空间机器人目标捕获协调控制与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间事业的不断发展,空间机器人在轨操作任务变得越来越繁重复杂。捕获目标是空间机器人执行在轨操作的首要任务,通过地面微重力实验平台对空间机器人目标捕获操作进行模拟,是研究空间机器人的一种重要手段。本文基于空间机器人地面操作实验,选取空间机器人与捕获目标作为研究对象,对空间机器人目标捕获操作进行系统性的研究。
     首先,对空间机器人目标在轨操作及实验平台的研究现状进行分析,选取本文所研究的空间机器人为对象,建立了六自由度机械臂运动学模型,给出关节角与末端位姿的映射关系。并通过运动学仿真对本研究所用的机械臂进行分析。
     其次,针对目标捕获操作中机械臂捕获精度问题,通过保证单关节输出精度的方式确保机械臂末端误差范围,测定并验证关节定位精度达到的水准。提出测试过程中测角误差的修正方法,保证了关节测量精度。
     再次,针对定基座的空间机械臂末端机械手工作空间有限的问题,提出机械臂与目标星之间相互配合、协调控制的机制来完成目标捕获操作。同时设计机械臂与目标星交会捕获时的控制策略。
     再次,结合研究所用实验平台的特点,提出目标姿态测定方案,搭建目标位姿测量系统。并设计目标星位姿控制方案,实现捕获目标自主调姿的功能。
     最后,搭建空问机器人目标捕获模拟实验平台,对各个分系统的构成,捕获实验控制系统进行设计。分别进行空间机械臂、目标星控制实验以及目标捕获演示实验,检验机械臂目标星系统的控制性能和捕获协调控制方案的可行性和可靠性。总结研究成果,并进行展望。
As the continuous development of space technology, space robots become increasingly onerous and complex on-orbit operation tasks. The capture target space robot to perform the primary task of the rail operation, space robot target acquisition operations simulated microgravity experimental platform through the ground, is an important means of research space robot. Based on the ground operations of the space robot experiment, select the space robot and capture the target as the object of study, systematic study of the space robot target acquisition operations.
     First, the analysis of the research status of the space robot target acquisition experimental platform selected research space robot object the establishment of six degrees of freedom manipulator kinematics model, given the joint angles, joint angle end position and orientation mapping relationship. And analyze the kinematics simulation of the robotic arm used in this study.
     Secondly, the manipulator capture accuracy for target acquisition, to propose experimental calibration test means to improve the the joint precision, in order to ensure the control of the robot arm end positioning accuracy. Design and build a joint test platform proposed compensation method of angle measurement error, ensure joint measurement accuracy.
     Again, the end of the space manipulator mechanical clutch work space is limited for the fixed-base issue, between the manipulator and target star with coordinated control mechanism to accomplish the goal of capture operation. Design robotic arm with the target star intersection control strategy and target acquisition.
     Once again, the combination of the Institute with the characteristics of the experimental platform is proposed to capture the the target attitude determination program, to build the target position and orientation measurement system. And the design goals horoscope posture control scheme, to achieve the the capture target independent attitude adjustment function.
     Finally, build a space robot target acquisition simulation platform, the composition of the various subsystems, capture the experimental control system design. Space manipulator respectively, the target satellite control experiment, and target acquisition demonstration experiments, the feasibility and reliability of the inspection robot arm control of the target star system performance and capture control program. Summary of the research results and prospects.
引文
[1]魏承,赵阳,田浩.空间机器人捕获漂浮目标的抓取控制[J].航空学报2010(03):99-103.
    [2]刘厚德,梁斌,李成,等.航天器抓捕后复合体系统稳定的协调控制研究[J].航空学报2012(07):920-927.
    [3]徐文福.空间机器人目标捕获的路径规划与实验研究[D].哈尔滨工业大学博士学位论文,2007.
    [4]徐文福,李成,梁斌,刘宇,强文义.空间机器人捕获运动目标的协调规划与控制方法[J].自动化学报2009(9)1216-1221.
    [5]魏承.空间柔性机器人在轨抓取与转移目标动力学与控制[D].哈尔滨工业大学博士学位论文,2010.
    [6]许剑,杨庆俊等.多自由度气浮仿真试验台的研究与发展[J].航天控制.2009.27(6):96-101.
    [7]马景然,张涛等.空间目标器模拟装置姿态控制仿真实验研究[J].系统仿真学报,2008,20(16):4296-4299.
    [8]刘伟,徐斌.卫星气浮平台视觉测量系统研究[J].微计算机信息,2008(24):124-126.
    [9]许剑.五自由度气浮仿真试验台样机的研制及其关键技术的研究[D].哈尔滨:哈尔滨工业大学,2010,5.
    [10]Schwartz Jana L., Hall Christopher D. Historical review of spacecraft simulator. Advances in the Astronautical Sciences.2003,114:405-423.
    [11]Welch G, Bishop G. An Introduction to the Kalman Filter[R]. USA:University of North Carolina,2003.
    [12]马颂德,张正友.计算机视觉[M].科学出版社,2003.
    [13]Comport A I, Malis E, Rives P. Accurate Tracking for Robust 3D Visual Odometer. Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy, 2007.10-14.
    [12]Lowe D G. Distinctive image features from scale-invariant key-points. International Journal of Computer Vision,2004,60(2):99-110.
