构,且纤维较疏松。此外,多孔结构的纤维中通常存在大量不规则的弯曲状石墨碳层,尤其是Fe-N/CNF样品,其内部的石墨片层结构更多,且部分呈独特的中空闭合的洋葱状石墨壳层结构。本文认为,正是这些疏松状的多孔结构和弯曲的石墨碳层结构导致了所制备的NCNF以及Fe-N/CNF催化剂的高活性。首先,这些疏松状的多孔结构和弯曲的石墨碳层结构增加了氧还原反应时氧与催化剂表面的接触面积,有利于反应的进行;其次,它们也为ORR活性位的形成提供更多的石墨棱面或边界结构,如样品表面都含有大量的边界N——吡啶N和石墨N;此外,这些弯曲不规则的石墨碳结构上比平面石墨碳结构拥有更多的电子云,有利于得电子过程的氧还原反应的进行。文中所采用的表面处理方式和特定气氛下的热处理以及Fe-N/CNFs中Fe的引入正是促进了疏松状的多孔结构以及独特的石墨碳结构的形成,从而导致了催化剂ORR催化活性的提高。
Fuel cells as clean, highly efficient and sustainable new energy system havebecome one of the most effective ways to resolve the global energy crisis andenvironmental pollution problems. However, the large-scale commercialapplications of fuel cells have still been hampered by the utilization of expensivePt-based electrocatalysts for both cathodic oxygen reduction reaction (ORR) andanodic hydrogen oxidation reaction (HOR) which occupy more than half of the costof a whole fuel cell stack. Additionally, compared with HOR, ORR is kineticallysluggish and the produced exchange current density is small and usually needs moreprecious Pt-based catalysts to satisfy the whole exchange current density. Therefore,it is more important to explore low cost and highly active non-noble metalelectrocatalyst for cathodic ORR to substitute Pt-based catalysts and thus promotethe further commercialization of fuel cells.
     Nitrogen-doped carbon nanomaterials as a new ORR electrocatalyst systemusually have good electrocatalytic activity in alkaline media while their activity inacid media is much poor, which greatly limits their wide applications in protonexchange membrane fuel cells (PEMFC). In this dissertation, we devote to improvethe electrocatalytic ORR activity of them especially in acid media.
     Electrospun PAN-based NCNFs were modified by different treatment methodsincluding oxidation by concentrated acid mixture, NH3etching and the combinationto of the two to enhance their electrocatalytic activity. It was demonstrated that,NCNFs treated by concentrated H2SO4/HNO3mixture with a volume ratio of3/1at60oC for3h and then treated by NH3etching at900oC showed the best ORRactivity in both acid and alkaline media. The surface modified NCNFs also showedexcellent stability in alkaline media. Not very high as the stability in acid media was,it was nevertheless better than that of commercial Pt/C catalyst.
     Polymer bicomponents were used as precursors to prepare porous NCNFswhich displayed further improved electrocatalytic activity in both acid and alkalineelectrolytes after surface modification. For polymer bicomponent of PAN with otherthermoplastics such as CA, PVP, PMMA or PVDF, when experiencing carbonizationat high temperature in inert gas, the thermoplastics would be pyrolyzed into gaseousspecies and leave the micropore network in the PAN-converted carbon nanofibersubstrate which possibly could promote the surface the process of concentrated acidoxidation and NH3etching, and thus ultimately resulted in the enhancement ofelectrocatalytic performance of NCNFs. It was demonstrated that the surfacemodified NCNFs from PAN/CA and PAN/PVP were more active than that from PAN/PMMA and PAN/PVDF.
     Fe-N co-doped CNFs (Fe-N/CNFs) were also prepared by heat treating theelectrospun FeC2O4/PAN nanofiber precursor in different atmosphere. Fe-N/CNFsprepared by second heat treating in NH3at high temperature presented highlypositive ORR onset potential which was only40mV negatively lower than that ofcommercial Pt/C catalyst, the similar kinetic current density to the later, and thelonger durability than the later in acid media. Furthermore, such Fe-N/CNFelectrocatalyst also showed similar activity to that of commercial Pt/C catalyst inalkaline electrolyte. Fe-N/CNFs treated in N2atmosphere showed more positiveonset potential but with relatively smaller current density. The onset pontetial ofFe-N/CNFs treated in N2/H2was negatively shifted30mV compared with that of theNH3-treated Fe-N/CNFs. It was found that, in the range of60to300mg, the highercontent of FeC2O4achieved the higher activity of the as-prepared Fe-N/CNF catalyst.Additionally, the Fe-N/CNFs prepared using different process showed greatlydifferent morphology, however, the ORR activities of them were comparable.
     By comparing and analyzing the relationship between electrochemicalperformance with fiber micromophology, structure and surface electronic propertiesof various NCNFs and Fe-N/CNFs, we found that Fe-N/CNFs or surface modifiedNCNFs with higher activity usually presented higher density of porous structure inboth surface and inner part of fiber, and the nanofiber was much loose. Structurecharacterization indicated that many irregular and bended graphitic carbon layerscould be found in these porous nanofibers, especially for Fe-N/CNFs which showedmore graphitic layers and some of them presented unique hollow onion-likegraphitic nanoshell structure. It was inferred that the highly enhancedelectrocatalytic activities of NCNF and Fe-N/CNF electrocatalysts were probablycaused by these loose porous structure and bended graphitic layer. On the one hand,these unique porous structure and bended graphitic carbon as well as openonion-like graphitic nanoshells could provide higher contact area for O2during ORRprocess. On the other hand, they could provide more edge planes and thus benefitthe formation of more active sites for ORR. Additionally, the electron clouds in thebended carbons are more exposed, which could promote the adsorption of O2duringthe ORR. The surface modifications and heat treatment under special atmosphere aswell as the introduction of Fe all promoted the formation of these loosly porousstructure and unique graphitic carbon and thus resulted in the enhancement of theactivity of the as-prepared electrocatalysts.
引文
[1] Steele B C H, Heinzel A. Materials for Fuel-cell Technologies[J]. Nature,2001,414:345-352.
    [2] Steele B C H. Running on Natural Gas[J]. Nature,1999,400:619-621.
    [3] Wu G, More K L, Zelenay P et al. High-Performance Electrocatalysts forOxygen Reduction Derived from Polyaniline, Iron, and Cobalt[J]. Science,2011,332:443-447.
    [4] Gu W, Baker D R, Gasteiger H A et al. Handbook of Fuel Cells: Fundamentals,Technology and Applications[M]. John Wiley&Sons, Chichester,2009,6:631-657.
