用户名: 密码: 验证码:
光色对刺参(Apostichopus jponicus)行为、生长以及不同规格刺参代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先详述了刺参的生物学以及各环境因子对刺参的影响的研究进展,通过一系列的室内实验研究了光色对刺参的行为、生长、能量收支以及3种规格大小的刺参的耗氧率和排氨率的影响。主要研究成果如下:
     1.1光色对刺参(Apostichopus japonicus)行为的影响
     水温控制在18℃左右,用直径为2m的圆形水槽内进行观察实验。实验6天为一个观察周期,分别设置了红、橙、黄、绿、蓝色和对照组白色6种光照处理,共有5个重复。实验结果显示,刺参在24h内,在黑暗状态下6种光色下的海参分布没有显著性差异,开灯后,不同光色下刺参的数量会根据光色的不同而呈现显著性差异;不同光色下刺参的趋势率的大小排列为黄色>橙色>红色>白色>绿色>蓝色,黄色和橙色光照下刺参的趋势率较高,明显高于绿色和蓝色光照下刺参的趋势率(P<0.05),红色和白色与橙色和绿色光照下的趋势率没有显著性差异(P>0.05);另外,在一个实验周期内,不同光色下刺参每天的趋势率变化不明显,未达到显著性差异。实验结果表明光色对刺参有一定的影响,且对于刺参来说光色的敏感区域为橙-黄光。
     1.2光色对刺参(Apostichopus japonicus)生长的影响
     本实验采用室内受控的实验方法研究了不同光色下对刺参生长的影响。实验持续60天。实验设了红、橙、黄、绿、蓝色和对照组白色6种光照处理。研究结果表明,光色对刺参生长的影响有显著性差异,其中红色光照下刺参的生长显著高于蓝色光照下(P<0.05),其他四种颜色处理的生长位于两者之间;各处理组间摄食率(FI)没有显著性差异(P>0.05),但蓝色处理下的食物转化效率(FCE)远远低于红色和橙色处理组以及白色和黄色处理组,与绿色处理下的食物转化效率差异不明显;蓝色光照下排粪率(FPR)显著高于红色和黄色光照下,与其他光照下的差异不显著;从能量方面来看,蓝色光照下用于生长的能量(G)是最低的,显著低于红、黄、橙3种光色,而与白色和绿色处理没有显著差异。实验结果显示刺参在蓝色光照下的生长缓慢,显著低于红色光照下的生长,但与对照组白色光差异不明显。这是因为在蓝色光照下刺参食物转化效率(FCE)最低,使其用于生长的能量(G)最低,最终导致刺参在蓝色光下生长缓慢。
     1.3光色对不同规格刺参(Apostichopus japonicus)代谢的影响
     本实验主要采用室内受控的方法研究了不同光色下3种规格刺参的耗氧率和排氨率的变化。实验设计了红、橙、黄、绿、蓝色和对照组白色6种光照处理,以及大([73.32±1.73)g]、中[(46.71±0.15)g]、小[(25.67±0.25)g ]3种规格的刺参。研究结果表明:(1)光色对刺参的耗氧率和排氨率有显著性影响,3种规格刺参的耗氧率趋势相同,白色>红色>黄色>绿色>蓝色>橙色,3种规格排氨率的变化趋势一致,白色>红色>橙色>绿色>黄色>蓝色;(2)刺参的体重与单位体重耗氧率之间的回归关系可以表示为R=aWb, a值在0.0059—0.0121之间,平均值为0.0101,b值范围是1.1197—1.2146,平均值为1.1583;(3)刺参的体重与单位体重排氨率之间的回归关系可以表示为N=aWb,a值的变动范围为0.0042—0.02,平均值为0.0086,b值的变动范围为0.4553—0.8678,平均值为0.6665,在实验范围内随着光谱频率的降低,刺参的耗氧率和排氨率都大致呈下降趋势。
At first, a detailed literature review of the biology on sea cucumber, Apostichopus japonicus and the research progress about the effect on some environmental factors. And then, a series of indoor experiments are conducted to investigate the effects of light color on the behavior, growth, energy budget and metabolism with three specifications sea cucumber, Apostichopus japonicus. The results are summarized as follows:
     2.1 The effect of light color on behavior of sea cucumber, Apostichopus japonicus
     The experiment is carried out with a diameter of 2m circular tank, with the temperature controlled in 18℃. Experimental Observation of a six day cycle, are set up Red, Orange, Yellow, Green, Blue and White control group, six kinds of light treatments, a total of five repeat. Experimental results show that sea cucumber, within 24h, the six-color distribution of sea cucumbers has no significant difference in the dark state, but during photophase, the distribution of sea cucumbers has a significant difference under different light color; the order of the photokinesis under different light color is Yellow> Orange> Red> White> Green> Blue, the photokinesis in Yellow and Orange is significantly higher than that of Green and Blue (P <0.05), and Red and White have no significantly difference compared with Orange and Green(P>0.05); In addition, the everyday photokinesis has no significant change during an experiment cycle. The results show that there is a significant effect of photokinesis under different light color, and the sensitive area is between orange and yellow.
