用户名: 密码: 验证码:
内燃机工作过程与燃烧室传热三维多场耦合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机现代分析技术是发展高效、低排放与高可靠性发动机的重要工具,其中,发动机工作过程数值分析和发动机传热与热负荷分析是最重要工具之一。由于发动机结构的复杂性以及工作过程的多变性,长期以来,国内外的研究工作都是分别进行发动机工作过程分析和结构分析,但由于发动机性能分析中涉及到的气体域温度场、压力场、速度场等与发动机结构分析中涉及到的固体域温度场、热应力场是一种相互影响的关系,只有建立完整及全面的发动机工作过程与发动机结构传热与热负荷的多场耦合模型,才能有效地考虑他们之间的相互影响和作用,设计出高性能和高可靠性的发动机。
     本文建立了一种基于有限元和CFD分析的内燃机工作过程与燃烧室传热三维多场耦合模型,其中工作过程计算中的流体域采用结构化六面体网格进行离散,燃烧室部件热传导分析中的固体域采用非结构化四面体网格进行离散,提出了两种应用于气—固耦合的网格生成策略,建立起了气—固瞬态传热联系。发展了燃烧室耦合部件传热有限元计算程序,改进了KIVA程序,并且建立了有限元计算程序与KIVA之间的接口程序。然后以此为基础,研究了燃气温度、对流换热系数的时空非均匀性分布对燃烧室壁面温度的影响,以及分析壁面温度非均匀性分布对缸内流动、燃油蒸发、排放产物生成的影响。结果显示:(1)燃烧室壁面附近燃气的温度、对流换热系数不均匀分布对燃烧室壁面(特别是活塞顶面)稳态温度场具有重要影响。(2)燃烧室壁面附近燃气的温度、对流换热系数不均匀分布对燃烧室壁面(特别是活塞顶面)瞬态温度场具有重要影响。但瞬态温度波对燃烧室部件的影响仅限于离燃气侧表面很近的区域。随着距离燃烧室壁面的深度的增加,瞬态温度波动变弱。当深度达到1.0mm时温度波动已经不明显,基本服从准静态温度分布。(3)燃烧室壁面附近燃气的温度、对流换热系数不均匀分布对燃烧室壁面热流量计算结果具有重要影响。燃烧室的各个表面的热流量在排吹阶段有较大差异。在排吹阶段,缸盖燃气侧表面出现了明显的温度波动,而此期间其它燃烧室表面则不存在明显的温度波动。此外,在燃烧室同一表面的不同区域热流量差异也较大。(4)燃烧室壁面温度不均匀性对缸内流动的影响非常微弱,分别采用均匀温度边界条件与非均匀温度边界条件得到的计算结果看不出明显差异。燃烧室壁面温度不均匀性对燃油蒸发的影响主要存在于燃油蒸发的早期,在接近压缩冲程末期时,燃烧室壁面温度不均匀性对燃油蒸发的影响非常弱。燃烧室壁面温度不均匀性对缸内排放物NOx、 SOOT的生成有较大影响,壁面温度不均匀性对NOx的分布有一定的影响。
The modern engine analysis is an important tool that helps design an engine withhigh efficient, low emissions and high reliability, in which the engine working processsimulation and engine heat transfer analysis is one of the most important tools. Due to thecomplexity of the structure and the variability of the working process of the engine, for along time, the related research work at home and abroad are respectively analyzing theworking process and structure strength of the engine. However, due to the temperaturefield of the gas domain related to engine performance analysis, pressure, velocity, etc. withthe engine structure analysis involves solid domain temperature field and thermal stressfield is a mutual influence relationship, as a result, only establishing a complete andcomprehensive multifield coupled model which coupling the engine working process withthe engine heat transfer and thermal load can effectively take account of their mutualinfluence and help design a high-performance and high reliability engine.