    [5] Neyerlin K C, Gu W B, Gasteiger H A et al. Determination of Catalyst UniqueParameters for the Oxygen Reduction Reaction in a PEMFC[J]. Journal ofElectrochemical Society,2006,153: A1955-A1963.
    [6] Markovi N M, Schmidt T J, Ross P N et al. Oxygen Reduction Reaction on Ptand Pt Bimetallic Surfaces: A Selective Review[J]. Fuel Cells,2001,1:105-116.
    [7] Gasteiger H A, Kocha S S, Sompalli B et al. Activity Benchmarks andRequirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts forPEMFCs[J]. Applied Catalysis B: Environmental,2005,56:9-35.
    [8] Mayrhofer K J J, Strmcnik D, Blizanac B B et al. Measurement of OxygenReduction Activities via the Rotating Disc Electrode Method: From Pt ModelSurfaces to Carbon-Supported High Surface Area Catalysts[J]. ElectrochimicaActa,2008,53:3181-3188.
    [9] Kirubakaran A, Jain S, Nema R K. A Review on Fuel Cell Technologies andPower Electronic Interface[J]. Renewable and Sustainable Energy Reviews,2009,13:2430-2440.
    [10] Wang X, Hsing I M. Surfactant Stabilized Pt and Pt Alloy Electrocatalyst forPolymer Electrolyte Fuel Cells[J]. Electrochimica Acta,2002,47:2981-2987.
    [11] Kundu P P, Pal A. Cation Exchange Polymeric Membranes for Fuel Cells[J].Reviews in Chemical Engineering,2006,22:125-153.
    [12] Bacon F. Neu-Atlantis.1959, Akad-Verlag.
    [13] Stambouli A B, Traversa E. Fuel cells, an Alternative to Standard Sources ofEnergy[J]. Renewable and Sustainable Energy Reviews,2002,6:297-306.
    [14] Fuel cell today[R]. The Industry Review,2012.
    [15]侯明,衣宝廉.燃料电池技术发展现状[J].电源技术.2008,32:649-654.
    [16]衣宝廉.燃料电池的原理、技术与应用[M].北京:化学工业出版社,2003:5-8.
    [17] Fuel cell today[R]. The Industry Review,2011.
    [18] Chang C C, Wen T C, Tien H J. Kinetics of Oxygen Reduction atOxide-Derived Pd Electrodes in Alkaline Solution[J]. Electrochimica Acta,1997,4:557-565.
    [19] Wroblowa H S, Qaderia S B. Mechanism and Kinetics of Oxygen Reduction onSteel[J]. Journal of Electroanalytical Chemistry,1990,279:231-242.
    [20] Norskov J K, Rossmeisl J, Logadottir A et al. Origin of the Overpotential forOxygen Reduction at a Fuel-cell Cathode[J]. Journal of Physical Chemistry B,2004,108:17886-17892.
    [21] Yan Z.催化原理导论Introduction to Catalysis [M].北京:化学工业出版社,2006:6-12.
    [22]高海丽.低温燃料电池低铂催化剂的制备及性能研究[D].广州:华南理工大学,2011:6-10.
    [23] Xie J, Wood D L, More K L et al. Microstructural Changes of MembraneElectrode Assemblies During PEFC Durability Testing at High GumidityConditions. Journal of Electrochemical Society,2005,152: A1011-A1020.
    [24] Aricò A S, Bruce P, Scrosati B et al. Nanostructured Materials for AdvancedEnergy Conversion and Storage Devices[J]. Nature Materials,2005,4:366-377.
    [25] Hwang S J, Yoo S J, Kim S K et al. Ternary Pt-Fe-Co Alloy ElectrocatalystsPrepared by Electrodeposition: Elucidating the Roles of Fe and Co in theOxygen Reduction Reaction [J]. Journal of Physical Chemistry B,2011,115:2483-2488.
    [26] Bing Y, Liu H, Zhang L et al. Nanostructured Pt-Alloy Electrocatalysts forPEM Fuel Cell Oxygen Reduction Reaction[J]. Chemical Society Reviews,2010,39:2184-2202.
    [27] Wang C, Daimon H, Onodera T et al. A General Approach to the Size-andShape-Controlled Synthesis of Platinum Nanoparticles and Their CatalyticReduction of Oxygen[J]. Angewandte Chemie International Edition,2008,47:3588-3591.
    [28] Tian N, Zhou Z Y, Sun S G et al. Synthesis of Tetrahexahedral PlatinumNanocrystals with High-Index Facets and High Electro-Oxidation Activity[J].Science,2007,316:32-735.
    [29] Xu Z, Zhang H M, Zhong H X et al. Effect of Particle Size on the Activity andDurability of the Pt/C Electrocatalyst for Proton Exchange Membrane FuelCells[J]. Applied Catalysis B: Environmental,2012,111:264-270.
    [30] Leontyev I N, Guterman V E, Pakhomova E B et al. XRD and ElectrochemicalInvestigation of Particle Size Effects in Platinum-Cobalt CathodeElectrocatalysts for Oxygen Reduction[J]. Journal of Alloys and Compounds,2010,500:241-246.
    [31] Tritsaris G A, Greeley J, N rskov J K et al. Atomic-Scale Modeling of ParticleSize Effects for the Oxygen Reduction Reaction on Pt[J]. Catalysis Letters,2011,141:909-913.
    [32] Nesselberger M, Ashton S, Meier J C et al. The Particle Size Effect on theOxygen Reduction Reaction Activity of Pt Catalysts: Influence of Electrolyteand Relation to Single Crystal Models[J]. Journal of the American ChemicalSociety,2011,133:17428-17433.
    [33] Di Noto V, Negro E. Pt-Fe and Pt-Ni Carbon Nitride-Based ‘Core-Shell’ ORRElectrocatalysts for Polymer Electrolyte Membrane Fuel Cells[J]. Fuel Cells,2010,10:234-244.
    [34] Antolini E, Salgado J R C, Gonzalez E R. The Stability of Pt-M (M=First RowTransition Metal) Alloy Catalysts and Its Effect on the Activity in LowTemperature Fuel Cells: A Literature Review and Tests on a Pt-Co Catalyst[J].Journal of Power Sources,2006,160:957-968.
    [35] Wang D, Xin H L, Hovden R et al. Structurally Ordered IntermetallicPlatinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity andStability as Oxygen Reduction Electrocatalysts[J]. Nature Materials,2013,12:81-87.
