用户名: 密码: 验证码:
哺乳动物角蛋白材料力学及摩擦学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在国家杰出青年科学基金项目(50025516)、国家自然科学基金(50275037)和高等学校博士学科点专项科研基金(20020183029)资助下,面向仿生材料和仿生摩擦学应用,对牛蹄、牛角、羊蹄和猪蹄四种哺乳动物角蛋白材料的结构、力学性能和摩擦学性能进行了系统的研究。分析了牛蹄、牛角、羊蹄和猪蹄四种角蛋白材料的微量元素含量。探索了四种材料的红外光谱和拉曼光谱,确定其二级结构间的共性与差异。用偏光显微镜分析四种角蛋白材料横断面形态,主要探讨蹄壁细管形状和尺寸沿厚度方向的变化以及在蹄角样品间的差异。对牛蹄、牛角和羊蹄三种角蛋白材料的拉伸力学性能进行了研究,探讨了试验条件因素(应变率)和材料因素(水分、取样位置、摩擦滑动方向等)对材料弹性模量、极限强度和破坏应变的影响。依据拉伸断口的扫描电镜照片分析角蛋白材料的断裂机理。系统考察了四种角蛋白材料沿厚度方向不同位置的纳米力学特性和显微硬度差异,以及水分、摩擦滑动方向等因素对试验结果的影响。探索了角蛋白材料的干滑动摩擦磨损性能,研究了试验条件和材料因素(水分、取样位置、方向等)对其摩擦磨损性能的影响。运用微观分析技术和接触力学理论揭示了角蛋白材料的摩擦磨损机理。并用生物角质(种子表皮)作对比分析,探讨动物角质与植物角质摩擦特性的共性与差异。
    上述研究工作及其所取得的研究成果,对于仿生复合材料研制具有重要意义,对于生物摩擦学乃至仿生摩擦学研究是一项有意义的探索。
mechanical behavior of natural biological materials. Mammal keratin material is a natural biological composite with hierarchical structure from nanometer to centimeter scale. In order to develop the bionic material and bionic tribology system, the structure, mechanical properties and tribological behaviors of the four mammal keratin materials (bovine hoof, bovine horn, sheep hoof and pig hoof), relation between their structure and their mechanical properties, and micro-mechanism of mechanical and tribological behavior were examined in this work., which is projects supported by National Science Fund for Distinguished Young Scholars of China (Grant No. 50025516), by National Science Foundation of China (Grant No. 50275037) and by Special Research Fund for the Doctoral Program of High Education of China (Grant No. 20020183029). The results obtained in this work have provided a new clue and method for developing biomimetic materials and bionic tribology systems.
    FTIR spectroscope, FTR spectroscope and X-ray diffraction instrument were used for systematically analyze structure and chemical constituent of the four keratin materials. It was found that FTIR spectrogram and FTR spectrogram of the four keratin materials is similar, except for little difference in exceptional peak position. Stretching and deformation vibration on hydrocarbon and amide three band was embodied in FTIR spectrogram. Vibration mode and deformation character of various chemical bonds can be found from FTR spectrogram. α-helix and β-sheet structure can be found in the four keratin materials. There all existed two peaks in X-ray diffractogram of the four keratin materials. This showed that keratin material is a natural biological composite material intervenient between crystalline state and amorphous state.
    The mechanical behavior of hoof and horn material relate to the microelement content within these materials, especially such heavy metal element as zinc, copper, manganese, and others. The ICP-ACES instrument was used for determining metal elements and their contents and components. It was found that the content of zinc and copper was highest in bovine horn, pig hoof took second place, thirdly was bovine hoof, the content of zinc and copper was lowest in sheep hoof. The content of manganese was highest in pig hoof, bovine horn took second place, and the content of manganese was lowest in bovine hoof. Polarizing microscope was used for analyzing morphological structure of the cross section of the four keratin materials. It was demonstrated that the inside layer of bovine hoof consisted of longitudinal cutin lobule, the outside layer and middle layer were composed of tubules and intertubular material and outside layer was very thin where tubule shape was elongated. Size and shape of the tubule were dependent on the position through the hoof wall thickness. From the outside to the inside through the middle layer, the ratio of the major axis to the minor axis gradually decreased, the tubules gradually change from ellipse shape to round shape and the tubule density gradually reduced. There were not obvious limit between the outside layer and middle layer of sheep hoof and the tubule size of sheep hoof were smaller than those of bovine hoof. There was a smooth band and no obvious tubule structure in middle part of middle layer. There were rough alveolate holes in the inside layer. There is no tubule structure in the outside layer of the pig hoof. The cutin lobule can be clearly observed in the inside layer of pig hoof. There were the tubule structure across the whole thickness of the middle layer, size of the inside layer tubule is much larger than that of the tubule size of outside layer, and tubule shape were similar as ellipse shape; Other than hoof structure, there no appeared tubule in cross section of bovine horn, where same oriented fiber structure can be seen. Tensile mechanical properties of three keratin materials (bovine hoof, bovine horn and sheep hoof) were examined by WDW-10 electron universal testing machine controlled by computer, and effect of experimental conditions and