     In this thesis, a3-D model for multifield coupling engine work process andcombustion chamber heat transfer was built based on the FEM and CFD. The fluid domainwas discretized by a block structured hexahedron grid, whose corresponding interfacemesh is quadrilateral, and the solid (FEM) domain was discretized by an unstructuredtetrahedral grid, whose corresponding interface mesh is triangle. Two special treatmentsfor the grid generation were designed and utilized. In order to implement the coupled heattransfer model, a FEM program was developed, the KIVA3V code was improved, and aKIVA-FEM interface program was built. Then on this basis, the gas-solid coupled modelwas utilized to simulate the3-D work process and combustion chamber heat transfer of agasoline engine. The result shows:(1)The temporal and spatial non-uniformity of thermalboundary conditions has an important influence on the steady temperature field of thechamber components, especially near the piston crown.(2)The temporal and spatialnon-uniformity of thermal boundary conditions has an important influence on the transienttemperature field of the chamber components, especially near the piston crown. However,the transient temperature wave of the combustion chamber components is limited in thearea very close to the surface of the gas-side. With the distance increased from thecombustion chamber wall, the transient temperature fluctuations weakened. When thedepth reached1.0mm, the temperature fluctuation is not obvious, according to quasi-statictemperature distribution。(3)The temporal and spatial non-uniformity of thermal boundary conditions has an important influence on the heat flux of the of the chamber components,especially during the blow-down period. During this period, a significant temperaturefluctuation appears near the gas-side surface of the cylinder head, but there are nosignificant temperature fluctuations near the other surfaces of combustion chambers.Furthermore, the heat flux is very different among the different regions of the samesurface of the combustion chamber.(4) The temporal and spatial non-uniformity ofchamber wall temperature has a weak influence on the in-cylinder flow. The calculationresults are no obvious difference when adopting uniform temperature boundary conditionsand non-uniform temperature boundary conditions respectively. The temporal and spatialnon-uniformity of chamber wall temperature influence the fuel evaporation in the earlyperiod of the fuel evaporative process. However, when close to the later period of thecompression stroke, this influence is weak. The spatial non-uniformity of chamber walltemperature obviously influence the emissions of the NOx and SOOT, and it alsoinfluence on the distribution of NOx.
引文
[1]刘永长.内燃机工作过程模拟[M].华中理工大学出版社.武汉,1996.
    [2]刘志恩.内燃机燃烧室多体耦合系统三维瞬态传热模拟及应用研究[D].华中科技大学,2007.
    [3] David Lejsek, Andre Kulzer, Gunter Hohenberg, Michael Bargende. NovelTransient Wall Heat Transfer Approach for the Start-up of SI Engines withGasoline Direct Injection[J]. SAE paper,2010-01-1270,2010.
    [4] John E. Kirwan, Mark Shost, Gregory Roth and James Zizelman.3-CylinderTurbocharged Gasoline Direct Injection:A High Value Solution for Low CO2andNOx Emissions[J]. SAE paper2010-01-0590,2010.
    [5] Jonathan Etheridge, Sebastian Mosbach, Markus Kraft, Hao Wu, Nick Collings, ADetailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI EngineOperated with NVO[J]. SAE paper,2009-04-20,2009.
    [6] Reed M. Hanson, Sage L. Kokjohn, Derek A. Splitter, Rolf D. Reitz. AnExperimental Investigation of Fuel Reactivity Controlled PCCI Combustion in aHeavy-Duty Engine[J]. SAE paper,2010-01-0864,2010.
    [7] Bin Liu, Ming Jia, Zhijun Peng. An Investigation of Multiple-Injection Strategy ina Diesel PCCI Combustion Engine[J]. SAE paper,2010-01-1134,2010.
    [8] Fan Zhang, Hongming Xu, Soheil Zeraati Rezaei, Gautam Kalghatgi, Shi-Jin Shuai.Combustion and Emission Characteristics of a PPCI Engine Fuelled withDieseline[J]. SAE paper,2012-01-1138,2012.
    [9]白敏丽,沈胜强.内燃机传热全数值仿真模拟研究进展综述[J].内燃机学报,2000,18(1):96-99.
    [10] J.B.Heywood. Internal Combustion Engine Fundaental[M]. McGraw-Hill. NewYork,1989.
    [11] O. Vermorel, S. Richard, O. Colin. Multi-Cycle LES Simulations of Flow andCombustion in a PFI SI4-Valve Production Engine[J]. SAE paper2007-01-0151.