    [36] Cui C, Gan L, Strasser P et al. Octahedral PtNi Nanoparticle Catalysts:Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle SurfaceComposition[J]. Nano Letters,2012,12:5885-5889.
    [37] Carlton C E, Chen S, Horn Y S et al. Sub-Nanometer-Resolution ElementalMapping of “Pt3Co” Nanoparticle Catalyst Degradation in Proton-ExchangeMembrane Fuel Cells[J]. Journal of Physical Chemistry Letters,2012,3:161-166.
    [38] Hwang S J, Kim S K, Lee J G et al. Role of Electronic Perturbation in Stabilityand Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction[J].Journal of the American Chemical Society,2012,134:19508-19511.
    [39] Lai F J, Chou H L, Hwang B J et al. Tunable Properties of PtxFe1-xElectro-Catalysts and Their Catalytic Activity Towards the Oxygen ReductionReaction[J]. Nanoscale,2010,2:573-581.
    [40] Taufany F, Pan C J, Hwang B J et al. Relating Structural Aspects of BimetallicPt(3)Cr(1)/C Nanoparticles to Their Electrocatalytic Activity, Stability, andSelectivity in the Oxygen Reduction Reaction[J]. Chemistry,2011,17:10724-10735.
    [41] Colon-Mercado H R, Popov B N. Stability of Platinum Based Alloy CathodeCatalysts in PEM Fuel Cells, Journal of Power Sources[J].2006,155:253-263.
    [42] Yue Q, Zhang K, Liu J et al. Generation of OH Radicals in Oxygen ReductionReaction at Pt-Co Nanoparticles Supported on Grapheme in AlkalineSolution[J]. Chemical Communications,2010,46:3369-3371.
    [43]张建鲁.质子交换膜燃料电池电催化剂和阴极电极结构研究[D].大连:中科院大连化学物理研究所,2005,5-10.
    [44] Antolini E. Formation of Carbon-Supported PtM Alloys for Low TemperatureFuel Cells: A Review[J]. Materials Chemistry and Physics,2003,78:563-573.
    [45] Tokarza W, Lota G, Piela P et al. Fuel Cell Testing of Pt-Ru CatalystsSupported on Differently Prepared and Pretreated Carbon Nanotubes[J].Electrochimica Acta,2013,98:94-103.
    [46] Sebastiána D, Lázaroa M J, Baglio V et al. The Influence of Carbon NanofiberSupport Properties on the Oxygen Reduction Behavior in Proton ConductingElectrolyte-Based Direct Methanol Fuel Cells[J]. International Journal ofHydrogen Energy,2012,37:6253-6260.
    [47] Ravikumar M K, Shukla A K. Effect of Methanol Crossover in a Liquid-FeedPolymer-Electrolyte Direct Methanol Fuel Cell[J]. Journal of ElectrochemicalSociety,1996,143:260l-2606.
    [48] Inouea H, Hosoyaa K, Ozaki J et al. Influence of Heat-Treatment of KetjenBlack on the Oxygen Reduction Reaction of Pt/C Catalysts[J]. Journal ofPower Sources,2012,220:173-179.
    [49] Li Y, Li Y, Zhu E et al. Stabilization of High-Performance Oxygen ReductionReaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/CarbonBlack Composite[J]. Journal of the American Chemical Society,2012,134:12326-12329.
    [50] Huang S Y, Chang S M, Yeh C T. Characterization of Surface Composition ofPlatinum and Ruthenium Nanoalloys Dispersed on Active Carbon[J]. Journalof Physical Chemistry B,2006,110:234-239.
    [51] Jiang S, Ma Y, Hu Z et al. Facile Construction of Pt-Co/CNxNanotubeElectrocatalysts and Their Application to the Oxygen Reduction Reaction[J].Advanced Materials,2009,21:4953-4956.
    [52] Chen S, Yea F, Lin W. Carbon Nanotubes-Nafion Composites as Pt-Ru CatalystSupport for Methanol Electro-Oxidation in Acid Media [J]. Journal of NaturalGas Chemistry,2009,18:199-204.
    [53] Wu G, Li L, Li J H et al. Methanol Electrooxidation on Pt Particles Dispersedinto PANI/SWNT Composite Films[J]. Journal of Power Sources,2006,155:118-127.
    [54] Ghasemi M, Ismail M, Kamarudin K S et al. Carbon Nanotube as anAlternative Cathode Support and Catalyst for Microbial Fuel Cells[J]. AppliedEnergy,2013,102:1050-1056.
    [55] álvareza G, Alcaide F, Cabot P L et al. Electrochemical Performance of LowTemperature PEMFC with Surface Tailored Carbon Nanofibers as CatalystSupport[J]. International Journal of Hydrogen Energy,2012,37:393-404.
    [56] Zheng J S, Wang X Z, Ma J X et al. Microstructure Effect of CarbonNanofibers on Pt/CNFs Electrocatalyst for Oxygen Reduction[J]. InternationalJournal of Hydrogen Energy,2012,37:4639-4647.
    [57] Sebastiána D, Ruíz A G, Lázaro M J et al. Enhanced Oxygen ReductionActivity and Durability of Pt Catalysts Supported on Carbon Nanofibers[J].Applied Catalysis B: Environmental Volumes,2012,115-116:269-275.
    [58] Xin Y, Liu J, Zou Z et al. Preparation and Characterization of Pt Supported onGraphene with Enhanced Electrocatalytic Activity in Fuel Cell[J]. Journal ofPower Sources,2011:1012-1018.
    [59] Kou R, Shao Y, Liu J et al. Enhanced Activity and Stability of Pt Catalysts onFunctionalized Graphene Sheets for Electrocatalytic Oxygen Reduction[J].Electrochemistry Communications,2009:954-957.
    [60] Jafri I R, Rajalakshmi N, Ramaprabhu S. Nitrogen Doped GrapheneNanoplatelets as Catalyst Support for Oxygen Reduction Reaction in ProtonExchange Membrane Fuel Cell[J]. Journal of Materials Chemistry,2010,20:7114-7117.
    [61] Shao Y, Wanga Y, Lin Y et al. Highly Durable Graphene NanoplateletsSupported Pt Nanocatalysts for Oxygen Reduction[J]. Journal of PowerSources,2010,195:4600-4605.
    [62]Ambrosio E P, Francia C, Manzoli M et al. Platinum Catalyst Supported onMesoporous Carbon for PEMFC[J]. International Journal of Hydrogen Energy,2008,33:3142-3145.