    material factors on the mechanical properties was discussed. The results showed that tensile stress-strain curve of the keratin material was similar to those of continuous fiber-reinforced ceramics composite material, which can be described by exponential model and polynomial model whose correlation coefficient was high. Tensile mechanical behavior has close relationship with strain rate. The strain rate used during the test spanned four orders of magnitude from 0.0001s-1 to 0.1s-1. Elastic modulus of bovine hoof wet sample increased 35.4%, ultimate strength increased 45%, and failure strain increased 10.5% from the least strain rate to the highest strain rate. Elastic modulus, ultimate strength and failure strain increased with strain rate according to linear relationships in log-log coordinates. Material factors have important effects on tensile mechanical behavior. The toughness and strength of the three kinds of keratin samples decreased, but plasticity increased with their increasing of moisture content. Mechanical properties of three kinds of keratin samples were different under the same testing conditions. Elastic modulus, ultimate strength and failure strain of the sheep sample were minimal, those of bovine horn samples were maximal, and those of bovine hoof were intervenient between sheep hoof and bovine horn. The mechanical properties of materials from different sampling positions are different for the bovine horn. Both the elastic modulus and ultimate strength were largest at the top position of the horn, and elastic modulus and ultimate strength were least at the lowest position of the horn. Scanning electron microscope analysis on tensile fracture showed that fracture surface of the dry sample was smooth and flat, which attributed to brittle fracture having cleavage features. The fracture surface of the wet sample was very rough and had fiber-pulling off phenomena, which attributed to obvious tough fracture properties. Nanoindenter and micro-hardness tester were used for investigating into nano to micro mechanical properties of the four keratin materials. It was found that elastic modulus, nano-hardness and micro-hardness of the dry sample were all greater than that of the wet sample. Elastic modulus of vertically loaded sample
    was obviously greater than that of laterally loaded sample, however there was no obvious difference on nano-hardness and micro-hardness between vertically and laterally loaded sample. The elastic modulus and nano-hardness was decreasing from the outside layer to the inside layer across the all hoof wall. And the decreasing amplitude of wet sample was greater than that of dry sample. The elastic modulus and nano-hardness of bovine hoof surface sample from the different positions had a little difference and had increasing trend from the proximal capitutum locations to the distal contact surface locations following growth direction of hoof wall. Comparative analysis of four keratin materials as for nano-hardness and micro-hardness showed that the elastic modulus, the nano-hardness and the micro-hardness of bovine horn sample were higher than other hoof sample, pig hoof sample take second place, elastic modulus, nano-hardness and micro-hardness of sheep hoof and bovine hoof sample had not obvious difference, those of sheep hoof sample in some degree was higher. It may be due to the difference of hardness of the four keratin samples has relation with chemical composition of materials and metal element content. Dry sliding friction and wear tests were run on a universal micro-tribometer for the examining the effects of the testing conditions and material factors on friction and wear properties of four keratin materials. The tribological behaviors between animal and plant cuticle on frictional behavior was discussed by the use of plant seed cuticle (maize seed epidermis) as comparative analysis. The result showed that friction coefficient of dry bovine hoof sample decreased but volume wear loss increased with the normal load at steady state. Friction coefficient of maize seed epidermis cuticle decreased with load following the linear relationships. Friction coefficient of dry bovine hoof sample had a decreasing trend with increasing sliding velocity at steady state, but volume wear loss increased and basically following a linear relationship. Orthogonal polynomial regression analysis has showed that the effect of the sliding velocity on volume wear loss was larger than that of the normal load for bovine hoof sample within the test range. Sliding velocity had no obvious influence on friction coefficient of maize seed
    epidermis cuticle. Sliding friction coefficient of both keratin materials and maize seed epidermis cuticle increased with the increasing moisture content. Volume wear loss of bovine hoof sample has not appeared mono-increasing or mono-decreasing trend with increasing moisture content. At the three moisture states, volume wear loss of fresh sample was lowest, volume wear loss of dry sample was highest, and volume wear loss of wet sample was intervenient between that of the dry and the fresh sample. Volume wear loss of both bovine horn and pig hoof were equivalent and smaller, moreover volume wear loss of bovine hoof and sheep hoof was correspondingly larger among the four keratin materials. Friction mechanism of keratin materials was complicated. Friction force consisted of adhesion component, plough component, plastic deformation component and hysteresis component. There existed two main wear mechanisms: the adhesive wear and fatigue cleavage wear. There also existed abrasive wear mechanism for bovine hoof materials during sliding wear. Wear of pig hoof material was mainly due to fatigue cleavage wear.
引文
1 肖秀之.前景诱人的仿生材料.今日科技. 2002,12:42-43.
    2 周本濂.复合材料的仿生研究.物理.1995,24:577-582.
