用户名: 密码: 验证码:
晶体双折射退偏器的光波叠加分析方法与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
退偏器是将偏振光转化为非偏振光的一种偏光器件。随着偏光技术和激光应用的发展,退偏器被越来越广泛地应用于天文仪器、激光加工、激光医学、光纤通信等各种光学探测和通信系统,因此退偏器性能及优化设计的研究具有重要的现实意义。本文研究的对象是双折射晶体材料的退偏器,即晶体双折射退偏器。该类型的退偏器不能真正把偏振光转化为非偏振光,只是使透射光的偏振态按一定规律做周期性分布,只要周期足够小,其总的平均效果即表现为退偏。因此该类型退偏器属于伪退偏器。晶体双折射退偏器利用晶体的双折射性质可以实现偏振光在空域和频域的退偏,其中,最早的退偏器——Lyot型退偏器便属于频域退偏,而本文研究的其它退偏器均属于空域退偏。频域退偏基于复色光透过退偏器后产生随频率连续变化的相位差,而不同相位差又对应不同偏振态,这些不同偏振态的叠加效果即表现为退偏;空域退偏则一般靠一个或多个晶体楔面(简称晶楔)的组合,产生随空间连续变化的相位差来实现退偏。尽管有所不同,但其退偏原理均可表述为相位差变化造成的不同偏振态的光的叠加。
     退偏器性能的分析长期以来采用矩阵方法,包括Mueller矩阵、相干矩阵。尽管这两种方法的科学性、合理性毋庸置疑,却也有自身难以避免的缺点:过程比较复杂,物理意义比较抽象。为克服这些缺点,本文直接从光的波动本性出发,根据退偏原理,提出光波叠加分析方法。该方法避免了矩阵方法中过多元素带来的繁琐运算,并可充分沿用椭圆偏振光的分析公式或结论,加上对相位的合理、灵活处理,大大简化了数学过程;分析过程的每一步都与退偏的光学过程直接相关,物理意义非常清晰,因此可以揭示矩阵方法难以涉及的退偏机制。
     本文的研究工作主要包括以下三个方面:
     1、利用光波叠加方法分析四种已有形式的退偏器:Lyot改进型退偏器、Lyot型退偏器、HV退偏器、双巴比涅退偏器,并与传统矩阵方法进行对比。
     2、利用光波叠加方法分析四种新设计的退偏器:晶体光轴扇形分布退偏器、正反应用不同特性退偏器、四元优化设计退偏器、Lyot单色光退偏器。其中,后两种属于优化设计形式:四元优化设计退偏器是在光波叠加分析结论基础上,结合双巴比涅退偏器、晶体光轴扇形分布退偏器、正反应用不同特性退偏器等四元结构退偏器的优点而实现完美退偏;而Lyot单色光退偏器是根据光波叠加方法对Lyot型退偏器分析结果,进一步推理得到的一种可以实现对单色线偏振光退偏的退偏器,性能大大优于单个1/4波片形式的单色光退偏器。
     3、制作石英晶体材料的样品,并建立退偏度测试需要的实验系统,对样品性能进行测试。主要测试样品对线偏振光的退偏度,包括偏振度随方位角、入射角的变化情况。除此之外,在探索的基础阶段,做了大量相关的实验工作,如研究退偏器的透射光点分布规律,圆形光阑孔径大小对退偏度的影响,楔角对退偏度的影响,激光波长对退偏度的影响,不同平面内退偏度随入射角的变化规律,光屏上叠加条纹可见度随方位角及光屏位置的变化规律,等。
     本文的主要创新点有:
     1、提出了退偏器的光波叠加分析的思想和方法。
     2、对已有形式的退偏器分析中得到有意义的新结论,如首次推导得到Lyot改进型退偏器和HV退偏器对单色线偏振光的退偏度表达式,统一了不同文献所给的Lyot型退偏器的理想退偏条件,等。
     3、设计并分析了四种新型退偏器,其中四元优化设计退偏器、Lyot单色光退偏器具有各自优越性,完全可以得到推广应用。
     4、实验研究了退偏度随晶楔楔角的变化规律,提出了退偏度对楔角的“饱和性”概念,为退偏器的设计、加工提供了重要依据;提出了受楔角及光屏位置影响的退偏度的“边缘效应”。
     5、根据光波叠加分析的结论,总结了晶体双折射退偏器的理想退偏条件,将成为该类型退偏器设计、分析的基本理论。
     6、研究了退偏度随入射角的实验规律,提出通过微调入射角改善退偏度的方法。
Depolarizer is a type of polarization devices that can realize the transformation frompolarized light to unpolarized light. Along with the development of polarizing technology andlaser application, depolarizers have an increasingly wide utilization in optical detection andcommunication system, such as astronomical instruments, laser processing, laser medicine,optical fiber communication, etc. So it is significant to study the performance of depolarizer andits optimal design. In this paper, the depolarizers made by crystal birefringent, namely crystalbirefringent depolarizers, are selected as the major objects. Such a depolarizer can’t transformincident wave to unpolarized light in real sense, but cause the periodic variation of transmittedpolarization states, and it seems as depolarization for average effect when the cycle is smallenough. Therefore the depolarizer is a type of pseudodepolarizer. Using the birefringentcharacteristics of crystal, the crystal birefringent depolarizer realize the depolarization of spatialor frequency domain. The Lyot depolarizer which is the earliest depolarizer belongs to thefrequency depolarizer and the others belongs to the spatial depolarizer. Operation principle of thefrequency depolarizer bases on the different phase difference caused by the transmittedpolychromatic lights and the different phase differences lead to the different polarization states.The behavior of the superposition of the different polarization states is just depolarization. Thedepolarization of the spatial depolarizer based on the continuously varying spatial phasedifferences caused by one or more crystal wedge surfaces (short for crystal wedge). Though thedifferences between the above two depolarizers, their depolarization principle can be expressedas the same as the superposition of lights of different polarization states caused by the differentphase differences.