    [63] Banham D, Feng F, Pei K et al. Effect of Carbon Support Nnanostructure onthe Oxygen Reduction Activity of Pt/C Ctalysts[J]. Journal of MaterialsChemistry A,2013,1:2812-2820.
    [64] Su F, Poh C K, Zeng J et al. Pt Nanoparticles Supported on MesoporousCarbon Nanocomposites Incorporated with Ni or Co Nanoparticles for FuelCells[J]. Journal of Power Sources,2012,205:136-144.
    [65] Tsuji M, Kubokawa M, Yano R, et al. Fast Preparation of PtRu CatalystsSupported on Carbon Nanofibers by the Microwave-Polyol Method and theirApplication to Fuel Cells. Langmuir,2007,23:387-390.
    [66] Sun Y, Wu Q, Shi G. Graphene Based New Energy Materials[J]. Energy&Environmental Science,2011,4:1113-1132.
    [67]周卫江,周振华,李文震等.直接甲醇燃料电池阳极催化剂研究进展[J].化学通报,2003,66:228-234.
    [68] Jasinski R. A New Fuel Cell Cathode Catalyst[J]. Nature,1964,201:1212-1213.
    [69] Jahnke H, Sch nborn M, Zimmermann G. Organic Dyestuffs as Catalysts forFuel Cells[J]. Topics in Current Chemistry,1976,61:133-182.
    [70] van Veen J A R, Visser C. Oxygen Reduction on Monomeric Transition MetalPhthalocyanines in Acid Electrolyte[J]. Electrochimica Acta,1979,24:921-928.
    [71] van Veen J A R, Coljin H A, van Baar J F et al. Effect of Heat Treatment on theStructure of Carbon-Supported Metalloporphyrins and Phthalocyanines[J].Electrochimica Acta,1988,36:801-804.
    [72] Bagotzky V S, Tarasevich M R, Radyushkina K A et al. Electrocatalysis of theOxygen Reduction Process on Metal Chelates in Acid Electrolyte[J]. Journal ofPower Sources,1977,2:233-240.
    [73] Gupta S, Yeager E et al. Heat-Treated Polyacrylonitrile-Based Catalysts forOxygen Electroreduction[J]. Journal of Applied Electrochemistry,1989,19:19-27.
    [74] Lefèvre M, Dodelet J P, Bertrand P. O2Reduction in PEM Fuel Cells: Activityand Active Site Structural Information for Catalysts Obtained by the Pyrolysisat High Temperature of Fe Precursors[J]. Journal of Physical Chemistry B,2000,104:11238-11247.
    [75] Charreteur F, Jaouen F, Dodelet J P. Iron Porphyrin-Based Cathode Catalystsfor PEM Fuel Cells: Influence of Pyrolysis Gas on Activity and Stability[J].Electrochimica Acta,2009,54:6622-6630.
    [76] Bradley E E, Bonakdarpour A, Dahn J R. Fe-C-N Oxygen Reduction CatalystsPrepared by Combinatorial Sputter Deposition[J]. Electrochemical andSolid-State Letters,2006,9: A463-A467.
    [77] Lefèvre M, Dodelet J P. Molecular Oxygen Reduction in PEM Fuel Cells:Evidence for the Simultaneous Presence of Two Active Sites in Fe-BasedCatalysts[J]. Journal of Physical Chemistry B,2002,106:8705-8713.
    [78] Kothandaraman R, Nallathambi V, Artyushkova K et al. Non-Precious OxygenReduction Catalysts Prepared by High-Pressure Pyrolysis forLow-Temperature Fuel Cells[J]. Applied Catalysis B: Environmental,2009,92:209-216.
    [79] Yeager E. Electrocatalysts for O2Reduction[J]. Electrochimica Acta,1984,29:1527-1537.
    [80] Gouerec P, Savy M, Riga J. Oxygen Reduction in Acidic Media Catalyzed byPyrolyzed Cobalt Macrocycles Dispersed on an Active Carbon: TheImportance of the Content of Oxygen Surface Groups on the Evolution of theChelate Structure During the Heat Treatment[J]. Electrochimica Acta,1998,43:743-753.
    [81] Maldonado S, Morin S, Stevenson K J. Influence of Nitrogen Doping onOxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes[J]. Journalof Physical Chemistry B,2005,109:4707-4716.
    [82] Maldonado S, Morin S, Stevenson K J. Direct Preparation of Carbon NanofiberElectrodes via Pyrolysis of Iron(II) Phthalocyanine: Electrocatlytic Aspects forOxygen Reduction[J]. Journal of Physical Chemistry B,2004,108:11375-11383.
    [83] Ding Z, Johnston C M, Zelenay P. A Simple Synthesis Method of Sulfur-FreeFe-N/C Catalyst with High ORR Activity[J]. ECS Transactions,2010,33:565-577.
    [84] Gong K, Du F, Dai L et al. Nitrogen-Doped Carbon Nanotube Arrays withHigh Electrocatalytic Aactivity for Oxygen Reduction[J]. Science,2009,323:760-764.
    [85] Sidik R A, Anderson A B, Popov B N et al. O2Reduction on Graphite andNitrogen-Doped Graphite: Experiment and Theory[J]. Journal of PhysicalChemistry B,2006,110:1787-1793.
    [86] Matter P H, Zhang L, Ozkan U S. The Role of Nanostructure inNitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reaction[J].Journal of Catalysis,2006,239:83-96.
    [87] Jaouen F, Dodelet J P. Non-Noble Electrocatalysts for O2Reduction: HowDoes Heat Treatment Affect Their Activity and Structure? Part I. Model forCarbon Black Gasification by NH3: Parametric Calibration andElectrochemical Validation[J]. Journal of Physical Chemistry C,2007,111:5963-5970.
    [88] Charreteur F, Jaouen F, Dodelet J P et al. Fe/N/C Non-Precious Catalysts forPEM Fuel Cells: Influence of the Structural Parameters of Pristine CommercialCarbon Blacks on Their Activity for Oxygen Reduction[J]. ElectrochimicaActa,2008,53:2925-2938.
    [89] Lefèvre M, Proietti E, Dodelet J P et al. Polymer Electrolyte Fuel CellsIron-Based Catalysts with Improved Oxygen Reduction Activity in PolymerElectrolyte Fuel Cells[J]. Science,2009,324:71-74.