    3 陈斌,彭向和,范镜泓.生物自然复合材料的结构特征及仿生复合材料的研究.复合材料学报.2000,17:59-62.
    4 Burte HM, Deusen RL, Hemenger PM, et al. The potential impact of biotechnology on composites. Lancaster Pennsylvania: Tech Pub Co Inc.1986, 65-68.
    5 Sarikaya M,Gunnison KE, Yasrebi M,et al. Seashells as a natural model to study laminated composites. Lancaster Pennsylvania: Tech Pub Co Inc, 1990.176-183.
    6 Gordon JE,Jeronimidis G. Composites with high work of fracture. Phil Tran R.1980, A294: 545-549.
    7 Gunderson S, Schiavone R. The insect exoskeleton: a natural structural composite. JOM. 1989, 41: 60-62.
    8 郭颖杰,佟金.角蛋白材料结构与力学特性的研究进展.农业工程学报.2004,20(3):266-270.
    9 张青,戴起勋,赵玉涛,程晓农.仿生材料设计与制备的研究进展.江苏大学学报(自然科学版).2003,24(6):55-60.
    10 韩启成,程晓农,赵玉涛.仿生叠层复合材料的研究现状与发展.江苏理工大学学报.2001,22:9—12.
    11 Saridaya M, Gunnison KE, Yasreb M, Miliusa DL, Aksay A. Seashells As a Natural Model to Study Laminated Composites, Proc Amer. Soc Comp, P ennsylvania, Technomic Publ.Lancaster, 1990, p176.
    12 胡巧玲,李晓东.仿生结构材料的研究进展.材料研究学报.2003, 17(4):337-344.
    13 郭香华,胡宁等. 陶瓷叠层结构增韧设计的数值模拟及实验研究.硅酸盐学报.2000,28(3):234-248.
    14 Lences Z, Hirao K, Manue I E, etal. Layered silicon nitride-based composites with discontinuous boron nitride interlayers. J.Am.Ceram.Soc.2000, 83(10): 2503.
    15 向春霆,范镜泓.自然复合材料的强韧化机理和仿生复合材料的研究.力学进展.1994,25:220-231.
    16 皮亚蒂G.复合材料进展.北京:科学出版社.1986,第一版,P7.
    17 Yamashita S, et al. Interlaminar reinforcement of laminated composites by addition of oriented whiskers in the matrix. J Comp Mater. 1992, 26:1254-1268.
    18 马和中.生物力学导论.北京:北京航空航天大学出版社.1986,第一版,p133.
    19 Zhou BL. Bio-inspired Study of Structural Materials. Materials Science and Engineering. 2000, C11: p13.
    20 白朔,成会明,苏革,魏永良.哑铃状仿生SiC晶须的生长机制.材料研究学报.2002,16(2):121.
    21 李坚等.木材波谱学.北京:科学出版社.2003,第一版,p1-3.
    22 Bodig J,et al. Mechanics of wood and wood composites. New York, Academic press . 1982.
    23 Esterling KE, et al. On the mechanics of halsa and other woods. Proc Roy Soc Lond. 1982, A383: 31-41.
    24 葛明桥. 材料学科研究的新领域—仿生材料. 南通工学院学报.2000,16:1-2.
    25 刘一樵,李士.森林植物学.北京:中国林业出版社.1990,第一版,p76-77.
    26 王玉庆,周本濂,师昌绪.仿生材料学—一门新兴的交叉学科.材料导报.1995,(4):1-4.
    27 Wai NN, Nanko H, Marakami. A Morphological Study on the Behavior of Bamboo Pulp Fibres in the Heating Process. Wood Sci Technol. 1985, (19):211.
    28 Zhang K. Biomimetic Study on Helical Fiber Composites. J Mater Sci Technol. 1997, 13:1-4.
    29 王立铎,孙文珍,梁彤翔.仿生材料的研究现状.材料工程.1996,(2):3-5.
    30 蔡长庚,许家瑞.异形有机短纤维增强环氧树脂复合材料拉伸性能的研究.纤维复合材料.2000,(4):10.
    31 郭以和,沈和湘.家畜解剖学.北京:农业出版社,1989,第二版, p100-101.
    32 Bertram JEA. Functional design of horse hoof Keratin: The modulation of mechanical properties through hydration effects. J exp Biol. 1987, 130: 121-136.
    33 Caroline B, Rodney F. The three-dimensional composite structure of cow hoof wall. Biomimetics.1996, 4:1-22.
    34 Nickel R. über den Bau der Huf-r?hrchen und seine Bedeutung fur den mechanismus des pferdenufes. DTW. 1938, 46: 449-552.
    35 Collin SN. Stiffness as a function of moisture Content in natural materials: characterisation of hoof horn sample. J Mater Sci. 1998, 33: 5185-5191.