    [12] Amsden, A. A., O'Rourke, P.1., and Butler, T. D., KIVA-II: A Computer Programfor Chemically Reactive Flows with Sprays[R]. Los Alamos, New Mexico. LosAlamos National Laboratory Report,1989, LA-11560-MS.
    [13] Amsden, A. A. KIVA-3: A KIVA Program with Block-Structured Mesh forComplex Geometries[R]. Los Alamos, New Mexico: Los Alamos NationalLaboratory Report,1993, LA-12503-MS.
    [14] Amsden A A. KIVA-3V: A Block Structured KIVA Programs for Engines withVertical or Canted Valves[R]. Los Alamos, New Mexico. Los Alamos NationalLaboratory Report,1997, LA-13313-MS.
    [15] Amsden A A. KIVA-3V, Release2: Improvements to KIVA-3V. Los Alamos, NewMexico[R]. Los Alamos National Laboratory Report,1999, LA-13608-MS.
    [16]谢茂昭.内燃机计算燃烧学[M].大连理工出版社.大连,2005.
    [17] Wiebe, I. I. Semi-empirical expression for combustion rate in engines[R]. InProceedings of Conference on Piston engines, USSR,1956, pp.185–191.(Academy of Sciences, Moscow).(in Russian).
    [18] Ghojel (2010) Review of the development and applications of the Wiebe function:a tribute to the contribution of Ivan Wiebe to engine research[J]. Int J Engine Res11:297–312. doi:10.1243/14680874JER06510
    [19] Ramos, J. I. Internal combustion engine modeling[M].1st edition,1989(Taylor&Francis).
    [20] Sitkei, G. Kraftstoffaufbereitung und Verbrennung bei Dieselmotoren[M].1964(Springer-Verlag, Berlin).
    [21] Miyamoto, N., Murayama, T., and Fukazawa, S. Studies on low compression ratiodiesel engines[J]. Bull. JSME,1972,15(90),1603–1616.
    [22] Toda, N., Kushiyama, T., and Oyama, T. On a method of calculating characteristicsof exhaust gas turbocharged two-stroke diesel engine[J]. Bul. JSME,1966,9(35),580.
    [23] Izumi, S., Yano, T., Omotehara, I., and Kushiyama,T. Matching of exhaustturbo-chargers to two-cycle diesel engines[J]. ASME paper68-DGP-9,1968.
    [24] Shipinski, J., Uyehara, O. A., and Myers, P. S. Experimental correlation betweenrate of injection and rate of heat release is a diesel engine[J]. ASME paper68-DGP-11,1968.
    [25] Chang, K., Babajimopoulos, A., Lavoie, G. A., Filipi, Z. F., and Assanis, D. N.Analysis of load and speed transitions in an HCCI engine using1-D cyclesimulation and thermal networks[J]. SAE technical paper2006-01-1087,2006.
    [26] Gonchar, B. N. Revised method for the computation and construction of engineindicator diagram[R]. Collection of articles on the investigation of workingprocesses in diesel engines, Central Diesel Research Institute,1954,25(Machgiz)(in Russian).
    [27] Samson, Ye. P. Computaion of the indicator diagram of an engine with acombustion chamber in the cylinder[R]. Central Diesel Research Institute,43(Mashgiz)(in Russian).
    [28] Dyechenko, N. Kh. Theory of internal combustion engines[R].1974(in Russian)(Mashinostroyeniye).
    [29] Watson, N., Pilley, A. D., and Marzouk, M. A combustion correlation for dieselengine simulation[J]. SAE paper800029,1980.
    [30] Miyamoto, N., Chikahisa, T., Murayama, T., and Sawyer, R. Description andanalysis of diesel engine rate of combustion and performance using Wiebe’sfunctions[J]. SAE paper850107,1985.
    [31] Sierens, R., Van Hove, W., and Riemslagh, K. Heat release analysis and powercycle calculation of the combustion in a medium-speed diesel engine[J]. In Dieselengine processes: turbocharging, combustion and emissions, ICE vol.17,1992(American Society of Mechanical Engineers, New York).
    [32] Breuer, C. The influence of fuel properties on the heat release in DI-dieselengines[J]. Fuel,1995,74(12),1767–1771.