    [90] Herranz J, Lefèvre M, Dodelet J P et al. Unveiling N-Protonation andAnion-Binding Effects on Fe/N/C Catalysts for O2Reduction inProton-Exchange-Membrane Fuel Cells[J]. Journal of Physical Chemistry C,2011,115:16087-16097.
    [91] Proietti E, Ruggeri S, Dodelet J P. Fe-Based Electrocatalysts for OxygenReduction in PEMFCs Using Ballmilled Graphite Powder as a Carbon SupportFuel Cells and Energy Conversion[J]. Journal of Electrochemical Society,2008,155: B340-B348.
    [92] Li X, Liu G, Popov B N. Activity and Stability of Non-Precious MetalCatalysts for Oxygen Reduction in Acid and Alkaline Electrolytes[J]. Journalof Power Sources,2010,195:6373-6378.
    [93] Xiao H, Shao Z G, Zhang G et al. Fe-N-Carbon Black for the OxygenReduction Reaction in Sulfuric Acid[J]. Carbon,2013,57:443-451.
    [94] Brocato S, Serov A, Atanassov P. pH Dependence of Catalytic Activity forORR of the Non-PGM Catalyst Derived from Heat-TreatedFe-Phenanthroline[J]. Electrochimica Acta,2013,87:361-365.
    [95] Bashyam R, Zelenay P. A Class of Non-Precious Metal Composite Catalystsfor Fuel Cells[J]. Nature,2006,443:63-66.
    [96] Zhou W, Ge L, Zhu Z H et al. Amorphous Iron Oxide Decorated3DHeterostructured Electrode for Highly Efficient Oxygen Reduction[J].Chemistry of Materials,2011,23:4193-4198.
    [97] Liang Y, Li Y, Dai H et al. Co3O4Nanocrystals on Graphene as a SynergisticCatalyst for Oxygen Reduction Reaction[J]. Nature Materials,2011,10:780-786.
    [98] Ye Y, Kuai L, Geng B. A Template-Free Route to a Fe3O4-Co3O4Yolk-shellNanostructure as a Noble-Metal Free Electrocatalyst for ORR in AlkalineMedia[J]. Journal of Materials Chemistry,2012,22:19132-19138.
    [99] Locatelli C, Minguzzi A, Vertova A et al. IrO2-SnO2Mixtures asElectrocatalysts for the Oxygen Reduction Reaction in Alkaline Media[J].Journal of Applied Electrochemistry,2013,43:171-179.
    [100] Choi C H, Lee S Y, Woo S I et al. Highly Active N-Doped-CNTs Grafted onFe/C Prepared by Pyrolysis of Dicyandiamide on Fe2O3/C for ElectrochemicalOxygen Reduction Reaction[J]. Applied Catalysis B: Environmental,2011,103:362-368.
    [101]Cong H N, Abbassi K E, Chartier P. Electrically ConductivePolymer/MetalOxide Composite Electrodes for Oxygen Reduction[J].Electrochemical and Solid State Letters,2000,3:192-195.
    [102]Suresh K, Panchapagesan T S, Patil K C. Synthesis and Properties ofLa1-xSrxFeO3[J]. Solid State Ionics,1999,126:299-305.
    [103]Qu L, Liu Y, Dai L et al. Nitrogen-Doped Graphene as Efficient Metal-FreeElectrocatalyst for Oxygen Reduction in Fuel Cells[J]. ACS Nano,2010,4:1321-326.
    [104]Yang S, Feng X, Müllen K et al. Graphene-Based Carbon Nitride Nanosheetsas Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions[J].Angewandte Chemie International Edition,2011,123:5451-5455.
    [105]Shanmugam S, Osaka T. Efficient Electrocatalytic Oxygen Reduction OverMetal Free-Nitrogen Doped Carbon Nanocapsules[J]. ChemicalCommunications,2011,47:4463-4465.
    [106]Sheng Z H, Wang F B, Xia X H et al. Catalyst-Free Synthesis ofNitrogen-Doped Graphene via Thermal Annealing Graphite Oxide withMelamine and Its Excellent Electrocatalysis[J]. ACS Nano,2011,5:4350-4358.
    [107]Chen Z, Higgins D, Chen Z et al. Highly Active Nitrogen-Doped CarbonNanotubes for Oxygen Reduction Reaction in Fuel Cell Applications[J].Journal of Physical Chemistry C,2009,113:21008-21013.
    [108]Chen Z, Higgins D, Chen Z. Nitrogen Doped Carbon Nanotubes and TheirImpact on the Oxygen Reduction Reaction in Fuel Cells[J]. Carbon,2010,48:3057-3065.
    [109]Yang W, Fellinger T P, Antonietti M. Efficient Metal-Free Oxygen Reductionin Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-DopedCarbons Made from Ionic Liquids and Nucleobases[J]. Journal of theAmerican Chemical Society,2011,133:206-209.
    [110]Li Y, Li T, Yao M et al. Metal-Free Nitrogen-Doped Hollow Carbon SpheresSynthesized by Thermal Treatment of Poly(O-phenylenediamine) for OxygenReduction Reaction in Direct Methanol Fuel Cell Applications[J]. Journal ofMaterials Chemistry,2012,22:10911-109117.
    [111]Meng H, Lefèvre M, Jaouen F et al. Iron Porphyrin-Based Cathode Catalystsfor Polymer Electrolyte Membrane Fuel Cells: Effect of NH3and Ar Mixturesas Pyrolysis Gases on Catalytic Activity and Stability[J]. Electrochimica Acta,2010,55:6450-6461.
    [112]Matter P H, Ozkan U S. Non-Metal Catalysts for Dioxygen Reduction in anAcidic Electrolyte[J]. Catalysis Letters,2006,109:115-123.
    [113]Matter P H, Wang E, Ozkan U S et al. Oxygen Reduction Reaction CatalystsPrepared from Acetonitrile Pyrolysis over Alumina-Supported MetalParticles[J]. Journal of Physical Chemistry B,2006,110:18374-18384.
    [114]Matter P H, Wang E, Ozkan U S. Preparation of NanostructuredNitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reactionfrom SiO2-and MgO-Supported Metal Particles[J]. Journal of Catalysis,2006,243:395-403.
    [115]Ewels C P, Glerup M J. Nitrogen Doping in Carbon Nanotubes[J]. Journal ofNanoscience and Nanotechnology,2005,5:1345-1363.
    [116]Liu R, Wu D, Müllen K et al. Nitrogen-Doped Ordered Mesoporous GraphiticArrays with High Electrocatalytic Activity for Oxygen Reduction[J].Angewandte Chemie International Edition,2010,49:2565-2569.