     2.2 The effect of light color on the growth of sea cucumber, Apostichopus japonicus
     This experiment used indoor controlled study of the experimental methods under different light color on the growth of sea cucumber, Apostichopus japonicus. Experimental sustained 60 days. Experiment sets up the Red, Orange, Yellow, Green, Blue and White control group, six kinds of light treatment. The results show that the growth of sea cucumber has a significant difference under different light color, which the growth of Red light is significantly higher than the growth of Blue light (P <0.05), the other four treatment with the growth of color in between ; the treatment groups’feeding rate (FI) have no significant difference (P>0.05), but dealt with in the Blue food conversion is efficiency (FCE) far below the Red and Orange-treated group, as well as White and Yellow-treated group, and Green deal with the transformation efficiency has not significant difference; in Blue light feces production rate (FPR) is significantly higher than that in Red and Yellow light, and the other lights have no significant difference from the point of view of energy, Blue light for Growth (G) is the minimum energy, significantly lower than Red, Yellow and Orange three kinds of color, with White and Green treatments with the significant differences. The experiment results show that Blue light group is in the slow growth, significantly lower than the growth of Red light, but with the control group has no significant difference. This is because that the Blue light group food conversion efficiency (FCE) is minimum, for the growth of its energy (G) minimum, which eventually led to Apostichopus japonicus in the Blue light of slow growth.
     2.3 The Effect of Light Color on Metabolizability of Sea Cucumber, Apostichopus japonicus
     This study used mainly controlled indoor studied under different light color specifications Apostichopus japonicus three kinds of oxygen consumption rate and ammonia excretion rate changes. Experimental design of the Red, Orange, Yellow, Green, Blue and White control group, six kinds of illumination, as well as big [(73.32±1.73) g], [(46.71±0.15) g], small [(25.67±0.25) g] three kinds of specifications. The results show that: (1)The color on the rate of oxygen consumption and ammonia excretion rate has significant influence. The impact on the three kinds of specifications has the same trend as the rate of oxygen consumption, White> Red> Yellow> Green> Blue> Orange, three kinds of specifications has the same change trends as ammonia excretion rate, White> Red> Orange> Green> Yellow> Blue ;(2) The regressive equation between the body weight of sea cucumber and oxygen consumption can be described as R = aWb, the ranges of a and b are 0.0059-0.0121, with a mean of 0.0101and 1.1197-1.2146, with a mean of 1.1583 ;(3) The regressive equation between the body weight of sea cucumber and ammonia excretion rate can be described as N = aWb, the range of a and b can be expressed as 0.0042-0.02, with a mean of 0.0086 and 0.4553-0.8678, with a mean of 0.6665. On the condition of the experiment the rate of oxygen consumption depresses with light color shorter, and the Ammonia rates have the same trends.
引文
[1] Almeida-Val V. M. F., Mesquita-Saad L. S. B., Leit?o M. A. B., et al.. Specialized metabolism and biochemical suppression during aestivation of the extant South American lungfish Lepidosiren paradoxo. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2000, 126(Suppl 1): 2-8.
    [2] Binyon J.. The effects of diluted seawater upon podial tissues of the starfish. Asterias rubbens L. Comp Biochemphysiol, 41A:1-6.
    [3] Blaxter, J. H. S.. Visual thresholds and spectral sensitivity of herring larrae. J. Exp. Biol., 1968, 48: 39-53.
    [4] Bower S. M.. Synopsis of infectious diseases and parasites of commercially exploited shellfish: Ciliates associated with sea cucumbers, 2004.
    [5] Bower S. M.. Synopsis of infectious diseases and parasites of commercially exploited shellfish: Coccidia in sea cucumbers, 2004.