    [33] Egnell, R. A simple approach to studying the relation between fuel rate, heatrelease rate and NO formation in diesel engines[J]. SAE paper1999-01-3548,1999.
    [34] Abd Alla, G. H. Computer simulation of a four stroke spark ignition engine[J].Energy Conversion Mgmt,2002,43,1043–1061.
    [35] Kumar, R., Reader, G. T., and Zheng, M. A preliminary study of ignitionconsistency and heat release analysis for a common-rail diesel engine[J]. SAEpaper2004-01-0932,2004.
    [36] Yasar, H., Soyhan, H. S., Walmsley, H., Head, B., and Sorusbay, C. Double-Wiebefunction: an approach for single-zone HCCI engine modelling[J]. Appl. ThermalEngng,2008,28,1284–1290.
    [37] Glewen, W. J., Wagner, R. M., Edwards, K. D. C., and Stuart Dawb, C. S. Analysisof cyclic variability in spark-assisted HCCI combustion using a double Wiebefunction[R]. Proc. Combust. Inst.,2009,32,2885–2892.
    [38] Bilcan, A., Tazerout, M., Le Corre, O., and Ramesh, A. Ignition delay in dual-fuelengines: an extended correlation for gaseous fuels[R]. In Proceedings of the SpringTechnical Conference of the Internal Combustion Engine Division of ASME,Philadelphia, Pennsylvania, USA,29April–2May2001.
    [39] Canova, M., Garcin, R., Midlam-Mohler, S., Guezennec, Y., and Rizzoni, G. Acontrol-oriented model of combustion process in a HCCI diesel engine[R]. InProceedings of the2005American Control Conference, Portland, Oregon,8–10June2005.
    [40] Galindo, J., Lujan, J. M., Serrano, J. R., and Hernandez, L. Combustion simulationof turbocharger HSDI diesel engines during transient operation using neuralnetworks[J]. Appl. Thermal Engng,2005,25,877–898
    [41] M. H. Carpenter, J. I. Ramos. Mathematical Models of Spark-Ignition Engines[J].Applied Mathematical Modelling.1985,9(1):40-52
    [42] Reitz RD, Rutland CJ (1995) Development and testing of diesel engine CFDmodels[J]. Prog Energy Combust Sci21:173–196.doi:10.1016/0360-1285(95)00003-Z
    [43] Annand W J D, Ma T H. Instantaeous Heat Transfer Rates to the Cylinder HeadSurface of a Small compression-Ignition Engine[J]. Proc, IMeE.,1970~1971,185:976
    [44] Y.-Y. Wu, B.-C. Chen, F.C. Hsieh, Heat transfer model for small-scale air-cooledspark ignition four-stroke engines[J]. Int. J. Heat Mass Transfer49(2006)3895–3905.
    [45] Yuh-Yih Wu, Bo-Chiuan Chen, Feng-Chi Hsieh, Cheng-Ting Ke Heat transfermodel for small-scale spark-ignition engines[J]. Int. J. Heat Mass Transfer52(2009)3895–3905.
    [46] Launder BE, Spalding DB. The numerical computation of turbulent flows[J].Comput Methods Appl Mech Eng1974,3:269–89.
    [47] Huh KY, Chang IP, Martin JK. A comparison of boundary layer treatments for heattransfer in IC engines[J]. SAE Paper no.900252;1990
    [48] Han Z, Reitz RD. A temperature wall function formulation for variable-densityturbulent flows with application to engine convective heat transfer modeling[J]. IntJ Heat Mass Transfer1997,40(3):613–25.
    [49] Angelberger C, Poinsot T, Delhaye B. Improving near-wall combustion and wallheat transfer modeling in SI engine computations[J]. SAE Paper no.972881;1997.
    [50] C.D. Rakopoulos, G.M. Kosmadakis, E.G. Pariotis. Critical evaluation of currentheat transfer models used in CFD in-cylinder engine simulations and establishmentof a comprehensive wall-function formulation[J]. Applied Energy,87(2010)1612–1630`.