     For a long time, matrix is adopted as the analytical method of depolarizers, includingMueller matrix and coherency matrix. Though their scientificity is certainly reliable, they stillhave some inevitable defects, such as complicated procedure and abstract physical meaning. Toovercome the defects, considering directly the wave properties of lights, we put forward ananalytical method based on superposition of lights. The method avoids the complicatecalculation caused by the excessive matrix elements, moreover, most of the formulas andconclusions to analyze elliptically polarized light can be cited adequately by the procedure, andthe reasonable and flexible treatments of the phase in addition, the mathematical procedure ismuch simplified. The procedure has very clear physical meaning for every analysis sequence isrelated directly to the optical process of depolarization. So the new method can disclose somedepolarization mechanisms that difficult to be covered by the matrix method.
     This paper mainly includes the following research contents in three fields:
     1. Using the superposition of lights method, four existed depolarizers were analyzed,including the improved Lyot depolarizer, the Lyot depolarizer, the HV depolarizer, and the dualBabinet compensator depolarizer. The contrasts between it with the traditional methods weregiven.
     2. Using the superposition of lights method, four new designed depolarizers were analyzed,including the optical axes of crystal fan-shaped-distribution depolarizer, the different propertiesof forward-reverse applications depolarizer, the quarternary optimal design depolarizer, the Lyotmonochromatic depolarizer, among which the last two are the optimal designs. Based on thestudy conclusions of the superposition of lights, combined the advantages of the dual Babinetcompensator depolarizer, the optical axes of crystal fan-shaped-distribution depolarizer and thedifferent properties of forward-reverse applications depolarizer, the quarternary optimal designdepolarizer can achieve perfect depolarization. By further discursion based on the studyconclusions of the Lyot depolarizer by the superposition of lights, the Lyot monochromaticdepolarizer was derived to realize the depolarization of monochromatic linearly polarized light,whose performance is much better than depolarizer acted by one quarter-wave plate.
     3. Experiment system was set up to test the performance of samples made by quartz crystal.The main test aim is the degree of depolarization (short for D), including the variation of the Dwith azimuth angle and incident angle. In addition, lots of related experiments were conducted inthe exploratory stage. For example, the study of distribution regularities of transmitted light spots,and the dependence of the D on the size of round diaphragm aperture, wedge angle, laser wavelength, incident angle in different plane, and the dependence of the degree of visibility ofsuperposed stripes on the azimuth angle and the position of optical screen.