    [6] Choe S. & Ohshima Y.. On the morphological and ecological differences between two commercial forms.“Green”and“Red”, of the Japanese common sea cucumber, Stichopus japonicus Selenka. Bullutin of the Japanese Society of Scientific Fisheries, 1961, 27:97-106.
    [7] Cox D. K., Coutant C. C.. Growth dynamics of juvenile striped bass as functions of temperature and ration. Trans Am Fish Soc, 1981, 110,226-238.
    [8] Cross T. F.. Genetic considerations in enhancement and ranching of marine and anadromous species. In: Howell B. R., Moksness E., Svasand T. (Eds.), Stock Enhancement and Sea Ranching. Proceedings of the 1st International Symposium on Stock Enhancement and Sea Ranching, 8-11 September 1997. Bergen, Norway. Blackwell, Oxford, 1999, 37-48.
    [9] Diana J. S.. The growth of largemouth bass, Micropterus salmoides (Lacepede), under constant and fluctuating temperatures. J Fish Biol, 1984, 24: 165-172.
    [10] Diehl W. J.. Osmoregulation in echinoderms. Comp Biochem Physiol. 1986, 84A: 199-205.
    [11] Ellington W. J., Lawrence J. M.. Coelomic fluid volume regulation and isosmotic intracellular regulation by Luidia clathrata (Echinodermata: Asteroidean) in response to hyposmotic stress. Boil Bull Mar Boil Lab Woods Hole, 1974, 146: 20-31.
    [12] Emerson D. N.. Influence of salinity on ammonia excretion rates and tissue constituents of euryhaline invertebrates. Comp Biochem Physiol, 1969, 29A: 1115-1133.
    [13] Emberton K. C.. Morphology and aestivation behaviour in some Madagascan acavid land snails. Biological Journal of the Linnean Society, 1994, 53(2): 175-187.
    [14] Fanjul-Moles, M. L., M. Miranda-Anaya and B. Fuentes-Pardo. Effect of monochromatic light upon the ERG circadian rhythm during ontogeny in crayfish (Procambarus Clarckii). Comp. Biochem. Physiol., 1992, 102A: 99-106.
    [15] Gehrke ,P. C.. Influence of light intensity and wavelength on phototactic behaviour of larval silver perch Bidyanus bidyanus and golden perch Macquaria ambigua and the effectiveness of light traps. J. Fish Biol., 1994, 44: 741-751.
    [16] Goldsmith, T. H. The natural history of invertebrate visual pigments. In“Handbook of Sensory Physioloy”(H. J. A. Dartnall, ed), 1972, vol. 7, PartⅠ, pp.685-719. Springer-Verlag, Berlin and New York.
    [17] Graham, T. E., V. H. Hutchison. Turtle diel activity: response to different regimes of temperature and photoperiod. Comp. Biochem. Physiol., 1979,63A: 299-305.
    [18] Hokanson K. E. F., Kleiner C. F., Thorslund T. W.. Effects of constant temperatures and diel temperature fluctuations of specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gardneri. J. Fish Res Board Can, 1977, 34: 639-648.
    [19] Jangoux M.. Diseases of Echinodermata, Diseases of marine animals. Volume. 1990, 439-567.
    [20] Jobling M. Fish Bioenergetics. London: Chapman & Hall, 1994.
    [21] Konstantinov A. S., Zdanovich V. V.. Some features of fish growth at fluctuating temperature. Vopr Ikhtiol, 1986, 26: 971-977.
    [22] Konstantinov A. S., Zdanovich V. V., Tikhomirov D. G.. The effect of temperature fluctuations on metabolic rate and energetics of juvenile fish. J Ichthyol, 1990, 30: 38-47.
    [23] Konstantinov A. S.. Effect of temperature variations on the growth, energetics and physiological states of young fish. Izv Ran Biol, 1993, 1: 55-63.
    [24] Levine, J. S., E. F.. Macnichol Jr. Colour vision in fishes. Sci. Am., 1982, 246: 211-257.
    [25] Liu Y. H., Li F. X., Song B. X., et al.. Study on aestivation habit of the sea cucumber Apostichopus japonicus SelenkaⅠEcological characteristics of aestivation. Journal of Fishery Sciences of China, 1996, 3(2): 41-48.
    [26] Li F. X., Liu Y. H., Song B. X., et al.. Study on aestivation habit of the sea cucumber Apostichopus japonicus SelenkaⅡ. The factors relating to aestivation. Journal of Fishery Science of China. 1996, 3(2): 49-57.