    36 Laurie JL. Mechanical properties of equine hooves. Am J Vet Res. 1983, 44: 100-102.
    37 Bertram JEA, Gosline JM. Fracture toughness design in horse hoof keratin. J. Exp.Biol.1986, 125:29-47.
    38 Rajkondawar P, Zhang D, Arola D; Tasch U. Mechanical characterization of bovine hooves: comparing healthy and ailing hooves. 2002 SEM Annual Conference & Exposition on Experimental and Applied Mechanics. 2002: p1-3.
    39 Leach DH. Mechanical properties of equine hoof wall tissue. Am J Vet Res. 1983, 44: 2190-2194.
    40 Wainwright SA. Mechanical design organisms. London:Edward Arnold.1976, p 9-17.
    41 Fraser RDB. Keratins. Springfield, III, Charles C. Thomas, Publisher. 1972, p 139-143.
    42 Kasapi MA, Gosline JM. Design complexity and fracture control in the equine hoof wall. The Journal of Experimental Biology. 1997, 200:1639-1659.
    43 Wager P, David MH. Comparison of bending modulus and yield strength between outer stratum medium and stratum medium zona alba in equine hooves. AJVR. 2001, 62:745-751.
    44 Fung YCB.. Biomechanics, its scope, history, and some problems of Continuum mechanics in physiology. Appl Mech Rev. 1968, 21: 1-20.
    45 Douglasy JE, Mittal C. The modulus of elasticity of equine hoof wall: implications for the mechanical function of the hoof. The Journal of Experimental Biology. 1996, 199: 1829-1836.
    46 Frandson RD. Anatomy and physiology of Farm animals. Philadelphia, Lea & Febiger. 1974, p377.
    47 Benedetti F. The difference in the strength of light and dark hoofs in horses. Annali Fa. Med Vet. 1948, 1: 93-106.
    48 Butler KD, Hintz HF. Effect of level of food intake and gelatin supplementation on growth and quality of hoofs of Ponies. J Anim Sci. 1977, 44: 257-261.
    49 Dinger JE. Factors affecting hardness of the equine hoof wall. Scientifie paper No. A2212, Contribution No. 5193, Maryland Experimental Station. College park, university of Maryland,1973.
    50 Weiser W, Stockl W. Uber die verteilung von natrium, Kalium, kalzium. Phosphor, magnesium, kupfer und zink im Hufhorn Von pferden. Arch Exp Veterinarmed. 1965, 19: 929-931.
    51 Miyaki H, Ohnishi T, Yamamoto T. Measurement of the Water Content of the hoof wall, sole and frog in horses. Exp Reports Equine Health Res lab. 1974, 11: 15-20.
    52 Fraser RDB, Macrae TP. Molecular structure and mechanical properties of keratins. In the mechanical properties of Biological materials. Cambrige: Cambrige University Press. 1980, p 211-246.
    53 Mclachlan AD. Coiled-Coil formation and sequence regulations in the helical regions of α-keratin. J molec Biol. 1978, 124: 297-304.
    54 Wright JM , Hayes WC. Fracture mechanics parameters for Compact bone: Effect of density and specimen thickness. J Biomech. 1977, 10: 410-430.
    55 Collin SN. Stiffness as a function of moisture Content in natural materials: characterisation of hoof horn sample. J Mater Sci, 1998, 33: 5185-5191.
    56 Caroline B, Southam C. Structure and properties of bovine hoof horn. Advanced Composites Letters. 2000, 9:101-113.
    57 Kitchener. Composite theory and the effect of water on the stiffness of horn keratin. Journal of Materials Science.1987, 22:1385-1389.
    58 Bonser RHC, Farrent JW. Assessing the frictional and abrasion-resisting properties of hooves and claws. Biosystems Engineering. 2003, 86:253-256.
    59 Bendit EG. The location and function of the high-glycine-tyrosine protein in keratins. In Fibrous proteins: Scientific, Industrial and Medical Aspect. New York: Academic press. 1980, Vol 2, PP185-194.
    60 Kasapi MA, Gosline JM. Micromechanics of the equine hoof wall: Optimizing Crack control and material stiffness through modulation of the properties of keratin. J exp Biol. 1999, 202: 377-391.
    61 Feughelman M. A two phase structure for keratin fibres. Textile Res. J. 1959, 29:223-228.
    62 王从曾.材料性能学.北京:北京工业大学出版社.2001,第一版,p5.
    63 Kubisz L. The influence of storage time on the temperature dependence of the dc electrical conductivity of horn keratin. Bioelectrochemistry. 2001, 53(2):161-164.
    64 Kubisz L, Marzec E. Studies on the temperature dependence of electrical conductivity of solid-state proteins. Journal of Non-Crystalline Solids.2002, 305:322-327.
    65 Marzec E, Kubisz L.Dielectric relaxation of air-dried horn keratin. International Journal of Biological Macromolecules.1997, 20:161-165.
    66 Astbury WT, Bell FO. X-ray data on the structure of natural fibres and other bodies of high molecular weight. Tabulae Biol. 1939, 17: 90-112.