     The major innovations of this paper include the following areas:
     1. The idea and method of the superposition of lights are put forward to analyze depolarizer.
     2. The new significant conclusions were derived from the analysis of the existeddepolarizers, such as the D of the improved Lyot depolarizer and the HV depolarizer for linearlypolarized light were deduced firstly, the different ideal conditions of depolarization from someearly literature were united, etc.
     3. Four new depolarizers were designed and analyzed, among which the quarternary optimaldesign depolarizer and the Lyot monochromatic depolarizer can be applied widely for their ownsuperiorities.
     4. The dependence of the D on the wedge angle was studied through experiments, and the“saturability” of the D on the wedge angle was put forward as a result, which is an importantground for the design and machining. The “edge effect” of the D which is dependent on thewedge angle and the position of optical screen were also mentioned.
     5. Based on the analysis of the superposition of lights, the ideal condition of depolarizationof the crystal birefringent depolarizer was concluded, which will be a fundamental theory usedfor the design and analysis of such depolarizer.
     6. The dependence of the D on the incident angle was studied through experiments, and takeminor adjustment of incident angle as the way to improve the D.
引文
[1] M. Bass, C. DeCusatis, J. M. Enoch, et al. Handbook of optics [M]. New York: McGraw HillProfessional,2009.412-595.
    [2]李景镇.光学手册[M].西安:陕西科学技术出版社,1986.497-521.
    [3] W.G. Dricoll, W. Vanghan, et al. Handbook of Optics [M]. New York: McGraw HillProfessional,1978.10-142.
    [4] Qi Hong, Thomas X. Wu, Ruibo Lu, et al. Wide-view circular polarizer consisting of a linearpolarizer and two biaxial films [J]. Optics Express,2005,13(26):10777-10783.
    [5] J. H. W. G. den Boer, G. M. W. Kroesen, W. de Zeeuw, et al. Improved polarizer in theinfrared: two wire-grid polarizers in tandem [J]. Optics Letters,1995,20(7):800-802.
    [6] T. Sergan, M. Lavrentovich, J. Kelly, E. Gardner, et al. Measurement and modeling of opticalperformance of wire grids and liquid-crystal displays utilizing grid polarizers[J]. J. Opt. Soc.Am. A,2002,19(9):1872-1885.
    [7] I. Yamada, J. Nishii, M. Saito. Modeling, fabrication, and characterization of tungsten silicidewire-grid polarizer in infrared region [J]. Applied Optics,2008,47(26):4735-4738.
    [8] H. Lotem, K. Rabinovitch. Penta prism laser polarizer [J]. Applied Optics,1993,32(12):2017-2020.
    [9] C. Wu, S. Wu. Liquid-crystal-based switchable polarizers for sensor protection [J]. AppliedOptics,1995(31):7221-7227.
    [10]吴福全,李国华,宋连科,等.激光高效偏光镜的研究[J].中国激光,1995,22(1):37-39.
    [11]李红霞,吴福全,范吉阳.空气隙间隔格兰型棱镜偏光器透射光强扰动的温度效应[J].物理学报,2003,52(8):2081-2086.
    [12]任树锋.三元结构剪切差对入射点连续可调的平行分束偏光镜设计[J].光学技术,2012,38(4):477-481.
    [13] T. Peters, S. S. Ivanov, D. Englisch, et al. Variable ultrabroadband and narrowbandcomposite polarization retarders [J]. Applied Optics,2012,51(31):7466-7474.
    [14] J. Craven-Jones, B. M. Way, M. W. Kudenov, et al. A thermalized channeledspectropolarimetry using a biaxial potassium titanyl phosphate crystal [J]. Optics Letters,2013,38(10):1657-1659.
    [15] H. Fabricius. Achromatic prism retarder for use in polarimetric sensors [J]. Applied Opics,1991,30(4):426-429.
    [16] P. F. Chimento, N. V. Kuzmin, J. Bosman, et al. A subwavelength slit as a quarter-waveretarder [J]. Optics Express,2011,19(24):24219-24227.