    [27] McKee P. M., Mackie G. L.. Respiratory adaptations of the fingemail clams Sphaerium occidentale and Musculium secures to ephemeral habitats. Can J. Fish Aquat Sci, 1983, 40: 783-791.
    [28] Miao S., Tu S.. Modling effect of thermal amplitude and stocking density on the growth of redtail shrimp Peneaeus penicillatus (Alock). Bull Zool Acad Sin, 1993, 32: 253-264.
    [29] Miao S., Tu S.. Modling effect of thermal amplitude on growing Chinese shrimp, Peneaeus chinesis (Osbeck). Ecol Model, 1996,88: 93-100.
    [30] Morgan A. D.. Aspects de la gestion des stocks ge′niteurs d′holothuries de sable(Echinoderme: Holothurides). La Be^che-de-mer Bulletin d’information. Secre′tariat ge′ne′ral de la Communaute′du Pacifique, pp.2000, 13: 2-8.
    [31] Munro J. L., Bell J. D.. Enhancement of Marine Fisheries Resources. Rev. Fish. Sci. 1997, (in press).
    [32] Salmon M., Witherington B. E.. Artificial lighting and sea finding by loggerhead hatchlings: evidence for lunar modulation. Copeia, 1995(4):931-938.
    [33] Shinya A., Buck A. N.. Oxygen uptake of active and aestivating earthworm Glossoscolex paulistus (Oligochaeta, Glossoscolecidae). Comparative Biochemistry and Physiology Part A: Physiology, 1985, 81(1): 63-66.
    [34] Sierra E., Diaz F., Espina S.. Energy budget of Ictalurus punctatus exposed to constant and fluctuating temperatures. Riv Ita Acquacolt, 1999, 34: 71-81.
    [35] Sloan N. A.. Echinoderm fisheries of the world: A review. In: Echinodermata (Proceedings of the Fifth International Echinoderm Conference), B. F. Keegan & B. D. S. O’Connor, (eds.), A. A. Balkema Publishers, Rotterdam. 1984, pp. 109-124.
    [36] Thomas M. A., Agard J. B. R.. Metabolic rate depression in the ampullariid snail Panacea urceus (M ller) during aestivation and anaerobiosis Comparative Biochemistry and Physiology Part A: Physiology, 1992, 102(4): 675-678.
    [37] Vannuccini S.. Sea cucumbers-A compendium of fishery statistics. Workshop on advances in sea cucumber aquaculture and management (ASCAM) Dalian. 2003.
    [38] Vondracek B., Cech J. J. Jr., Buddington R. K.. Growth, growth efficiency and assimilation efficiency of the Tahoe sucker in cyclic and constant temperature. Environ Biol Fish, 1989, 24: 151-156.
    [39] Wang, F., Dong, S., Huang, G., Wu, L., Tian, X. & Ma, S.. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2003, 228: 351–360.
    [40] Yanagisawa T.. Aspects of the biology and the sea cucumber. In: De Silva, S. S.(Ed.), Tropical Mariculture. Academic Press, London, 1998, 292-308.
    [41] Yang H. S., Yuan X. T., Zhou Y., et al.. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation Aquaculture Research, 2005, 36: 1085-1092.
    [42] Yang H. S., Zhou Y., Zhang T., et al.. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar Boil Ecol, 330(2): 505-510.
    [43] Zhou Y., Yang H., Liu S., et al.. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture, 2006, 256: 510-520.
    [44] Zdanovich V. V.. Some features of growth of the young of Mozambique tilapia, Oreochromis mossambicus, at constant and fluctuating temperatures. J Ichthyol, 1999, 39: 100-104.
    [45]常亚青,丁君,宋坚,等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004.
    [46]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望.水产科学,2006,25(4):198-201.
    [47]常忠岳,衣吉龙,慕康庆.关于影响刺参Apostichopus japonicus(Selenka)生长及成活因素的探讨.现代渔业信息,2003,18(5):24-26.
    [48]陈爱华.环境因子对刺参的影响及对策.河北渔业,2007,3:19,22.
    [49]陈爱华.环境因子对刺参的影响及对策.2007,3:19,22.
    [50]陈勇,高峰,刘国山,等.温度、盐度和光照周期刺参生长及行为的影响.水产学报,2007,31(5):687-691.
    [51]陈远,陈冲.刺参幼参冬季陆上养殖试验.水产科学,1992,11(4):1-3.