    [117]Hou P X, Orikasa H, Yamazaki T et al. Synthesis of Nitrogen-ContainingMicroporous Carbon with a Highly Ordered Structure and Effect of NitrogenDoping on H2O Adsorption[J]. Chemistry of Materials,2005,17:5187-5193.
    [118]Wang S, Zhang L, Dai L et al. BCN Nanotubes as Efficient Metal-FreeElectrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect byCo-Doping with Boron and Nitrogen[J]. Angewandte Chemie InternationalEdition,2011,50:1-6.
    [119]Qiu Y, Yu J, Shi T et al. Nitrogen-Doped Ultrathin Carbon Nanofibers Derivedfrom Electrospinning: Large-Scale Production, Unique Structure, andApplication as Electrocatalysts for Oxygen Reduction[J]. Journal of PowerSources,2011,196:9862-9867.
    [120]Strelkoa V V, Kutsa V S, Thrower P A. On the Mechanism of PossibleInfluence of Heteroatoms of Nitrogen, Boron and Phosphorus in a CarbonMatrix on the Catalytic Activity of Carbons in Electron Transfer Reactions[J].Carbon,2000,38:1499-1503.
    [121]Strelkoa V V, Kartel N T, Odintsov B M et al. Mechanism of ReductiveOxygen Adsorption on Active Carbons with Various Surface Chemistry[J].Surface Science,2004,48:281-290.
    [122]Rao C V, Cabrera C R, Ishikawa Y. In Search of the Active Site inNitrogen-Doped Carbon Nanotube Electrodes for the Oxygen ReductionReaction[J]. Journal of Physical Chemistry Letters,2010,1:2622-2627.
    [123]Liu G, Li X, Popov B N et al. Information Studies of Oxygen ReductionReaction Active Sites and Stability of Nitrogen-Modified Carbon CompositeCatalysts for PEM Fuel Cells[J]. Electrochimica Acta,2010,55:2853-2858.
    [124]Subramanian N P, Li X, Popov B N et al. Nitrogen-Modified Carbon-BasedCatalysts for Oxygen Reduction Reaction in Polymer Electrolyte MembraneFuel Cells[J]. Journal of Power Sources,2009,188:38-44.
    [125]Lee K R, Lee K U, Woo S I et al. Electrochemical Oxygen Reduction onNitrogen Doped Graphene Sheets in Acid Media[J]. ElectrochemistryCommunications,2010,12:1052-1055.
    [126]Alexeyeva N, Shulga E, Tammeveski K et al. Electroreduction of Oxygen onNitrogen-Doped Carbon Nanotube Modified Glassy Carbon Electrodes in Acidand Alkaline Solutions[J]. Journal of Electroanalytical Chemistry,2010,648:169-175.
    [127]Liu G, Li X, Popov B N et al. A Review of the Development ofNitrogen-Modified Carbon-Based Catalysts for Oxygen Reduction at USC[J].Catalysis Science&Technology,2011,1:207-217.
    [128]Wang X, Lee J S, Dai S et al. Ammonia-Treated Ordered Mesoporous Carbonsas Catalytic Materials for Oxygen Reduction Reaction[J]. Chemistry ofMaterials,2010,22:2178-2180.
    [129]Biddinger E J, Ozkan U S. Role of Graphitic Edge Plane Exposure in CarbonNanostructures for Oxygen Reduction Reaction[J]. Journal of PhysicalChemistry C,2010,114:15306-15314.
    [130]Yang L, Ma Y, Hu Z et al. Boron-Doped Carbon Nanotubes as Metal-FreeElectrocatalysts for the Oxygen Reduction Reaction[J]. Angewandte ChemieInternational Edition,2011,50:7132-7135.
    [131]Yang Z, Yao Z, Huang S et al. Sulfur-Doped Graphene as an EfficientMetal-Free Cathode Catalyst for Oxygen Reduction[J]. ACS Nano,2012,6:205-211.
    [132]Liang J, Jiao Y, Qiao S Z et al. Sulfur and Nitrogen Dual-Doped MesoporousGraphene Electrocatalyst for Oxygen Reduction with Synergistically EnhancedPerformance[J]. Angewandte Chemie International Edition,2012,51:11496-11500.
    [133]Liu Z W, Peng F, Wang H J et al. Phosphorus-Doped Graphite Layers withHigh Electrocatalytic Activity for the O2Reduction in an Alkaline Medium[J].Angewandte Chemie,2011,123:3315-3319.
    [134]Choi C H, Park S H, Woo S I. Phosphorus-Nitrogen Dual Doped Carbon as anEffective Catalyst for Oxygen Reduction Reaction in Acidic Media: Effects ofthe Amount of P-Doping on the Physical and Electrochemical Properties ofCarbon[J]. Journal of Materials Chemistry,2012,22:12107-12115.
    [135]Formhals A. Process and Apparatus for Preparing Artificial Threads[P]. USPatent,1934,1975504.
    [136]Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel[J].Advanced Materials,2004,16:1151-1170.
    [137]Huang Z M, Zhang Y Z, Kotaki M et al. A Review on Polymer Nanofibers byElectrospinning and Their Applications in Nanocomposites[J]. CompositesScience and Technology,2003,63:2223-2253.
    [138]Demir M M, Yilgor I, Yilgor E et al. Electrospinning of Polyurethane Fibers[J].Polymer,2002,43:3303-3309.
    [139]Goldstein J, Newbury D E, Joy D C et al. Scanning Electron Microscopy andX-ray Microanalysis[M]. Springer Us,2003.
    [140]Williams D, Carter C. Transmission Electron Microscopy[M].2009:3-22.
    [141]Fitzer E. Some Remarks on Raman Spectroscopy of Carbon Structures[J].High Temperatures High Pressures,1988,20:449-454.
    [142]Lin Y, Hsu Y, Wu C et al. Effects of Nitrogen Doping on the Microstructure,Bonding and Electrochemical Activity of Carbon Nanotubes[J]. Diamond andRelated Materials,2009,18:433-437.
    [143]Dresselhaus M, Dresselhaus G, Jorio A et al. Raman Spectroscopy on IsolatedSingle Wall Carbon Nanotubes[J]. Carbon,2002,40:2043-2061.
    [144]Liang E, Ding P, Zhang H et al. Synthesis and Correlation Study on theMorphology and Raman Spectra of CNxNanotubes by Thermal Decompositionof Ferrocene/Ethylenediamine[J]. Diamond and Related Materials,2004,13:69-73.