    67 Earland C, Blakey PR, Stell JGP. Molecular orientation of Some Keratin. Nature. 1962, 196: 1287-1291.
    68 Rutschke E. Untersuchungen über die feinstruktur des schaftes der Vogelfeder. Zool Jb Abt Syst. 1966, 93: 223-288.
    69 Purslow PP, Vincent JFV. Mechanical properties of primary Feathers from the pigeon. J exp Biol. 1978, 72: 251-260.
    70 Hertel H. Structure, form, movement. New York: Reinhold Publishing Corporation. 1966.
    71 Rutschke E. Cross structure in bird feather. Proc Int ornithol Congr. 1976, 16: 414-425.
    72 Grenshaw DG. Design and materials of feather shafts: very light, rigid structures. Symp Soc Exp Biol. 1980, 43: 485-486.
    73 Fraser RDB, Macrae TP. Molecular structure and mechanical properties of keratins. Symp Soc exp Biol. 1980, 43: 211-246.
    74 Macleod GD. Mechanical properties of Contour feathers. J Exp Biol. 1980, 87: 65-71.
    75 Bonser RHC. The mechanical properties of down feathers from gentoo Penguins. J Zool Lond. 2000, 251: 545-547.
    76 Bonser RHC, Purslow PP. The young’s modulus of feather keratin. The Journal of Engineering Biology. 1995, 198: 1029-1033.
    77 Busch NE, Brush AH. Avian feather Keratin: Molecular aspects of structural heterogeneity. J Exp Zool. 1979, 210: 39-48.
    78 Taylor AM, Bonser RHC, Farrent JW. The influence of hydration on the tensile and compressive properties of aviankeratinous tissues. Journal of Material Science. 2004,39:939-942.
    79 Bonser RHC. The mechanical properties of avian bone and feathers. PhD thesis, university of Bristol. 1993.
    80 Gere JM, Timoshenko SP. Mechanics of materials. London:Van Nostrand Reinhold. 1987.
    81 Barwell FT. Bearing systems principles andpractice. Oxford Univ. Press. Oxford, England. 1979.
    82 Bergman G. Why are the wings of Laws fuscus so dark? Omis Fenn. 1982,59:177-83..
    83 Bern EH. An analysis of physical, physiological and optical aspects of avian coloration with emphasis on Wood-Warblers. Ornithol. Monographs 1986.38: 1-126.
    84 Barrowclough GF, Sibley FC. Feather pigmentation and abrasion-test of a hypothesis. Auk. 1980.97:881-883.
    85 Lee DS, Grant GS. An albino Greater Shearwater-feather abrasion and flight energetits. Wilson Bull. 1986.98:488-490.
    86 Finnis, RG. Aberrant juvenile blackbird turdus merula merula linnaeus. Bull Br Ornithol. 1959,79: 152.
    87 Bonser RHC, witter MS. Indentation hardness of the bill keratin of the European starling. Condor. 1993, 95: 726-738.
    88 Lipson C. Wear considerations in design.Prentice-Hall. Englewood Cliffs, NJ. 1967.
    89 Lancaster JK. Basic mechanisms of friction and wear of polymers. Plastics and Polymers. 1973.41: 297-306.
    90 Bonser RHC. Melanin and the abrasion resistance of feathers. Condor. 1995, 97: 590-591.
    91 Voitkevich AA. The feathers and plumage of birds. London: Sidgwick and Jackson. 1966.
    92 Burtt EH. An analysis of physical, physiological and optical aspects of avian Coloration with emphasis on wood-warbler. Ornithol Mohogr. 1986, 38: 1-126.
    93 何学民.头发损伤与头发结构和组分的相互关系.日用化学工业, 2000, 4: 34—36.
    94 何学民,严品华.用N-(3-P)NEM 标记毛发角蛋白研究毛发中低硫和高硫蛋白的状态.华东师范大学学报.1992,(2):74-82.
    95 杨声强.羊毛拉伸变性技术的研究.硕士学位论文.天津纺织工学院.1999,p9.
    96 崔福斋,冯庆玲.生物材料学. 北京:科学出版社.1997,第一版,p26-27.
    97 Kaplan IJ, et al. Effects of cosmetic treatments on the ultrastructure of hair. Cosmet. Toiletr. 1982,97:22-26.
    98 Brener MM, et al. Physical chemistry of hair conditioning. Cosmet. Toiletr. 1979,94:29-34.
    99 Schwartz AM, Knowles DC. Frictional effects in human hair. J Soc Cosmet Chem. 1963,14:455-463.
    100 Robbins C, Crawford J. Cuticle damage and the tensile properties of human hair. J.Soc.Cosmet.Chem.1991, 42:59-67.
    101 Alanswift J. The mechanics of fracture of human hair. International Journal of Cosmetic Science.1999, 21:227-239.
    102 Xu YD, Zhang LT. Mechanical pnperties and microstructare of tortoise shell. Composites. 1995, 26:315-318.
    103 Tong J, Ren LQ. Chemical Constitution and abrasive wear behaviour of Pangolin scales. J Mater Sci Lett. 1995, 14: 1468-1470.