    [52]陈远,隋锡林,胡庆明.光强对稚参生长及变色的影响.水产科学,1987,6(4):17-20.
    [53]邓欢,隋锡林.刺参育苗期常见疾病.水产科学,2004,23(3)40.
    [54]邓欢.刺参体内的新病原——一种球状病毒.水产科学,2006,25(1):30-32.
    [55]董颖.养殖仿刺参溃烂病病因初探.水产科学,2005,24(3):4-6.
    [56]董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响.中国水产科学,2005,12(1):33-37.
    [57]董云伟,董双林,张美昭,田相利,王芳.变温对刺参幼参生长、呼吸代谢及生化组成的影响.水产学报,2005,29(5):659~665.
    [58]樊绘曾.海参:海中人参——关于海参及其成份保健医疗功能的研究.中国海洋药物,2001(4):37-44.
    [59]李宝泉,杨红生,张涛,周毅,张春晓.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33(2):182~187.
    [60]李丹彤,宋亮,钟莉,等.刺参凝集素的分离纯化及其性质.水产学报,2005,29(5):654-658.
    [61]李馥馨,刘永宏,宋本祥,等.刺参(Apostichopus japonicus)夏眠习性研究Ⅱ.夏眠致因的探讨.中国水产科学,1996,3(2):49-57.
    [62]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社,1997, 1-334.
    [63]刘永宏,李馥馨,宋本祥,等.刺参(Apostichopus japonicus)夏眠习性研究Ⅰ.夏眠生态特点的研究.中国水产科学,1996,3(2):41-48.
    [64]刘朝阳,孙晓庆.石莼的综合开发与利用前景.饲料广角,2006,17:35-37.
    [65]刘永宏,宋本祥,姜文永,岳敏和,杨永俊.1992.刺参大水体人工育苗研究.海洋水产研究,13:95~102.
    [66]吕伟志,戴晓军,李东站.低盐海水池塘养殖刺参试验.齐鲁渔业,2006,23(6):3-5.
    [67]隋锡林.海参增养殖.北京:农业出版社,1988,54-55.
    [68]孙毅,唐日峰.虾池养殖刺参使用技术.中国水产,2002,6:52-53.
    [69]王品虹.刺参一种囊膜病毒的分离及其超微结构.水产科学,2005,12(6):766-771.
    [70]王印庚,荣小军,张春云,等.养殖海参主要疾病及防治技术.海洋科学,2005(3):1-7.
    [71]肖培华,谭福伟,唐永新,等.刺参队较低研读的适应试验.齐鲁渔业,2004,21(6):20-21.
    [72]徐永淦,刘理东.我国鱼类及某些海洋无脊椎动物趋光生理研究评述.海洋科学,1984,6:58-61.
    [73]徐宗法,毕庶万,王际英.饵料对稚幼参变色的影响.齐鲁渔业,1999,16(1):30-33.
    [74]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):13-18.
    [75]于东祥,宋本祥.池塘养殖刺参幼参的成活率变化和生长特点.中国水产科学,1999,6(3):109-110.
    [76]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼, 2006, 37(4): 348-354.
    [77]张春云,荣小军,董树刚.2004.国内外海参自然资源、养殖状况及存在问题.海洋水产研究,25(3):89~97.
    [78]张群乐,刘永宏.海参海胆增养殖技术.青岛:青岛海洋大学出版社,1998.
    [79]张少华,张秀丽,刘振林,等.刺参对研读的适应范围试验.齐鲁渔业,2004,21(12):9-10.
    [80]张晓燕.光对刺参稚体色素影响的实验.水产养殖.1986,1:37-38.
    [81]郑微云、张岚.长毛对虾复眼的感受系统及其适应特性.厦门大学学报自然科学版,1985,24:256-262.
    [82]张煜,刘永宏.国内外刺参研究的回顾、进展及其资源途径的探讨.海洋渔业,1984,2:57-60.
    [83]朱建新,刘慧,冷凯良,等.几种常用饵料对稚幼参生长影响的初步研究.海洋水产研究,2007,28(5):48-53.
    [84]朱伟,麦康森,张百刚,等.刺参稚参对蛋白质和脂肪需求量的初步研究.海洋科学,2005,29(3):53-58.
    [85]邹吉新,李源强,刘雨新,等.鼠尾藻的生物学特征及筏式养殖技术研究.齐鲁渔业,2005,22(3):25-28.
