用户名: 密码: 验证码:
游梁式抽油机采油系统实时评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
游梁式抽油机采油系统是油田开发过程的主要生产设备,也是反映地下油藏动态信息的重要窗口,在石油开发过程中占有举足轻重的地位,研究其实时评价技术具有重要的理论意义和实用价值。主要工作如下:
     介绍了游梁式抽油机采油系统基本结构和工作原理,分析了传统游梁式抽油机采油系统评价方法特点以及存在的问题,针对传统游梁式抽油机评价技术在数据实时性、传感器可靠性、应用成本等方面存在的问题,提出了基于电功图的游梁式抽油机采油系统实时评价方法,并分析了其可行性。
     针对缺乏有效的游梁式抽油机采油系统整体动态模型的问题,提出一种实用的抽油机整体动态模型。这方面研究内容包括:针对电动机无传感器转矩和转速估计问题,提出基于电压源的电动机等效电路模型;针对抽油机地面机械部分的动力学分析问题,研究系统能耗组成,描绘了系统能流路线,同时采用矢量分析的方法对游梁式抽油机几何结构的动力学形态进行了精确求解;研究了抽油杆的行为特性,针对抽油杆波动方程实时求解实时性差问题,提出了抽油杆运动形态简化模型。
     针对游梁式抽油机电参数采样尺度不一致、特性差异大的问题,提出一种基于多尺度采样的数据处理方法。根据系统实时评价过程中不同层次模型对数据尺度的要求,分别采用不同的采样尺度。根据不同信号的特点,采用三种数据预处理及信号分析方法:针对现场数据电磁脉冲干扰问题,采用预测均值滤波算法对信号的奇异值进行预处理;针对非完整周期间歇采样信号的处理问题,采用拟合先行的希尔伯特黄变换(Hilbert-Huang Transition,HHT)信号分离方法;针对信号实时梯度计算问题,采用基于多尺度均值滤波的信号梯度计算方法。仿真分析和实验验证说明了上述方法的有效性。
     建立了基于电功图的游梁式抽油机采油系统实时评价性能指标以及具体评价方法。从数学和图形两方面寻找适合于工程应用的对象信息特征,提出9种用于抽油机电功图状态识别的性能指标参数以及基于电功图抽油机系统评价的三种方法:图形化方法、差异性描述、特征频率圆投影法。同时研究了基于电功图抽油机采油系统实时评价方法在抽油机故障诊断、产能预测及参数软测量、系统效率分析方面的应用。列举了8种常见抽油机故障的电功图特征和分析步骤,给出了动液面软测量、产量估计和系统效率的计算公式。
     根据所研究的电功图评价方法开发了数据采集系统和应用软件,进行了离线仿真分析和在线应用分析。在胜利油田某采油厂的现场应用结果说明,本文所提出的基于电功图的实时评价方法能够正确识别游梁式抽油机采油系统的故障,及时发现系统性能变化。
As being the primary producing equipment of oil recovery and the major information reflecting of the reservoirs underground, the Beam-Pump recovery system occupies important position in the petroleum development process. In addition, real-time evaluation is significantly important for Beam-Pump recovery system. The works includes:
     The pre-knowledge of Beam-Pump recovery system is introduced in this dissertation, which includes its basic architechure and principal scheme. According to the experiences and deficiencies of the evaluation methods of traditional suspended point dynamometer cards and the excellent properties of electric parameters measurement in reliability and economy, the real-time evaluation method of Beam-Pump recovery system based on the electric power cards is proposed. On the other hand, the feasibility analysis is made.
     According to the lackness of the overall dynamic model of Beam-Pump recovery system , a practical one for simulation and online real-time analysis is putting forward. With problems to the sensor-less torque and rotational speed estimation of the motor, the equivalent circuit model based on voltage source is proposed. The structure theory of the mechanical parts on the ground is analyzed by adopting the vector analytic method to solve the kinetic equation of four-bar mechanism. And gradually the energy consumption is analyzed. The behavioral characteristics of sucker rod are researched. In order to realize real-time dynamic analysis, a simple model of the rod’s moving patterns is proposed.