    104 Tong J. Tribological characteristics of pangolin scales in dry sliding. Journal of Materials Science Letters. 2000,19:569-572.
    105 Soligo C, Muller AE. Nails and claws in primate evolution. J. Hum. Evol. 1998, 36, 97-114.
    106 Lewin K. The normal finger nail. Br. J. Dermatol. 1965,77:421-430.
    107 Achten G. Histopathology of the nail. In The Nail (ed. M. Pierre). 1981 pp.1-14. Edinburgh: Churchill Livingstone.
    108 Dykyj D. Anatomy of the nail. Clin. Podiat. Med. Surg. 1989, 6: 215-228.
    109 Ditre CM, Howe NR. Surgical anatomy of the nail unit. J.Dermatol. Surg. Oncol.1992, 18, 665-671.
    110 Farren L, Shayler S, Ennos AR. The fracture properties and mechanical design of human fingernails. The Journal of Experimental Biology. 2004, 207:735-741.
    111 Baden, HP. The physical properties of nail. J. Invest. Dermatol. 1970, 55, 115-122.
    112 Bonser RHC. Comparative mechanics of bill claw and feather Keratin in the Common Starling Sturnus vulgaris. J Avian Biology. 1996, 27: 175-177.
    113 Brush AH. Patterns in amino acid compositions of avian epidermal protein. Auk. 1980, 97: 742-753.
    114 Homberge DG, Brush AH. Functional morphological and biochemical Correlations of the keratinized Structures in the African Grey Parrot, Psittacus erithacus(Aves) . Zoomorph. 1986, 106: 103-114.
    115 Bonser RHC. The young’s modulus of ostrich claw keratin. J Mater Sci Lett. 2000, 19: 1039-1040.
    116 Bonser RHC. Hydration sensitivity of ostrich claw keratin. J Mater Sci Lett. 2002, 21: 1563-1564.
    117 Taylor AM, Bonser RHC, Farrent JW. The influence of hydration on the tensile and compressive properties of aviankeratinous tissues. Journal of Material Science. 2004,39:939-942.
    118 Edwards HGM. FT-Raman Spectroscopic Study of Keratotic Materials: Horn, Hoof and Tortoiseshell. Spectrochimica Acta Part A. 1998, 54: 745-757.
    119 Akhtar W. Fourier-transform Raman Spectroscopy of Mammalian and Avian Keratotic Biopolymers. Spectrochimica Acta Part A. 1997, 53: 81-90.
    120 Pielesz A, Freeman HS. Assessing Secondary Structure of a Dyed Wool Fibre by Means of FTIR and FTR Spectroscopies. J Molecular Structure. 2003, 651-653: 405-418.
    121 Bommanna D, Potts RO, Guy RH. Examination of stratum corneum barrier function by infrared spectroscopy. J Invest Dermatol. 1990, 95(4): 403-408.
    122 Duer MJ. A Solid-state NMR Study of the Structure and Molecular Mobility of Alpha-keratin. Physical Chemistry Chemical Physics. 2003, 5: 2894-2899.
    123 吴刚.材料结构表征及应用.北京:化学工业出版社.2001,第一版, p56-57.
    124 P. H. 索罗曼著, 王绪明译. 红外光谱分析100 例.北京:科学出版社. 1984,第一版,p1-3.
    125 王正熙.聚合物红外光谱分析和鉴定. 成都:四川大学出版社.1989,第一版,p35-36.
    126 吴瑾光.近代傅立叶变换红外光谱技术及应用.北京:科学技术文献出版社.1994,第一版,p104-105.
    127 左演声,陈文哲.材料现代分析方法.北京:北京工业大学出版社.2000,第一版,p308.
    128 Verma SP, Wallach WFH. Biochem Biophys Res Comm. 1977, 74: p473.
    129 Small EW, Franconi B, Peticolas WLJ. Chem Phys. 1970, 52 : p4369.
    130 Edwards HGM, Hunt DE, Sibley MG. FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. Spectrochimica Acta Part A .
    1998, 54 : 745–757.
    131 张剑荣,戚苓,方惠群.仪器分析实验.北京:科学出版社.1999,第一版,p120.
    132 Mülling KW, Bragulla HH. How structures in bovine hoof epidermis are influened by nutritional factors. Anat Histol. Embryol. 1999,28:103-108.
    133 Kovacs A, Szilagyi M. Data on mineral components of the horny part of the foot of cattle,sheep and swine. Acta Vet. Hung. 1973, 23:187-192.
    134 Cousins RJ. Zinc. in Present Knowledge in Nutrition. 7th ed. E. E. Ziegler and L. J. Filer, Jr., ed. ILSI Press, Washington,DC.1996, p 293–306.