    [1] Blaxter, J. H. S.. Visual thresholds and spectral sensitivity of herring larrae. J. Exp. Biol., 1968, 48: 39-53.
    [2] Boeuf G, Le Bail P. Y.. Does light have an influence on fish growth. Aquaculture, 1999, 177(1): 129-152.
    [3] Cross T. F.. Genetic considerations in enhancement and ranching of marine and anadromous species. In: Howell B. R., Moksness E., Svasand T. (Eds.), Stock Enhancement and Sea Ranching. Proceedings of the 1st International Symposium on Stock Enhancement and Sea Ranching, 8-11 September 1997. Bergen, Norway. Blackwell , Oxford , 1999, 37~48.
    [4] Forward, R. B., Jr., Gronin, T. W.. Spectral sensitivity of larvae from intertidal crustaceans. J. Comp. Physiol., 1979, 133(4): 311-315.
    [5] Gehrke P. C.. Influence of light intensity and wavelength on phototactic behaviour of larval silver perch Bidyanus bidyanus and golden perch Macquaria ambigua and the effectiveness of light traps. J. Fish Biol., 1994, 44: 741-751.
    [6] Goldsmith, T. H.. The natural history of invertebrate visual pigments. In“Handbook of Sensory Physioloy”(H. J. A. Dartnall, ed ), 1972, vol. 7, PartⅠ, pp.685-719. Springer-Verlag, Berlin and New York.
    [7] Graham, T. E., V. H.. Hutchison. Turtle diel activity: response to different regimes of temperature and photoperiod. Comp. Biochem. Physiol., 1979, 63A: 299-305.
    [8] Héctor Reyes-Bonilla, María D. H.. Population parameters of an exploited population of Isostiochopus fuscus(Holothuroidea) in the southern Gulf of California, México. Fisheries Research, 2003, 59: 423-430.
    [9] Jerlov, N. G.. Optical oceanograthy. Elsevier, Amsterdam, 1968.
    [10] Levine, J. S., E. F.. Macnichol Jr. Colour vision in fishes. Sci. Am., 1982, 246: 211-257.
    [11] Munro J. L., Bell J. D.. Enhancement of Marine Fisheries Resources. Rev. Fish. Sci. 1997, (in press).
    [12] Salmon M., Witherington B. E.. Artificial lighting and sea finding by loggerhead hatchlings: evidence for lunar modulation. Copeia, 1995(4):931-938.
    [13] Yanagisawa T.. Aspects of the biology and culture of the sea cucumber. In: De Silva, S. S. (Ed.), Tropical Mariculture. Academic Press , London , 1998, 292-308.
    [14]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望.水产科学,2006,25(4):198-201.
    [15]陈远,陈冲.刺参幼参冬季陆上养殖试验.水产科学,1992,11(4):1-3.
    [16]高永刚,等.潮间带围塘养殖刺参技术.中国水产, 2002,12 : 60~61.
    [17]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社,1997, 1-334.
    [18]罗清平,袁重桂,阮成旭等.孔雀鱼幼苗在光场中的行为反应分析.福州大学学报(自然科学版),2007,35(4):631-634.
    [19]王印庚,荣小军.我国刺参养殖存在的主要问题与疾病综合防治技术要点.齐鲁渔业,2004,21(10):29-31.
    [20]武模戈.光照对水生动物的影响.河南教育学院学报(自然科学版),2001,10(2):38-39.
    [21]徐永淦,刘理东.我国鱼类及某些海洋无脊椎动物趋光生理研究评述.海洋科学,1984,6:58-61.
    [22]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):13-18.
    [23]于长清,等.虾池养殖刺参技术研究.水产科学, 1998, 17 (6) :15~18.
    [24]原承龙.刺参围网养殖技术试验.齐鲁渔业, 2000, 17 (3) : 23~24.
    [25]张春云,王印庚,荣小军,等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究,2004,25(3):89-97.
    [26]张群乐,刘永宏.海参海胆增养殖技术.青岛:青岛海洋大学出版社, 1998, 1~119.
    [27]张硕,陈勇,孙满昌.光强对刺参行为特性和人工礁模型集参效果的影响.中国水产科学,2006, 13(1): 20-26.
    [28]张晓燕.光对刺参稚体色素影响的实验.水产养殖. 1986,1:37-38.
    [29]郑微云、张岚.长毛对虾复眼的感受系统及其适应特性.厦门大学学报自然科学版,1985,24:256-262.