     According to the characteristics of electric parameters of the beam-Pump unit, multi-scale sampling of data and storage rules are proposed, which undertake more tasks of the system with less hardware resources. Three kinds of data pretreatment and signal analysis methods are put forward: Prediction mean filter algorithm is adopted for signal singular value pretreatment to solves irregular electromagnetic interference problems of practical acquisition signal; In order to solving signals intermittent sampling in deficient period processing problems, the fitting first HHT signals separation method is given; It is found that mean filter residual contains the signal gradient information through analyzing the characteristics of sliding mean filter. Signal gradient calculation method based on mean filtering is brought forward. Compared with Richard extrapolation, the proposed method is better in the calculation speed, boundary effects, etc.
     As the foundation of whole evaluation system theory system, the establishment of the electric power cards evaluation performance indexes is introduced, and three ways to the system evaluation: graphical method, the different description of system dynamic response processes, and a specific frequency polar images, are brought forward. It is studied that object information feature from the two aspects of mathematical and graphics is suitable for engineering application. At the same time, the application researches on this method in fault diagnosis, productivity prediction, parameter soft measurement and the efficiency of the system analysis are done. Eight kinds of common fault electric power cards features and analysis steps are presented in detail. Formulas of the dynamic liquid level measurement, estimation and the calculating system efficiency are given.
     Finally, a lot of simulation and experimental works is done to demonstrate the proposed methods. Through an actual case studying, the steps for system evaluation and the application effects are indicated. The shortcomings and development direction of electric power cards evaluation system theory are pointed out.
引文
[1]万仁溥著.采油工程[M].北京:石油工业出版社,2000.8.
    [2] C. NGAI. Integrating Production Process Through Automation, Rockyford Pilot Experience[J]. Journal of Canadian Petroleum Technology, 38(6),1999: 19-24.
    [3] M. A. R. CANELON, E. C. MORLES. Fuzzy Clustering Based Models Applied To Petroleum Processes[J]. WSEAS TRANSACTIONS on SYSTEMS and CONTROL, Vol. 3 No. 3 Mar. 2008, 159-171.
    [4] M. A. R. Canelón, J. Dávila, E. C. Morles. Intelligent Supervision of Petroleum Processes Based on Multi-Agent Systems[J]. WSEAS TRANSACTIONS on SYSTEMS and CONTROL, Vol. 4 No. 9 Sep. 2009, 435-444.
    [5] Bill Liddell, David F. Deaton, Gerardo Mijares. Benchmarking Measurement and Automation Practices in the Upstream Business[J]. SPE Projects, Facilities & Construction, Jun 2007: 1-7.
    [6] Ron Cramer. Back to the Future—A Retrospective on 40 Years of Digital Oil Field Experience[J]. SPE 111478, 2008.
    [7] Mohammed N. Al-Khamis, Housam J. Al-Hamzani, Mahdi F. Al-Adel. Revamping Old Fields Using I-Field Technologies[J]. SPE 123540, 2009.
    [8] Mohammed N. Al-Khamis, Konstantin I. Zorbalas, Hassan M. Al-Matouq, Saleh M. Almahamed. Revitalization of Old Asset Oil Fields into I-Fields[J]. SPE 126067, 2009.
    [9] T Gunawan, T P Thomas, R I Williams. Supervisory control and data Acquisition system for offshore Java sea[J]. SPE 14621, 1986.
    [10] Heather Goranson, Ray Knudsen, Dan McLean. Using SCADA to Provide Corporate Wide Data Accesseability[A]. 48th Annual Technical Meeting of the Petroleum Society in Calgary, Alberta, Canada, June 8 - 11, 1997.
    [11] Sun Z H and Tian, X M. SCADA in Oilfields[J]. Measurement and Control, 43(6): 176-178, 2010.