    [51] Chaudry, M.A., and Zubair, S.M. On the Decomposition of GeneralizedIncomplete Gamma Functions with Applications to Fourier Transforms[J].J.Comput.Appl.Math,1995,59:253-284
    [52] Chaudry, M.A., Zubair S.M. On A Class of Incomplete Gamma Functions withApplication[M]. Chapman&Hall/CRC, Boca Raton,2002
    [53] Chaudry, M.A., and Zubair, S.M. Generalized Imcomplete Gamma Functions withApplications[J]. J.Comput.Appl.Math,1994,55:99-124
    [54] Zubair S.M, and Chaudry, M.A. Heat Conduction in a Semi-infinite Solid Subjectto Steady and Non-steady Periodic-type Surface Heat Fluxes[J]. Int. J.HeatTransfer,1995,38(18):3393~3399
    [55] Woschni, G. A universally applicable equation for the instantaneous heat transfercoefficient in the IC engine[J]. SAE Trans670931
    [56] L. Laurenti, F. Marcotullio and A. Ponticiello. Multidimensional TransientConduction Analysis by Generalized Transfer Functions Tables[J]. Journal of HeatTransfer,1998,120(3):583-591
    [57]姚寿广,朱德书等.内燃机活塞温度场二次等参轴对称边界元分析[J].内燃机学报.1991,9(1):77-82
    [58]董健,高孝洪.陶瓷活塞轴对称非稳定传热子结构有限元分析方法[J].内燃机学报,1992,10(3):193-198
    [59]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [60]王磊,李家宝.结构分析的有限差分法[M].北京:人民交通出版社,1982
    [61]廖日东,左正兴,樊利霞等.发动机零部件有限元技术应用的新进展[J].内燃机学报,1999,17(2):190-197
    [62] N.S. Jackson, A.D. Pilley and N.J. Owen. Instantaneous heat transfer in a highlyrated DI truck engine[J]. SAE Trans900692
    [63] F.G. Wirbeleit, K. Binder and D. Gwinner. Development of pistons with variablecompression height for increasing efficiency and specific power output ofcombustion engines[J]. SAE Trans900229
    [64] A. Garro and V. Vullo. Some considerations on the evaluation of thermal stress incombustion engine[J]. SAE Trans780664
    [65] Manfred D. Roehrle. Thermal effects on diesel engine pistons[J]. SAE Trans780781
    [66] J.R. Thomas, Jr. Coupled Radiation/Conduction Heat Transfer in Ceramic Linersfor Diesel Engine[J]. Numerical Heat Transfer Part A: Application,1992,21(1):109~120
    [67] P.H. Havstad, I.J. Garwin and W.R. Wade. A ceramic insert uncooled dieselengine[J]. SAE Trans860447
    [68] Gerald L. Graf and Yoseph Gebre-Giorgis. Combing finite element and boundaryelement analysis[J]. SAE Trans860747
    [69] Beer, G. BEFE—A Combined Boundary Element Finite Element ComputerProgram[J]. Adv. Eng. Software,1983,6(2):103~109
    [70]秉初,毛明智.1/2活塞模型三维有限元数值分析[J].内燃机学报,1990,8(2):157-162
    [71]杨青,陆瑞松,冉一元.内燃机活塞温度场的三维边界元分析及实验研究[J].内燃机学报,1990,8(2):175-182.
    [72]张卫正,薛剑青,吴思进等.高升功率柴油机铸铁活塞的设计与计算分析[J].内燃机学报,1999,17(3):228-232.
    [73]冯耀潮,陈鹏,朱宏顺等.薄壁油冷活塞三维有限元计算及强度分析[J].内燃机工程,1997,18(3):6-11.
    [74]俞小莉,沈瑜铭,沈晓雯.三维有限元法预算活塞工作温度和应力[J].内燃机工程,1999,20(3):70-73.
    [75] R. Kamo, W. Bryzik. Cummins/TA COM advanced adiabatic engine[J]. SAE Trans840428.17(3):228-232.
    [76] Zhaoda, Y., Zheng, F. Calculation and prediction of thermal loading of theair-cooled diesel engine[J]. SAE Trans881254.
    [77] Kamel, M. and Watson, N. Heat transfer in the indirect injection diesel engine[J].SAE paper790826.
    [78] Furuhama, S. and Suzuki, H. Temperature distribution of piston rings and piston inhigh speed diesel[J]. Bulletin of JSME.1979,22:1788-1795.