    [17] P. D. Hale, G. W. Day. Stability of birefringent linear retarders (waveplates)[J]. AppliedOptics,1988,27(24):5146-5153.
    [18] H. D. Noble, W. T. Lam, W. Dallas, et al. Square-wave retarder for polarizationcomputer-generated holography[J]. Applied Optics,2011,50(20):3703-3710.
    [19] A. R. Zaghloul, D. A. Keeling, W. A. Berzett, et al. Design of reflection retarders by useof nonnegative film-substrate systems [J]. J. Opt. Soc. Am. A,2005,22(8):1637-1645.
    [20] F. J. Martínez, A. Márquez, S. Gallego, et al. Retardance and flicker modeling andcharacterization of electro-optic linear retarders by averaged Stokes polarimetry [J]. OpticsLetters,2014,39(4):1011-1014.
    [21] J. L. Vilas, L. M. Sanchez-Brea, E. Bernabeu. Optimal achromatic wave retarders using twobirefringent wave plates: reply [J]. Applied Optics,2013,52(29):7081-7082.
    [22] J. P. McGuire, R. A. Chipman. Analysis of spatial pseudodepolarizers in imaging systems[J]. Optical Engineering,1990,29(12):1478-1484.
    [23] Stephen C. McClain, Russell A. Chipman, Lloyd W. Hillman. Aberrations of ahorizontal-vertical depolarizer [J]. Applied Optics,1992,31(13):2326-2331.
    [24] B. H. Billings. A monochromatic depolarizer[J]. J. Opt. Soc. Am.,1951,41(12):966-968.
    [25] Philippe Réfrégier, Myriam Zerrad, Claude Amra. Coherence and polarization properties inspeckle of totally depolarized light scattered by totally depolarizing media [J]. OpticsLetters,2012,37(1):2055-2057.
    [26] H. Dong, J. Q. Zhou, M. Yan, et al. Quasi-monochromatic fiber depolarizer and itsapplication to polarization-dependent loss measurement [J].Optics Letters,2006,31(7):876-878.
    [27] A. G. Petrashen. Depolarization of radiation upon coherent excitation [J]. Optics andSpectroscopy,2010,109(6):829-832.
    [28] Wei Jin, George Stewart, Kenneth Crawford, et al. Fiber-optic pseudodepolarizer based onbirefringence modulation [J].Optics Letters,1995,20(16):1737-1739.
    [29] I. Yoon, B. Lee, S. Park. The polarization changing speed of the light depolarized by asimple depolarizer [J]. Optics Letters,1995,20(16):1737-1739.
    [30] W. K. Burns, A. D. Kersey. Fiber optic gyroscopes with depolarized light [J]. Journal ofLightwaveTechnology,1992,10(7):992-998.
    [31] Kejiang Zhou, Keke Hu, Fengzhong Dong. Single-mode fiber gyroscope with threedepolarizers [J] Optik-International Journal for Light and Electron Optics,2014,125(2):781-784.
    [32] J. Carlos G. de Sande, Gemma Piquero, Cristina Teijeiro. Polarization changes at Lyot depolarizeroutput for different types of input beams [J]. J. Opt. Soc. Am. A,2012,29(3):278-284.
    [33] R. Ossikovski, M. Foldyna, C. Fallet, A. De Martino. Experimental evidence for naturallyoccurring nondiagonal depolarizers [J] Optics Letters,2009,34(16):2426-2428.
    [34] Takada Kazumasa, Chida Kazunori, Noda Juichi. New diagrammatical method forcalculation of fiber-optic Lyot depolarizer performance [J]. J. Opt. Soc. Am. A,1988,5(11):1905-1977.
    [35] A. Shaham H. S. Eisenberg. Realizing a variable isotropic depolarizer [J]. OpticsLetters,2012,37(13):2643-2645.
    [36] R. D. Saunders, H. J. Kostkowski. Roughened quartz surfaces and Teflon as small anglediffusers and depolarizers between200and400nm [J]. Applied Optics,1989,28(15):3242-3245.
    [37] Shanling Lu, A. P. Loeber. Depolarization of white light by a birefringent crystal [J]. J. Opt.Soc. Am.,1975,65(3):248-251.
    [38] C. J. Peters. Light Depolarizer [J]. Applied Optics,1964,3(12):1502-1503.