    [14]杨明,王宏,张钹.基于激光雷达的移动机器人位姿估计方法综述[J].机器人,2002,24(2):177-183.
    [15]李季苏,牟小刚,张锦江.卫星控制系统全物理仿真[J].航天控制,2004,22(2):P37-41
    [16]李季苏,牟小刚,,张锦江,等.气浮台在卫星控制系统仿真中的应用[J].航天控制,2008,26(5):64-69.
    [17]孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007(01): 99-103.
    [18]王爽.空间机器人姿态控制飞轮的研究[D].哈尔滨:哈尔滨上业大学.2005.
    [19]鲁兴举.空间飞行器姿态控制仿真试验平台系统研究与设计[D].国防科学技术大学硕士学位论文,2005.
    [20]吴国庆,孙汉旭,贾庆轩.基于气浮方式的空间机器人地面试验平台的设计与实现[J].现代机械,2007年6月,(2007)03:1-5.
    [21]许剑等.五自由度气浮台平动时侧向干扰力问题的研究[J].宇航学报,2009,(05):1823~1828.
    [22]王爽.空间机器人姿态控制飞轮的研究[D].哈尔滨:哈尔滨工业大学.2005.
    [23]孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007(01):99-103.
    [24]鲁兴举.空间飞行器姿态控制仿真试验平台系统研究与设计[D].国防科学技术大学硕士学位论文,2005.
    [25]李明锁,井亮,邹杰,冯星,姜长生.结合扩展卡尔曼滤波的CamShift移动目标跟踪算法[J].电光与控制2011,03:1-5.
    [26]杨锋,三轴稳定卫星姿态确定及控制系统的研究[D].西北工业大学硕士学位论文,2006.
    [27]马万宇.基于卡尔曼滤波的卫星组合姿态确定系统物理仿真研究.哈尔滨工业大学硕士学位论文,2008.
    [28]张钊,胡军,轨道机动时考虑延迟的卫星姿态稳定控制方法[J].宇航学报,2007(01):99-103.
    [29]张水参.不确定性漂浮基空间机械臂鲁棒控制方法研究[J].哈尔滨工业大学硕士学位论文,2009.
    [30]王爽.空间机器人姿态控制飞轮的研究[D].哈尔滨:哈尔滨工业大学.2005.
    [31]韩彬.柔性机械臂模块化测试系统的设计与实现[D].北京:北京邮电大学,2009.
    [32]郭阳宽,李玉和,李庆祥,等.运动偏心对圆光栅副测量的影响及误差补偿[J].清华大学学报(自然科学版),2005,45(2):178-181.
    [33]于连栋,丁洋,程文涛.平行双关节坐标测量机圆光栅测角误差补偿技术[J].南京理工大学学报(自然科学版),2009.33(5):659-662.
    [34]张礼松,管炳良.关节坐标测量机研制中圆光栅误差修正技术[J].计测技术,2007,27(4):41-44.
    [35]王文,林铿,高贯斌,等.关节臂式坐标测量机角度传感器偏心参数辨识[J].光学精密工程,201018(1):135-134.
    [36]高贯斌,王文,林铿,等.圆光栅角度传感器的误差补偿及参数辨识[J].光学精密工程,2010,18(8):1766-1772.
    [37]朱帆,吴易明,刘长春.四读头法消除码盘偏心和振动对叠栅条纹相位测量的影响[J].光学学报,2011,31(4):1-7.
    [38]HAGIWARA Nobumi, SUZUKI Yoshihisa, MURASE HIDEAKI. A method of improving the resolution and accuracy of rotary encoders using a code compensation technique [J]. IEEE Trans on Instrumentation and Measurentm,1992,41(1):98-101.
    [39]洪喜,续志军,杨宁.基于径向基函数网络的光电编码器误差补偿法[J].光学精密工程,2008,16(4):598-604.
    [40]Portman V, Peschansky B. Phase-statistical method and device for high precise and high-efficiency angular measurements [J].Precision Engineering,2001,25(4):309-315.
    [41]Taghirad, H.D. and M.A. Khosravi. Stability analysis and robust composite controller synthesis for flexible joint robots. Intelligent Robots and System,2002. IEEE/RSJ International Conference on.2002,pp.2073-2078 vol.3.
    [42]Huang, A.-C. and Y.-C. Chen, Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Transactions on Control Systems Technology,2004.12(5):p. 770-775.
    [43]Woosoon, Y. Adaptive control of a flexible joint manipulator, in Robotics and Automation,2001. Proceedings 2001 ICRA. IEEE International Conference on. 2001.
    [44]Jong-Guk, Y., et al. Robust Control using Recursive Design Method for Flexible Joint Robot Manipulator.in Robotics and Automation,2007 IEEE International Conference on.2007.
    [45]张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003:360-421.
    [46]刘金琨.先进PID控制及其MATLAB仿真[M],北京:电子工业出版社,2003.68-6.
    [47]A. Patel, R. Neelgund, A. Wathore. Talole, Robust Control of Flexible Joint Robot Manipulator, in Industrial Technology,2006. ICIT 2006. IEEE International Conference on, 2006, pp.649-653.
    [48]Chatlatanagulchai, W. and P.H. Meckl. Motion control of two-link flexible-joint robot, using backstepping, neural networks, and indirect method.in Control Applications,2005. CCA 2005. Proceedings of 2005 IEEE Conference on.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700