    [79] Rolf D. Reitz. Assessment of wall heat transfer models for premixed charge enginecombustion computations[J]. SAE Trans910267
    [80] Thomas Morel, Syed Wahiduzzaman, et al. Effect of speed, load, and location onheat transfer in a diesel engine—measurements and predictions[J]. SAE Trans870154
    [81] P. Gilaber and P. Pinchon. Measurements and multidimensional modeling ofgas-wall heat transfer in a S.I. engine[J]. SAE Trans880516
    [82] Urip, Song-Lin Yang. An Efficient IC Engine Conjugate Heat Transfer Calculationfor Cooling Sys-tem Design[J]. SAE Trans070147
    [83]周龙;白敏丽;吕继组等.用耦合分析法研究内燃机活塞环-气缸套传热润滑摩擦问题[J].内燃机学报.2008,26(1):69-75
    [84]李迎,俞小莉,陈红岩等.发动机冷却系统流固耦合稳态传热三维数值仿真[J].内燃机学报.2007,25(3):252-257
    [85] Borman, G.L. and Nishiwaki, K. Internal combustion engine hest transfer[J].Progress in Energy Combustion Science,1987,13:1~46
    [86] Morel, T., Keribar, R., Blumberg P.N. and Fort, E.F. Examination of key issues inlow-heat rejection engine[J]. SAE paper860316
    [87] Parick Popp and Markus Baum. Heat transfer and pollutant formation mechanismsin insulated combustion chambers[J]. SAE Trans952387
    [88] Sung Bin Han, Nae Hyun Lee. Analysis of thermal loading in a turbochargedgaoline engine[J]. SAE Trans970205
    [89] Shoichi Furuhama and Yochiteru Enomoto. Heat transfer into ceramic combustionwall of internal cmobustion engines[J]. SAE Trans870153
    [90] Jeffrey C. Huang and Gary L. Borman. Measurements of instantaneous heat flux tometal and ceramic surfaces in a diesel engine[J]. SAE Trans870155
    [91] Gerhard Woschni, Walter Spindler, and Konrad Kolesa. Heat insulation ofcombustion chamber walls—a measure to decrease the fuel consumption of I.C.engines?[J]. SAE Trans870339
    [92] Randolph A. Churchill, James E. Smith, et al. Low-heat rejection engines—aconcept review[J]. SAE Paper880044
    [93] Thomas Morel, Syed Wahiduzzaman, and Edward F. Fort. Heat transferexperiments in an insulated diesel[J]. SAE Trans880186
    [94] Daniel W. Dickey. The effect of insulated combustion chamber surfaces ondirect-injected diesel engine performance, emissions and combustion[J]. SAETrans890292
    [95] Thomas Morel, Syed Wahiduzzaman, Edward F. Fort, et al. Heat transfer in acooled and a insulated diesel engine[J]. SAE Trans890572
    [96] Eugene Danielson, David Truner, Joseph Elwart, et al. Thermomechanical stressanalysis of novel low heat rejection cylinder head designs[J]. SAE Trans930985
    [97] Dennis N. Assanis and Edward Badillo. Evaluation of alternative thermocoupledesigns for transient heat transfer measurements in metal and ceramic engines[J].SAE Trans890571
    [98] Shoichi Furuhama and Shinihi Sasaki. New device for the measurement of pistonfrictional forces in small engines[J]. SAE Trans831284
    [99]陆瑞松,林发森,张润.内燃机的传热与热负荷[M].北京:国防工业出版社,1985,78-79.