    [39] F. Heismann, K. L. Tokuda. Polarization-independent electro-optic depolarizer [J]. OpticsLetters,1995,20(9):1008-1010.
    [40] O. Hunderi. Rotating depolarizer ellipsometry [J]. Applied Optics,1977,16(11):3012-3015.
    [41] T. Tokura, T. Kogure, T. Sugihara, K. Shimizu, et al. Efficient pump depolarizer analysis fordistributed raman amplifier with low polarization dependence of gain[J]. Journal ofLightwave Technology,2006,24(11):3889-3896.
    [42] P. Shen. Tunable single mode fiber depolarizer [J]. Electronics Letters,2001,33(12):1077-1078.
    [43] K. Takada, K. Okamoto, Noda. New fiber-optic depolarizer [J]. Journal of LightwaveTechnology,1986,4(2):213-219.
    [44] P. Shen, J. C. Palais. Passive single-mode fiber depolarizer [J]. Applied Optics,1999,38(9):1686-1691.
    [45] P. Shen, J. C. Palais, C. Lin. Fiber Recirculating Delay-Line Tunable Depolarizer [J].Applied Optics,1998,37(3):443-448.
    [46] Juan Carlos G. de Sande, Massimo Santarsiero, Gemma Piquero, et al. Longitudinalpolarization periodicity of unpolarized light passing through a double wedge depolarizer [J].Optics Express,2012,20(25):27348-27360.
    [47] H. Dong, J. Q. Zhou, M. Yan, et al. Quasi-monochromatic fiber depolarizer and its applicationto polarization-dependent loss measurement [J]. Optics Letters,2006,31(7):876-878.
    [48] T. Tokura, T. Kogure, T. Sugihara, et al. Efficient pump depolarizer analysis for distributedRaman amplifier with low polarization dependence of gain [J]. Journal of LightwaveTechnology,2006,24(11):3889-3896.
    [49] K. Takada, K. Chida, J. Noda. New diagrammatical method for calculation of fiber-opticLyot depolarizer performance [J]. J. Opt. Soc. Am. A,1988,5(11):1905-1917.
    [50] D. L. Portigal. Effectiveness of a quartz rod as a light depolarizer [J]. Applied Optics,1969,8(4):838-839.
    [51] M. Honma, T. Nose. Liquid-crystal depolarizer consisting of randomly aligned hybridorientation domains [J]. Applied Optics,2004,43(24):4667-4671.
    [52] J. Blake, B. Szafraniec, J. Feth. Partially polarized fiber-optic gyro [J]. Optics Letters,1996,21(15):1192-1194.
    [53] D. A. Haner, R. T. Menzies. Integrating sphere depolarization at10μm for a non-Lambertianwall surface: application to lidar calibration [J]. Applied Optics,1993,32(33):6804-6807.
    [54] S. C. McClain, C. L. Bartlett, J. L. Pezzaniti, et al. Depolarization measurements of anintegrating sphere [J]. Applied Optics,1995,34(1):152-154.
    [55] B. Szafraniec, G. A. Sanders. Theory of polarization evolution in interferometric fiber-opticdepolarized gyros [J]. Journal of Lightwave Technology,1999,17(4):579-584.
    [56] S. R. Cloude. Depolarization synthesis: understanding the optics of Mueller matrixdepolarization [J]. J. Opt. Soc. Am. A,2013,30(4):691-700.
    [57] P. L. Makowski, A. W. Domanski. Approach for fast numerical propagation of uniformlypolarized random electromagnetic fields in dispersive linearly birefringent systems [J]. J.Opt. Soc. Am. A,2013,30(9):1825-1831.
    [58] Huang Z. M, Chu J. H. Optimizing precision of fixed-polarizer, rotating-polarizer, sample,and fixed-analyzer spectroscopic ellipsometry [J].J. Opt. Am. Soc. A,2012,29(3):278-284.
    [59]吴福全,李国华,封太忠,等.单色光石英退偏器的光谱性能测试研究[J].光谱学与光谱分析,1996,16(3):23-25.
    [60]许福运,李敏.方解石单板退偏器[J].光电子·激光,1990,1(3):159-162.