    [30]周显青,牛翠娟,李庆芬.光照对水生动物行为的影响.动物学杂志,1999,34(2):45-48.
    [31]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响.水生生物学报,2000,24(3):178-181.
    [1] Blaxter, J. H. S.. Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol., 1968, 48: 39-53.
    [2] Conand C. Byrne M.. A review of recent development in the world sea cucumber fisheries. Mar Fish Rev, 1993, 55(4): 1-13.
    [3] Dabrowski, K. R. and D. H. Jewson.. The influence of light environment on depth of visual feeding by larvae and fry of Coregonus pollan (Thompson)in Lough Neagh. J. Fish. Biol., 1984, 25: 173-181.
    [4] Fanjul-Moles, M. L., B. Fuentes-Pardo.. Spectral sensitivity in the course of the ontogeny of the crayfish Procambarus Clarckii. Comp. Biochem. Physiol., 1988, 91A: 61-66.
    [5] Fanjul-Moles, M. L., M.. Miranda-Anaya and B. Fuentes-Pardo. Effect of monochromatic light upon the ERG circadian rhythm during ontogeny in crayfish (Procambarus Clarckii). Comp. Biochem. Physiol., 1992, 102A: 99-106.
    [6] Gehrke, P. C.. Influence of light intensity and wavelength on phototactic behaviour of larval silver perch Bidynus bidyanus and golden perch Macquaria ambigua and the effectiveness of light traps. J. Fish. Biol., 1994, 44: 741-751.
    [7] Le Reste, L.. Contribution a l’étude du rhythme d’activiténocturne de Penaeus indicus en Parapenaeopsis acclivirostris (Crustacea:Decapoda:Natantia). Cah. Off. Rech. Sci. Tech. outré-Mer (Oceanogr), 1970, 8: 3-10.
    [8] Mrosovsky, N., S. Shettleworth.. Wavelength preferences and brightness cues in the water finding behaviour of sea turtles. Behaviour, 1968, 32: 211-257.
    [9] Propp, M. V.. Ecology of the sea urchins Strongylocentrotus droebachiensis of the Barents Sea: metabolism and regulation of aboundance. Mar. Biol. Vladivostok, 1977, 1: 39-51.
    [10] Wang, F., Dong, S., Huang, G., Wu, L., Tian, X. & Ma, S.. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, 2003, 228: 351–360.
    [11]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望.水产科学,2006,25(4):198-201.
    [12]陈远,隋锡林,胡庆明.光强对稚参生长及变色的影响.水产科学,1987,6(4):17-20.
    [13]陈四清,李爱杰等.中国对虾(Penaeus chinensis)眼的结构及生理功能.海洋水产研究,1996,17:30-34.
    [14]董云伟,董双林,张美昭,等.变温队刺参幼参生长、呼吸代谢及生化组成的影响.水产学报,2005,29(5):659-665.
    [15]董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响.中国水产科学,2005,12(1):33-37.
    [16]胡庆云,陈远,隋锡林.温度对幼参生长和摄食的影响.水产科学,1986,2:18-23.
    [17]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33(2):182—187.
    [18]聂竹兰,李霞.海参再生的研究.海洋科学,2006,30(5):78-82.
    [19]王吉桥,靳晓明,张剑诚.密度和水温对仿刺参(Apostichopus japonicus Selenka)幼参运输成活和排脏的影响.现代渔业信息,2007,22(11):3-6.
    [20]许燕,袁维维,赵云龙等.不同波长光照对日本沼虾视觉的影响.上海师范大学学报(自然科学版),2003,32(3):75-78.
    [21]薛素燕,方建光,毛玉泽,等.不同光照强度对刺参幼参生长的影响.海洋水产研究,2007,28(6):13-18.
    [22]郁桐炳,唐渝,尤洋,等. 5种波长光对日本沼虾人工育苗幼体成活率的影响.湛江海洋大学学报,2004,24(4):5-9.
    [23]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼,2006,37(4):348-354.
    [24]张春云,王印庚,荣小军,等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究,2004,25(3):89-97.
    [25]张宽,李颜,黄金刚.日本沼虾眼柄神经激素对其色素细胞调节机制的研究.黄山学院学报,2005,7(6):82-84.
    [26]郑微云、张岚.长毛对虾复眼的感受系统及其适应特性.厦门大学学报自然科学版,1985,24:256-262.
    [1] Annie M., Stephen C., Jean-Francois H.. Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J Exp Mar Bio Ecol, 2000, 249: 89 - 110.