    [145]Shackelford J F. Introduction to Materials Science for Engineers[M].2005,Sixth Edition, Macmillan.
    [146]Bard A J, Faulkner L R.电化学方法原理与应用[M].邵元华等,译.北京:化学工业出版社,2005:166-167.
    [147]Kruusenberg I, Matisen L, Jiang H et al. Electrochemical Reduction of Oxygenon Double-Walled Carbon Nanotube Modified Glassy Carbon Electrodes inAcid and Alkaline Solutions[J]. Electrochemistry Communications,2010,12:920-923.
    [148]Kundu S, Nagaiah T C, Muhler M et al. Electrocatalytic Activity and Stabilityof Nitrogen-Containing Carbon Nanotubes in the Oxygen ReductionReaction[J]. Journal of Physical Chemistry C,2009,113:14302-14310.
    [149]Higgins D C, Meza D, Chen Z. Nitrogen-Doped Carbon Nanotubes asPlatinum Catalyst Supports for Oxygen Reduction Reaction in ProtonExchange Membrane Fuel Cells[J]. Journal of Physical Chemistry C,2010,114:21982-21988.
    [150]Yu D, Zhang Q, Dai L. Highly Efficient Metal-Free Growth of Nitrogen-DopedSingle-Walled Carbon Nanotubes on Plasma-Etched Substrates for OxygenReduction[J]. Journal of the American Chemical Society,2010,132:15127-15129.
    [151]Woods M P, Biddinger E J, Ozkan U S et al. Correlation Between OxygenReduction Reaction and Oxidative Dehydrogenation Activities OverNanostructured Carbon Catalysts[J]. Catalysis Letters,2010,136:1-8.
    [152]Wang H, Guay D, Dodelet J P et al. Effect of the Pre-Treatment of CarbonBlack Supports on the Activity of Fe-Based Electrocatalysts for the Reductionof Oxygen[J]. Journal of Physical Chemistry B,1999,103:2042-2049.
    [153]Xu C L, Chen J F, Cui Y et al. Influence of the Surface Treatment on theDeposition of Platinum Nanoparticles on the Carbon Nanotubes[J]. AdvancedEngineering Materials,2006,8:73-77.
    [154]Hull R V, Li L, Xing Y C et al. Pt Nanoparticle Binding on FunctionalizedMultiwalled Carbon Nanotubes[J]. Chemistry of Materials,2006,18:1780-1788.
    [155]Zhang G, S Sun, Sacher E et al. The Surface Analytical Characterization ofCarbon Fibers Functionalized by H2SO4/HNO3Treatment[J]. Carbon,2008,46:196-205.
    [156]Stohr B, Boehm H P, Schlogl R. Enhancement of the Catalytic Activity ofActivated Carbons in Oxidation Reactions by Thermal Treatment withAmmonia or Hydrogen Cyanide and Observation of a Superoxide Species as aPossible Intermediate[J]. Carbon,1991,29:707-720.
    [157]Mangun C L, Benak K R, Economy J et al. Surface Chemistry, Pore Sizes andAdsorption Properties of Activated Carbon Fibers and Precursors Treated withAmmonia[J]. Carbon,2001,39:1809-1820.
    [158]Jaouen F, Charreteur F, Dodelet J P. Fe-Based Catalysts for Oxygen Reductionin PEMFCs: Importance of the Disordered Phase of the Carbon Support[J].Journal of Electrochemical Society,2006,153: A689-A698.
    [159]Shanmugam S, Gedanken A. Generation of Hydrophilic, Bamboo-ShapedMultiwalled Carbon Nanotubes by Solid-State Pyrolysis and ItsElectrochemical Studies[J]. Journal of Physical Chemistry B,2006,110:2037-2044.
    [160]温月芳,曹霞,杨永岗等. PAN预氧化纤维的炭化过程[J].新型碳材料,2008,23:121-126.
    [161]Rahaman M S A, Ismail A F, Mustafa A. A review of Heat Treatment onPolyacrylonitrile Fiber[J]. Polymer Degradation and Stability,2007,92:1421-1432.
    [162]Weidenthaler C, Lu A H, Schuth F et al. X-ray Photoelectron SpectroscopicStudies of PAN-Based Ordered Mesoporous Carbons (OMC)[J]. Microporousand Mesoporous Materials,2006,88:238-243.
    [163]Yang D X, Ventrice Jr C A, Ruoff R S. Chemical Analysis of GrapheneOxide Films After Heat and Chemical Treatments by X-ray Photoelectron andMicro-Raman Spectroscopy[J]. Carbon,2009,47:145-152.
    [164]Bai1B C, Kim J G, Lee1Y S et al. Influence of Oxyfluorination on ActivatedCarbon Nanofibers for CO2Storage[J]. Carbon Letters,2011,12:236-242.
    [165]Lee Y S, Lee B K. Surface Properties of Oxyfluorinated PAN-Based CarbonFibers[J]. Carbon,2002,40:2461-2468.
    [166]Datsyuk V, Kalyva M, Galiotis C et al. Chemical Oxidation of MultiwalledCarbon Nanotubes[J]. Carbon,2008,46:833-840.
    [167]Plomp A J, Su D S, Bitter J H et al. On the Nature of Oxygen-ContainingSurface Groups on Carbon Nanofibers and Their Role for PlatinumDeposition-An XPS and Titration Study[J]. Journal of Physical Chemistry C,2009,113:9865-9869.
    [168]Barazzouk S, Lefèvre M, Dodelet J P. Oxygen Reduction in PEM Fuel Cells:Fe-Based Electrocatalysts Made with High Surface Area Activated CarbonSupports[J]. Journal of Electrochemical Society,2009,156: B1466-B1474.
    [169]von Deak D, Biddinger E J, Ozkan U S. Carbon Corrosion Characteristics ofCNxNanostructures in Acidic Media and Implications for ORRPerformance[J]. Journal of Applied Electrochemistry,2011,41:757-763.
    [170]Jannakoudakis A D, Jannakoudakis P D, Theodoridou E et al. ElectrochemicalOxidation of Carbon Fibers in Aqueous Solutions and Analysis of the SurfaceOxides[J]. Journal of Applied Electrochemistry,1990,20:619-624.
    [171]Biddinger E J, Knapke D S, Ozkan U S et al. Effect of Sulfur as a GrowthPromoter for CNxNanostructures as PEM and DMFC ORR Catalysts[J].Applied Catalysis B: Environmental,2010,96:72-82.