    [61]苏广文,马恒坚,王光明. Lyot型光纤消偏器的原理及性能分析[J].光子学报,1997,26(10):924-927.
    [62]延凤平,姚毅,简水生.基于Lyot型光纤消偏器的理论研究[J].光学学报,1996,16(6):848-852.
    [63] M. I. Mishchenko, D. W. Mackowski. Light scattering by randomly oriented bispheres [J].Optics Letters,1994,19(20):1604-1606.
    [64]黄振.粗糙表面后向散射退偏特性的研[D].南京:南京理工大学,2008.
    [65]刘剑波,蔡喜平.雾的激光退偏振现象的实验研究[J].中国激光,2003,30(13):219-222.
    [66]崔冬,李铁,闫炜.涂漆金属等几种目标的后向散射激光偏振特性[J].探测与控制学报,2009(02):41-45.
    [67]郑小兵,夏宇兴.随机表面上的多次光散射与交叉退偏[J].光电子·激光,1990,10(1):46-49.
    [68] A. Márquez, I. Moreno, C. Iemmi, et al. Mueller-Stokes characterization and optimization ofa liquid crystal on silicon display showing depolarization [J]. Optics Express,2008,16(3):1669-1685.
    [69] Blandine Laude-Boulesteix, Antonello De Martino, Bernard Drévillon, et al. Muellerpolarimetric imaging system with liquid crystals [J]. Applied Optics,43(14):2824-2832.
    [70]刘雁.单色光退偏器及液晶退偏效应的研究[D].曲阜:曲阜师范大学,2004.
    [71]王伟.液晶电控双折射率温度效应的研究[D].曲阜:曲阜师范大学,2003.
    [72]王建军,林宏奂,隋展,等.一种新型液晶退偏振器的研究[J].激光技术,2007,31(3):311-313.
    [73]吴福全,李国华,黄家寅,等.单色光石英退偏器的退偏机理及性能研究[J].中国激光,1995,22(5):338-342.
    [74]赵发财,王淑荣,曲艺.旋光退偏器用于星载光栅成像光谱仪分析[J].应用基础与工程科学学报,2012,20(4):677-683.
    [75]宋师霞,宋连科.双光楔旋光退偏器的Mueller矩阵分析[J].光学学报,2009,29(7):1947-1950.
    [76] M. Martinelli, J. C. Palais. Dual fiber-ring depolarizer[J]. Journal of Lightwave Technology,2001,19(6):899-904.
    [77] M. Martinelli, J. C. Palais. Theory of a tunable fiber ring depolarizer theory[J] Appliedoptics,2001,40(18):3014-3018.
    [78] K. Boehm, K. Petermann, E. Weidel. Performance of Lyot depolarizers with birefringentsingle-mode fibers [J]. Journal of Lightwave Technology,1983,1:71-74.
    [79]张靖华. Lyot型光纤消偏器的Mueller矩阵分析[J].上海大学学报(自然科学版),2002,8(2):140-144.
    [80]张睿,汪绳武,张炎华,等.偏振及双折射效应对全光纤退偏陀螺性能的影响[J].上海交通大学学报,2000,34(2):218-221.
    [81]许福运,李国华.退偏振器研究的历史现状及其应用[J].光学仪器,1995,17(2):37-40.
    [82]范水昌,陆冬生,周风睛.偏振激光束对激光加工的影响[J].激光技术,1988,12(5):45-51.
    [83]阴亚芳.晶体型消偏器及偏振模色散模拟器研究[D].西安:中国科学院国家授时中心,2006.
    [84]刘继红.激光消偏技术和偏振干涉滤波理论研究[D].西安:中国科学院西安光学精密机械研究所,2006.
    [85]高军,马俊.光学退偏器在遥感器中应用的探讨[J].红外与激光工程,1998,27(6):34-36,47.
    [86] R. M. A.阿查姆, N. M.巴夏拉.椭圆偏振测量术和偏振光[M].北京:科技出版社,1986.8-52.
    [87]廖延彪.偏振光学[M].北京:科学出版社,2003.46-63.
    [88]魏光辉.矩阵光学[M].北京:兵器工业出版社,1995.144-209.