    [2] Astall C. M. Jones M. B.. Respiration and biometry in the sea cucumber Holothuria forskali. J Mar Biol Ass L K, 1991, 71: 73-81.
    [3] Blaxter, J. H. S.. Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol., 1968, 48: 39-53.
    [4] Bayne B. L., Widdows J.. The Physiological ecology of two populations of Mytilus edulis L. Oecologia, 1978, 37: 137-162.
    [5] Choe S.. Biology of the Japanese Common Sea Cucumber Stichopus japonicus (Selenka). Russian Nat Univ Publishing House. Moscow, Russia, 1962. 220-226 (in Russian with English abstract).
    [6] Colcacino J. M.. A mathematical model of oxygen transport in the tube foot-ampullar system of the sea cucumber, thyone briareus L. Ph. D Dissert, State University of New York, 1973. 1-143.
    [7] Diehl W. J.. Osmoregulation in echinoderms. Comp Biochem Physiol, 1986, 84A: 199-205.
    [8] Ellington W. J., Lawrence J. M.. Coelomic fluid volume regulation and isosmotic intracellular regulation by Luidia clathrata (Echinodermata: Asteroidean) in response to hyposmotic stress. Boil Bull Mar Boil Lab Woods Hole, 1974, 146: 20-31.
    [9] Emerson D. N.. Influence of salinity on ammonia excretion rates and tissue constituents of euryhaline invertebrates. Comp Biochem Physiol, 1969, 29A: 1115-1133.
    [10] Gehrke ,P. C.. Influence of light intensity and wavelength on phototactic behaviour of larval silver perch Bidyanus bidyanus and golden perch Macquaria ambigua and the effectiveness of light traps. J. Fish Biol., 1994, 44: 741-751.
    [11] Jerlov, N. G.. Optical oceanograthy. Elsevier, Amsterdam, 1968.
    [12] Lawrence J. M., Jane J. M.. The utilization of nutrients by post-metamorphic echinoderms In: Jangous M., Lawrence J. M. ed, Echinoderm Nutrition. A. A. Balkema, Publishers. Rotterdam, 1982. 331-371.
    [13] Nichols D.. The water-vascular system in living and fossil echinoderms. Paleontology, 1972, 15: 519-538.
    [14] Nichols D.. The Uniqueness of Echinoderms. In: Oxford Biology Readers, Oxford University Press. Oxford, UK, 1975. 1-16.
    [15] Ryabushko V. I.. Energetic exchange of some echinoderms from the Barents Sea and the Sea of Japan. Mar Biol Vladivostock, 1978, 2: 56-63.
    [16] Sabourin T. D., Stickle W B.. Effect of salinity on respiration and nitrogen excretion in two species of echinoderms. Mar Biol, 1981, 65: 91-99.
    [17] Sisak M., Sander F.. Respiratory behaviour of the western Atlantic holothuroidian (Echinodermata) Holothuria glaberrima ( Selenka) at various salinity, temperature and oxygen tensions. Comp Biochem Physiol, 1985, 80A: 25-29.
    [18] Webster S. K., Giese A. C.. Oxygen consumption of the purple urchin with special reference to the reproductive cycle. Boil Bull, 1975, 148: 157-164.
    [19]常忠岳,衣吉龙,慕康庆.关于影响刺参Apostichopus japonicus(Selenka)生长及成活因素的探讨.现代渔业信息,2003,18(5):24-26.
    [20]陈勇,高峰,刘国山,等.温度、盐度和光照周期刺参生长及行为的影响.水产学报,2007,31(5):687-691.
    [21]陈远,陈冲.刺参幼参冬季陆上养殖试验.水产科学,1992,11(4):1-3.
    [22]董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响.中国水产科学, 2005, 12(1): 33-37.
    [23]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33(2):182-187.
    [24]王印庚,荣小军.我国刺参养殖存在的主要问题与疾病综合防治技术要点.齐鲁渔业,2004,21(10):29-31.
    [25]袁秀堂,杨红生,周毅,等.盐度对刺参(Apostichopus japonicus)呼吸和排泄的影响.海洋与湖沼, 2006, 37(4): 348-354.
    [26]张春云,王印庚,荣小军,等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究,2004,25(3):89-97.
    [27]张硕,陈勇,孙满昌.光强对刺参行为特性和人工礁模型集参效果的影响.中国水产科学,2006, 13(1): 20-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700