    [172]Feng L, Yan Y, Chen Y et al. Nitrogen-Doped Carbon Nanotubes as Efficientand Durable Metal-Free Cathodic Catalysts for Oxygen Reduction inMicrobial Fuel Cells[J]. Energy&Environmental Science,2011,4:1892-1899.
    [173]Geng D, Chen Y, Knights S et al. High Oxygen-Reduction Activity andDurability of Nitrogen-Doped Graphene[J]. Energy&Environmental Science,2011,4:760-764.
    [174]Ikeda T, Boero M, Ozaki J et al. Carbon Alloy Catalysts: Active Sites forOxygen Reduction Reaction[J]. Journal of Physical Chemistry C,2008,112:14706-14709.
    [175]Zhang L, Xia Z. Mechanisms of Oxygen Reduction Reaction onNitrogen-Doped Graphene for Fuel Cells[J]. Journal of Physical Chemistry C,2011,115:11170-11176.
    [176]Peng M, Li D, Shen L. Nanoporous Structured Submicrometer Carbon FibersPrepared via Solution Electrospinning of Polymer Blends[J]. Langmuir,2006,22:9368-9374.
    [177]Ju Y W, Park S H, Lee W J et al. Electrospun Activated Carbon NanofibersElectrodes Based on Polymer Blends[J]. Journal of Electrochemical Society,2009,156: A489-A494.
    [178]Niu H, Zhang J, Lin T et al. Preparation, Structure and Supercapacitance ofBonded Carbon Nanofiber Electrode Materials[J]. Carbon,2011,49:2380-2388.
    [179]Moon S C, Choi J, Farris R J et al. Highly PorousPolyacrylonitrile/Polystyrene Nanofibers by Electrospinning[J]. Fibers andPolymers,2008,9:276-280.
    [180]Hong C K, Yang K S, Nah C et al. Effect of Blend Composition on theMorphology Development of Electrospun Fibers based on PAN/PMMAblends[J]. Polymer International,2008,57:1357-1362.
    [181]Jaouen F, Lefevre M, Dodelet J P et al. Heat-Treated Fe/N/C Catalysts for O2Electroreduction: Are Active Sites Hosted in Micropores[J]? Journal ofPhysical Chemistry B,2006,110:5553-5558.
    [182]Jaouen F, Lefevre M, Dodelet J P et al. Non-Noble Electrocatalysts for O2Reduction: How Does Heat Treatment Affect Their Activity and Structure?Part II. Structural Changes Observed by Electron Microscopy, Raman, andMass Spectroscopy[J]. Journal of Physical Chemistry C,2007,111:5971-5976.
    [183]Wu H, Zhang R, Pan W et al. Electrospinning of Fe, Co, and Ni Nanofibers:Synthesis, Assembly, and Magnetic Properties[J]. Chemistry of Materials,2007,19:3506-3511.
    [184]Wang L, Yu Y, Chen P C et al. Electrospinning Synthesis of C/Fe3O4Composite Nanofibers and Their Aapplication for High PerformanceLithium-Ion Batteries[J]. Journal of Power Sources,2008,183:717-723.
    [185]Zhang D, Karki A B, Guo Z. Electrospun Polyacrylonitrile NanocompositeFibers Reinforced with Fe3O4Nanoparticles: Fabrication and PropertyAnalysis[J]. Polymer,2009,50:4189-4198.
    [186]任崇斌,王建军,苏建峰等.含铁碳纳米纤维的制备与表征[J].功能材料,2011,42:1678-1681.
    [187]Wu J, Park H W, Chen Z et al. Facile Synthesis and Evaluation of NanofibrousIron-Carbon Based Non-Precious Oxygen Reduction Reaction Catalysts forLi-O2Battery Applications[J]. Journal of Physical Chemistry C,2012,116:9427-9432.
    [188]V Carles, P Alphonse, P Tailhades et al. Study of Thermal Decomposition ofFeC2O4·2H2O Under Hydrogen[J]. Thermochimica Acta,1999,334:107-113.
    [189]Zhu S, Chen Z, Chen Z et al. Nitrogen-Doped Carbon Nanotubes as AirCathode Catalysts in Zinc-Air Battery[J]. Electrochimica Acta,2011,56:5080-5084.
    [190]Pan X, Bao X. Reactions Over Catalysts Confined in Carbon Nanotubes[J].Chemical Communications,2008,46:6271-6281.
    [191]Lin R J, Li F Y, Chen H L. Computational Investigation on Adsorption andDissociation of the NH3Molecule on the Fe(111) Surface[J]. Journal ofPhysical Chemistry C,2011,115:521-528.
    [192]Hou H, Reneker D H. Carbon Nanotubers on Carbon Nanofibers: A NovelStructure Based on Electrospun Polymer Nanofibers[J]. Advanced Materials,2004,16:69-73.
    [193]Palenzuela A V, Zhang L, Cabot P L et al. Carbon-Supported FeNxCatalystsSynthesized by Pyrolysis of the Fe(II)2,3,5,6-Tetra(2-pyridyl)pyrazineComplex: Structure, Electrocnational,2008,57:632-636.
    [194]Lu Q, Wang C, Liu S et al. Continuous Pearl-Necklace-Shaped In2O3CeramicNanofibers: Preparation, Characterization and Gas Sensing Properties[J].Materials Transactions,2011,52:1206-1210.
    [195]Jin Y, Yang D, Jiang X et al. Fabrication of Necklace-Like Structures viaElectrospinning[J]. Langmuirhemical Properties, and Oxygen ReductionReaction Activity[J]. Journal of Physical Chemistry C,2011,115:12929-12940.
    [196]Liu G, Li X, Popov B N et al. Development of Non-Precious MetalOxygen-Reduction Catalysts for PEM Fuel Cells Based on N-Doped OrderedPorous Carbon[J]. Applied Catalysis B: Environmental,2009,93:156-165.
    [197]Wu G, Mark Nelson, Ma S et al. Synthesis of Nitrogen-Doped Onion-LikeCarbon and its Use in Carbon-Based CoFe Binary Non-Precious-MetalCatalysts for Oxygen-Reduction[J]. Applied Catalysis B: Environmental,2009,93:156-165.
    [198]Liu Y, He J H, Yu J et al. Controlling Numbers and Sizes of Beads inElectrospun Nanofibers[J]. Polymer Inter,2010,26:1186-1190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700