    [89] R. Ossikovski. Analysis of depolarizing Mueller matrices through a symmetricdecomposition [J]. J. Opt. Soc. Am. A,2009,26(5):1109-1118.
    [90] I. Moreno, A. Lizana, J. Campos, et al. Combined Mueller and Jones matrix method for theevaluation of the complex modulation in a liquid-crystal-on-silicon display [J]. OpticsLetters,2008,33(6):627-629.
    [91] R. Ossikovski. Canonical forms of depolarizing Mueller matrices [J]. J. Opt. Soc. Am. A,2010,27(1):123-130.
    [92] S. Lu, R. A. Chipman. Interpretation of Mueller matrices based on polar decomposition [J].J. Opt. Soc. Am. A,1996,13(5):1106-1113.
    [93] H. D. Noble, S. C. McClain, R. A. Chipman. Mueller matrix roots depolarization parameter[J]. Applied Optics,2012,51(6):735-744.
    [94] Oriol Arteaga, Adolf Canillas. Analytic inversion of the Mueller-Jones polarization matricesfor homogeneous media [J].Optics Letters,2010,35(4):559-561.
    [95] Noé Ortega-Quijanono, Bicher Haj-Ibrahim, Enric García-Caurel, et al. Experimentalvalidation of Mueller matrix differential decomposition [J]. Optics Letters,2012,20(2):1151-1163.
    [96] Razvigor Ossikovski, Clément Fallet, Angelo Pierangelo, et al. Experimental implementationand properties of Stokes nondiagonalizable depolarizing Mueller matrices[J].OpticsLetters,2009,34(7):974-976.
    [97] Alexander B. Kostinski, Clark R. Givens, John M. Kwiatkowski. Constraints on Muellermatrices of polarization optics [J]. Applied Optics,1993,32(9):1646-1651.
    [98] M. Foldyna1, E. Garcia-Caurel1, R. Ossikovski1, et al. Retrieval of a non-depolarizingcomponent of experimentally determined depolarizing Mueller matrices [J].OpticsExpress,2009,17(15):12794-12806.
    [99] S. R. Cloude. Depolarization synthesis: understanding the optics of Mueller matrixdepolarization [J]. J. Opt. Soc. Am. A,2013,30(4):691-700.
    [100] J. J. Gil. Transmittance constraints in serial decompositions of depolarizing Muellermatrices: the arrow form of a Mueller matrix [J]. J. Opt. Soc. Am. A,2013,30(4):701-707.
    [101] B. N. Simon, S. Simon, N. Mukunda, et al. A complete characterization of pre-Mueller andMueller matrices in polarization optics [J]. J. Opt. Soc. Am. A,2010,27(2):188-199.
    [102] H. D. Noble, R. A. Chipman. Characterization of backscattering Mueller matrix patterns ofhighly scattering media with triple scattering assumption [J]. Optics Express,2007,15(15):9672-9680.
    [103] H. D. Noble, R. A. Chipman. Mueller matrix roots algorithm and computationalconsiderations [J]. Optics Express,2012,20(1):17-31.
    [104] J. J. Gil, I. San José. Polarimetric subtraction of Mueller matrices [J]. J. Opt. Soc. Am. A,2013,30(6):1078-1088.
    [105] O. Arteaga, B. Kahr. Characterization of homogenous depolarizing media based onMueller matrix differential decomposition [J]. Optics Letters,2013,38(7):1134-1136.
    [106] J. J. Gil, I. San José, R. Ossikovski. Serial-parallel decompositions of Mueller matrices [J].J. Opt. Soc. Am. A,2013,30(1):32-50.
    [107] V. Devlaminck. Physical model of differential Mueller matrix for depolarizing uniformmedia [J]. J. Opt. Soc. Am. A,2013,30(11):2196-2204.
    [108] R. Ossikovski, V. Devlaminck. General criterion for the physical realizability of thedifferential Mueller matrix [J]. Optics Letters,2014,39(5):1216-1219.
    [109] V. Devlaminck, P. Terrier, J. M. Charbois. Characterization of a medium by estimating theconstituent components of its coherency matrix in polarization optics [J]. Optics Express,2011,19(22):21665-21672.