    135 O’Dell BL. Copper. in Present Knowledge in Nutrition. 6th ed. M. L. Brown, ed. ILSI Press, Washington, DC.1990, p 261–267
    136 Keen CL, Zidenberg-Cherr S. Manganese. in Present Knowledge in Nutrition. 7th ed. E. E. Ziegler and L. J. Filer, Jr., ed. ILSI Press, Washington, DC. 1996, p 334–343.
    137 Baggott DG, Bunch KJ, Gill KR. Variations in some inorganic components and physical properties of claw keratin associated with claw disease in the British Friesian cow. Br Vet J. 1988. 144:534–542.
    138 Edwards AJ, Fawke JD. Correlation of zinc distribution and enhanced hardness in the mandibular cuticle of the leaf-cutting ant Atta sexdens rubropilosa. Cell Biol Int. 1993,17: 697-698.
    139 Hillerton JE, Vincent JFV. The specific location of zinc in insect mandibles. J Exp Biol. 1982,101: 333-336.
    140 Hillerton JE, Vincent JFV. On the indentation hardness of insect cuticle. J Exp Biol. 1982,96: 45-52.
    141 Robert MS. Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Naturwissenschaften. 2002, 89: 579-583.
    142 Lichtengger HC, Ruokolainen JT. Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Biochemistry. 2003, 100:9144-9149.
    143 Ryder ML. Structure of rhinoceros horn. Nature. 1962,193:1199-1201.
    144 罗国清.3D-C/SiC复合材料的拉伸性能.硕士学位论文.西北工业大学.2003,p9.
    145 Mario A, Kasaspi J, Gosline M. Strain-rate-dependent mechanical properties of the equine hoof wall. The Journal of Experimental Biology. 1996, 199: 1133-1146.
    146 Feughelman M, Haly AR. Kolloid Z.1960,168:107.
    147 Wortmann FJ, Zahn H. Textile Res. J. 1994; 64: 737.
    148 Hearle JWS, Chapman BM. J Macromol Sci Phys. 1971, B5:633.
    149 Ramberg W, Osgood WR. Description of stress-strain-curves by three parameters. [s.l] : NACA.1943.
    150 黄文,周元鑫,马钢,夏源明.工业纯铝L2应变率相关的拉伸力学性能研究. 材料科学与工艺.2002,10:263-267.
    151 ASCE. Specification for cold-formed stainless steel structural members, ANSI/ASCE-8. New York: American Society of Civil Engineers. 1991.
    152 Kim JR. Full-range stress–strain curves for stainless steel alloys. Journal of Constructional Steel Research. 2003, 59:47-61.
    153 Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands. 1983, p541–547.
    154 Yang Wang, Yuanxin Zhou, Yuanming Xia. A constitutive description of tensile behavior for brass over a wide range of strain rates. Materials Science and Engineering. 2004, 372:186-190.
    155 Koács I, V?r?s G. On the mathematical description of the tensile stress-strain curves of polycrystalline face centered cubic metals. International Journal of Plasticity.1996, 12(1):35-43.
    156 赵荣国,张淳源,陈忠富.弹性回复对应原理在非线性粘弹性本构理论中的应用.云南大学学报(自然科学版).2002, 24(4):277-281.
    157 Drozov AD. A new model for an aging thermoviscoelastic material. Mech Res Comm. 1995,22(5):441-446.
    158 Drozov AD. A model for the nonlinear viscoelastic response in polymers at finite strains. Int J Solids Struct. 1998, 35(18):2315-2347.
    159 Giroud, JP. Mathematical model of geomembrane stress-strain curves with a yield peak.Geotextiles and Geomembranes. 1994, 13:1-22.
    160 Wesseloo J, Visser AT, Rust E. A mathematical model for the strain-rate dependent stress–strain response of HDPE geomembranes. Geotextiles and Geomembranes. 2004, 22:273-295.
    161 Sokolisa DP, Boudoulas H, Karayannacos PE. Assessment of the aortic stress–strain relation in uniaxial tension. Journal of Biomechanics. 2002, 35:1213-1223.
    162 Danilatos G, Feughelman M. Dynamic mechanical properties of a-keratin fibers during extension. J macromolec Sci-Phys. 1979, B16: 581–602.
    163 Nadeau, JS, Bennett R, Fuller ER. An explanation for the rate-of-loading effects in wood in terms of fracture mechanics. J Mat Sci.1982,17:2831–2840.
    164 Galante J, Rostoker W, Ray RD. Physical properties of trabecular bone. Calcif Tissue Res. 1970, 5:236-246.
    165 Linde F, Norgaard P, Hvid I, et al. Mechanical property of trabecular bone. J Biomech. 1991, 9:803-809.
    166 任露泉.试验优化设计与分析.长春:吉林科学技术出版社.2001,第一版,p16-18.
    167 曹茂盛,蒋成禹,田永君.工程材料力学性能.哈尔滨工业大学出版社.2001,第一版,p11-12.