    [12] W.A. Jentsch Jr., R.D. Marrs. Computerized automation of oilfield production operations: An extensive 5-Year study into the costs and benefits[J]. SPE 15392, 1988.
    [13] Dan McLean, Vern Alvis. Case History of the Implementation of a Fast Track Gas Production SCADA Project[J]. SPE 49065, 1998.
    [14] M.R.A. Eckenhausen, Nederiandse Aardolie Maatschappii. The use of computerized information systems in development and production operations[J]. SPE 12982, 1984.
    [15] Jamel M. Kahoul. The Zakum Telesystem: An application of Large-Scale SCADA systems to a Major offshore oil field[J]. SPE 17970, 1990.
    [16] C. Sahin, E.D. Bolat, Development of remote control and monitoring of web-based distributed OPC system, Computer Standards & Interfaces (2008), doi:10.1016/j.csi.2008.09.027.
    [17] B. Theuveny, A. Kosmala, C. Cosad, F. Pulido, P. Destarac. The Challenge of Federation of Information for Automation Surveillance of ESPs: Field Examples[J]. SPE 95129, 2005.
    [18] Jose F. Correa, Herman Lepkison. Antonio C. Bittencourt, Intelligent Distributed Management System for Automated Wells (SGPA): Experience and Results[J]. SPE 84225, 2003.
    [19] Vineet Lasrado. Digital oilfield projects: A perspective using examples from reservoir and reserves management[J]. SPE 124404, 2009.
    [20] Jose F Correa, Odair G Santos. Intelligent Automation for Intermittent-Gas-Lift Oil Wells[J]. SPE69404, 2001.
    [21] Tofig A. Al Dhubaib, Soliman M. Almadi, Mohammad S. Shenqiti, Abdallah M. Mansour. I-Field Data Acquisition and Delivery Infrastructure: Case Study[J]. SPE 112201, 2008.
    [22] Waleed A. Al-Mulhim, Hussain A. Faddagh, Mahdi A. Shehab. Sultan S. Shamrani. Mega I-Field Application in the World’s Largest Oil Increment Development[J]. SPE 128837, 2010.
    [23] S. M. Almadi, T. A. Al Dhubaib, H. A. Ahmadhusian, S. A. Al Walaie, F. M. Al Khabbaz, O. A. Alaidarous, and S. F. Al Temyatt. I-Field data acquisition and delivery infrastructure: Khursaniyah field best in class practices: Case study[J]. SPE 128659, 2010.
    [24] A.Tiani, G.Bartolotto, P.D. Strippoli, R.Latronico, G.Spitaleri. From Real Time Data to Updated Models: The Challenge of Intelligent Fields Applied To Gas Storage Business[J]. SPE 113171, 2008.
    [25] Jes F. Cerqueira, Jose F. Correa, Herman Lepkison, A. C. Bittencourt, L. Schnitman, A. B. Jesus. Development of an Intelligent Distributed Management System for Automated Wells (SGPA)[J]. SPE 77609, 2002.
    [26]许晔,孟弘,程家瑜等. IBM“智慧地球”战略与我国的对策[J].中国科技论坛, 2010(4):20-23.
    [27]李德仁,龚键雅,邵振峰。从数字地球到智慧地球[J].武汉大学学报(信息科学版), 2010, 35(2):127-132.
    [28] Datta, S. Auto ID Paradigm Shifts from Internet of Things to Unique Identification of Individual Decisions in System of Systems[R]. MIT Engineering Systems Division Working Paper Series (ESD WP), 2008.
    [29] Thompson R B, Aethon V S, Sinha S, et al. Optimizing the Production System Using Real-Time Measurements: A Piece of the Digital Oilfield Puzzle[C]. SPE Annual Technical Conference and Exhibition, 11-14 November 2007, Anaheim, California, U.S.A.
    [30]张啸枫,唐俊伟,位云生,贾成业.苏里格气田单井生产动态分析与管理[J].西南石油大学学报(自然科学版), 2009, 31(3):111-114,13.