    [110] V. Devlaminck. Spatial propagation of coherency matrix in polarization optics [J]. J. Opt.Soc. Am. A,2012,29(7):1247-1251.
    [111] A. Zakeri, M. H. Miran Baygi, K. Madanipour. Singular value analysis of the Muellermatrix in comparison with eigenvalue analysis of the coherency matrix in polarizationcharacterization of media [J]. Applied Optics,2013,52(33):7859-7866.
    [112] V. Devlaminck, P. Terrier. Geodesic distance on non-singular coherency matrix space inpolarization optics [J]. J. Opt. Soc. Am. A,2010,27(8):1756-1763.
    [113] S. Li. Jones-matrix analysis with Pauli matrices: application to ellipsometry [J]. J. Opt. Soc.Am. A,2000,17(5):920-926.
    [114] V. Devlaminck, P. Terrier, J. M. Charbois. Characterization of a medium by estimating theconstituent components of its coherency matrix in polarization optics [J]. Optics Express,2011,19(22):21665-21672.
    [115] C. J. R. Sheppard. Geometric representation for partial polarization in three dimensions [J].Optics Letters,2012,37(14):2772-2774.
    [116] Shu-feng Ren, Fu-quan Wu. Analysis of an improved Lyot depolarizer in terms of themulti-beam superposition treatment [J]. Journal of Optoelectronics Letters,2013,19(4):246-249.
    [117]任树锋,吴福全,吴闻迪. Lyot改进型退偏器单色光的退偏性能[J].光学学报,2013,33(4):0423001-0423005.
    [118]任树锋.多光束叠加方法对Lyot改进型退偏器的偏振相关性研究[J].光学技术,2013,39(1):14-18.
    [119]任树锋,吴福全.新型晶体光轴扇形分布退偏器的研究[J].中国激光,2013,40(9):0916001.
    [120]任树锋.新型四元双折射退偏器正反向应用特性的研究[J].光电子·激光,2013,24(11):2065-2069.
    [121]任树锋. Lyot型退偏器的光束叠加分析[J].光学技术,2014,40(2):189-192.
    [122]任树锋,吴福全. Lyot单色光退偏器设计与研究[J].应用光学,2014,35(2):307-310.
    [123]任树锋.线偏振光通过多个任意厚度波片的叠加研究[J].激光技术,2014,38(3).
    [124]吴松章,许福运,李敏,等.云母、方解石双板退偏振器研究[J].光电子·激光,1990,1(2):111.
    [125]池濒,高军,徐森禄.一种实用的准单色光退偏器的研究[J].光学学报,1997,17(8):1097-1102.
    [126] Y. Tu, X. Wang, S. Li, Y. Cao. Analytical approach to the impact of polarization aberrationon lithographic imaging [J]. Optics Letters,2012,37(11):2061-2063.
    [127] Russell A. Chipman. Depolarization index and the average degree of polarization [J].Applied optics,2005,44(13):2490-2495.
    [128] D. A. Zimnyakov, G. V. Simonenko, V. V. Tuchin. Dispersion dependence of the opticalanisotropy and the degree of depolarization of fibrous tissues[J]. Journal of OpticalTechnology,2010,77(9):577-581.
    [129] F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, et al. Comparison of various lineardepolarization parameters measured by lidar[J]. Applied Optics,1999,38(21):4425-4432.
    [130] Paul H. Richter. The Lyot depolarizer in quasimonochromatic light [J]. J. Opt. Soc. Am.,1979,69(3):460-463.
    [131] A. P. Loeber. Depolarization of white light by a birefringent crystal. II. The Lyotdepolarizer [J]. J. Opt. Soc. Am.,1982,72(5):650-656.
    [132] K. Mochizuki. Degree of polarization in jointed fibers: the Lyot depolarizer [J]. AppliedOptics,1984,23(19):3284-3288.
    [133] L. Piotr, Makowski, Z. Marek, et al. Lyot depolarizer in terms of the theory ofcoherence-description for light of any spectrum[J]. Applied Optics,2012,51(5):626-634.
    [134]池灏,章献民,陈抗生,等. Lyot型退偏器的相干分析[J].浙江大学学报,2000,34(2):140-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700