    168 Sew MC, Adrian UJY, Wee KK. Measurement of poisson’s ratio of dental composite restorative materials. Biomaterials. 2004, 25:2455-2460.
    169 叶德临,张尚慧,张建海,李光碧. 人牙本质泊松比的测定.生物医学工程学杂志. 1995, 12(1): 10-13.
    170 Chabrier F, Lloyd CH, Scrimgeour SN. Measurement at low strain rates of the elastic properties of dental polymeric materials. Dent Mater. 1999,15:33-38.
    171 黎明, 温诗铸. 纳米压痕技术及其应用. 中国机械工程.2002,13:1437-1439.
    172 杨迪,李福欣. 显微硬度试验. 北京:中国计量出版社.1988,p1-3.
    173 张泰华,杨业敏. 纳米硬度技术在表面工程力学性能检测中的应用. 中国机械工程. 2002,13(24):2148-2151.
    174 谢存毅. 纳米压痕技术在材料科学中的应用. 物理. 2001,30(7):432-435.
    175 黎明,温诗铸. 纳米压痕技术理论基础. 机械工程学报. 2003,39(3):142-145。
    176 Oliver WC, Pharr GM. A improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992, 7(6): 1564-1583.
    177 Sneddon IN. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965, 3:47-56.
    178 Bolshakov A, Pharr GM. Influences of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res. 1998,13: 1049-1058.
    179 张泰华,杨业敏. 纳米硬度技术的发展和应用. 力学进展. 2002,32(3):349-364.
    180 http://www.hysitron.com.
    181 Miyajima T, Nagata F, Kanematsu W, Yokogawa Y, Sakai M. Elastic/plastic surface deformation of porous composites subjected to spherical nanoindentaion. Key Eng Mater. 2003, 240: 927-930.
    182 Rho JY, Pharr GM. Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci: Mater. Med. 1999, 10(8): 485-488.
    183 Blackburn J, Hodgskinson R, Currey JD, Mason JE. Mechanical properties of microcallus in human bone. J Orthop Res. 1992,10:237-246.
    184 叶卫平,方安平,于本方. Origin7.0 科技绘图及数据分析. 北京:机械工业出版社.2003,第一版,p167-182.
    185 Leach DH. The structure and function of the equine hoof wall. PhD thesis, 1980, University of Saskatchewan, Saskatoon.
    186 曹国剑.Nano-SiCp/Al 复合材料的制备与摩擦磨损性能.硕士学位论文.哈尔滨:哈尔滨工业大学.2003,p41.
    187 张招柱,薛群基,刘维民等.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性能.摩擦学学报.1997,17(1):45~52.
    188 何春霞,史丽萍,沈惠平.纳米填充聚四氟乙烯摩擦磨损性能的研究.摩擦学学报.2000,20(2):153~155.
    189 张剑锋,周志芳.摩擦磨损与抗磨技术.天津:天津科技翻译出版社.1993,第一版, p58.
    190 Tanaka K. Friction and deformation of polymers.Phys.Soc.Jap. 1961,16:2003-2016.
    191 Dufour PR, Kingma JA. Wear.1992, 156:85-100.
    192 Adams MJ, Briscoe BJ. The differential friction effect of keratin fibres. J. Phys. D: Appl. Phys.1990, 23:406-414.
    193 王松年,苏治福,江亲瑜.摩擦学原理及应用.北京:中国铁道出版社.1990,第一版,p72.
    194 籍国宝.摩擦磨损原理.北京:农业出版社.1992 第一版, p19-20.
    195 刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社.1993,第一版, p50.
    196 戴维杰.摩擦学基础.上海:上海科学技术出版社.1984,第一版,p48.
    197 克拉盖尔斯基.摩擦磨损计算原理.北京:机械工业出版社.1982,第一版,p16-17.
    198 邵荷生,曲敬信.摩擦与磨损.北京:煤炭工业出版社.1992,第一版,p56.
    199 Bui QV, Ponthot JP. Estimation of rubber sliding friction from asperity interaction modelling. Wear. 2002, 252:150-160.
    200 Mosleh M, Suh NP. Investigation of dry friction of submicrometer thick polyurethane films on a hard, smooth substrate. Surface and Coating Technology. 1996,85:138-145.
    201 Fernandez JE, Wang YL. Friction and wear behaviour of plasma-sprayed cr2o3 coatings against steel in a wide range of sliding velocities and normal loads.
    Tribology International. 1996, 29:333-343. 202 肖祥麟.摩擦学导论.上海:同济大学出版社.1990,第一版,p35-43.
    203 张凤英.纤维增强聚合物复合材料摩擦、磨损机理.纤维复合材料.1994,1:13-14.
    204 温诗铸.摩擦学原理.北京:清华大学出版社.1990,第一版, p399.
    205 郑林庆.摩擦学原理.北京:高等教育出版社.1994,第一版,p318-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700