    [100] Assanis, D.N. and Badillo, E. Transient analysis of piston-liner heat transfer inlow-heat-rejection diesel engines[J]. SAE Trans880189
    [101] Kouremenos, D.A., Rakopoulus, C.D. Modeling the transient temperature field inthe combustion chamber surfaces of internal combustion engines using finiteelement analysis[R].10th IASTED MIC Intern. Conf.,1991, Innsbruck, Austria
    [102] C.D. Rakopoulos, D.T. Hountalas. An integrated transient analysis simulationmodel applied in thermal loading calculation of an air-cooled diesel engine undervariable speed and load conditions[J]. SAE Trans970634
    [103] Yong Liu, Reitz R.D. Modeling of heat conduction within chamber walls formultidimensional internal combustion engine simulations[J]. International Journalof Heat Mass Transfer.1998,41(6-7):859-869
    [104] Liu Y. Modeling of combustion chamber surface temperatures with application tomultidimensional diesel engine simulation[D]. M.S. thesis, University ofWisconsin-Madison,1996
    [105] Rakopoulos C.D., Mavropoulos G.C. Modeling the transient heat transfer in theceramic combustion chamber walls of a low heat rejection diesel engine[J].International Journal of Vehicle Design.1999,22(3/4):195-215
    [106]陈国华,海伍德J.B.燃烧室偶合系统不稳定传热的数值分析[J].华中工学院学报.1987,15(4):25-32
    [107]白敏丽,沈胜强,陈家骅等.内燃机传热全仿真模拟研究进展综述[J].内燃机学报,2000,18(1):96-99
    [108]白敏丽,沈胜强,陈家骅等.燃烧室部件耦合系统循环瞬态传热模型的研究[J].内燃机学报,2000,18(1):100-103
    [109]丁铁新.内燃机燃烧室滑动接触部件耦合传热仿真[M].大连理工大学,2004
    [110] Wiedenhoefer J. F. and Reitz, R. D., Multidimensional Modeling of the Effects ofRadiation and Soot Deposition in Heavy-duty Diesel Engines[J]. SAE TechnicalPaper2003-01-0560,2003.
    [111] Kleemann, A. P., Menegazzi, P., and Henriot, S. Numerical Study of Knock For AnSI Engine by Thermally Coupling Combustion Chamber and Cooling CircuitSimulations[J]. SAE Technical Paper2003-01-0563,2003.
    [112] Egel Urip. The KIVA Code with conjugate heat transfer model for IC enginesimulation[D], Michigan Technological University.2006
    [113] Yuanhong Li, Song-Charng Kong. Coupling conjugate heat transfer within-cylinder combustion modeling for engine simulation[J]. International Journal ofHeat and Mass Transfer.2011,54(11-12):2467-2478
    [114]李迎.内燃机流固耦合传热问题数值仿真与应用研究[D].浙江:浙江大学.2006
    [115]陈海波.汽油机固-液耦合及沸腾传热研究[D].吉林:吉林大学,2009.
    [116]吕继祖.燃烧室部件传热时空非均匀性对内燃机工作过程影响的研究[D].大连:大连理工大学,2008
    [117] O'Rourke P J, Amsden A A. A Particle Numerical Model for Wall Film Dynamicsin Port-Injected Engines[J]. SAE Technical Paper961961.
    [118] O'Rourke P J, Amsden A A. A Spray/Wall Interaction Submodel for the KIVA-3Wall Film Model[J]. SAE Technical Paper2000-01-0271.
    [119] Lee C F, Kapadia R K, Chin ST. Modeling Of Film Vaporization And FilmBoiling Inside An Engine Cylinder[R].14th International Multidimensional EngineModeling User's Group Meeting, Detroit,2004.
    [120] Yang Wanli, Chen Guohua, Wang Chunfa. Simulation of Transient Heat Transferfor Coupling3-D Moving Component System Within Internal CombustionChamber[J]. SAE Technical Paper.2003,0617
    [121] Launder B E, Spalding D B. The numerical computation of turbulent flows.Computer Methods in Applied Mechanics and Engineering[J].1974,3(2):269-289
    [122] Frink N T, Pirzadeh S Z. Tetrahedral finite-volume solutions to the navier-stokesequations on complex configurations[J]. International Journal for numericalmethods in fluids.1999,31:175–187
    [123]蒋炎坤.CFD辅助发动机工程的理论与应用[M].科学出版社.2004.
    [124]蒋炎坤,钟教芳,罗马吉等.动力系统流场计算动态网格生成模型研究[J].华中科技大学学报.200129(7):53-55
    [125]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [126]杨绍祺,谈根林.稀疏矩阵--算法与程序实现[M].北京:高等敎育出版社,1985
    [127]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998
    [128] Carslaw H S, Jaeger J C. Conduction of Heat in Solids[M]. Clarendon Press,Oxford,1959. pp.100-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700