    [31] R. J. OMOTOSHO. Permanent Downhole Sensors in Today’s Petroleum Industry_ Current Trends, Problems and Case Studies[D] .B.E Dissertation, 2004.
    [32] Inegbenose Aitokhuehi, Louis J. Durlofsky. Optimizing the performance of smart wells in complex reservoirs using continuously updated geological models[J]. Journal of Petroleum Science and Engineering, 2005 (48):254-264.
    [33] Esmaiel etc. Reservoir screening and sensitivity analysis of waterflooding with smart wells through the application of experimental design[J].SPE 93568, 2005.
    [34] A.L. Podio, J.N.McCoy, et al. Total Well Management II[J]. SPE 67273,2001.
    [35] S.G. Gibbs. A General Method for Predicting Rod Pumping System Performance[J]. SPE 6850,1977.
    [36] Alegre.L, Petrobras S.A., C. K. Morooka and A, F. Rocha. Intelligent Diagnosis of Rod Pumping Problems[J]. SPE26516, 1993.
    [37] Muchamad Iman Karmawijaya, Budi Rahardja, Amrullah Hakim. Production Data Management and Reporting System to Optimize Production Analysis[J]. SPE 123547, 2009.
    [38] SY/T 6225-1996.油田动态分析技术要求[S].中华人民共和国石油天然气行业标准,1997.
    [39] Alvin Barber, Mack E. Shippen, Santanu Barua, Etc. Optimizing Production from Reservoir to Process Plant[R]. Oilfield review, winter 2007/2008: 18-29.
    [40] S. Mochizuki, L. A. Saputelli, C. S. Kabir, etc. Real-Time Optimization: Classification and Assessment[J]. SPE Production & Operations, Nov 2006: 455-466.
    [41] D. R. BROUWER. Dynamic water flood optimization with smart wells using optimal control theory[D]. Ph. D dissertation, 2004.
    [42]宁焕生,王炳辉. RFID重大工程与国家物联网[M].机械工业出版社, 2009年1月.
    [43]周洪波.物联网:技术、应用、标准和商业模式[M].北京:电子工业出版社,2010.
    [44] Geoff M. The internet of things: Here now and coming soon[J]. IEEE Internet Computing, 2010,14(1):35-36.
    [45]沈苏彬,范曲立,宗平等.物联网的体系结构与相关技术研究[J].南京邮电大学学报(自然科学版), 2009,29(6):1-11.
    [46]关丛荣,任淑艳.抽油机专用电流表的研制[J].黑龙江工程学院学报(自然科学版),2003,17(4):44-46.
    [47] Lennart Harneffors.Design and analysis of general rotor-flux oriented vector control system[J].IEEE Trans.On Ind.Elect.(S0278.0046), l994, 48 (2): 383-390.
    [48] P.L.Jansen and R.D.Lorenz.Observer based direct field orientation:Annalysis and comparison of alternative methods[J].IEEE Trans.On Ind.Appli.(S0093.9994), l994, 30(4):945-953.
    [49] Fang-Zheng Peng et a1.Robust Speed Identification for Speed-Sensorless Vector Control of Induction Motors[J].IEEE Trans on Ind.App1.(S0093.9994), l994, 30(5):l234-1240.
    [50] Adnan Derdiyok. A novel speed estimation algorithm for induction machines[J]. Electric Power Systems Research 2003 (64): 73-80.
    [51] A. Mezouar, M.K. Fellah, S. Hadjeri. Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach[J]. Simulation Modelling Practice and Theory, 2008 (16) :1323-1336.
    [52]尹忠刚,钟彦儒,孙向东,刘静.基于神经网络的感应电机转速估计方法[J].变频器世界,2005年7月,p44,45,12.
    [53]连丽艳,王艳秋,焦丰.用神经网络实现对感应电机转速估计[J].微电机,2004年,第37卷第3期(总第138期),p13-15.
    [54] Alessandro Goedtel,Ivan Nunes da Silva,Paulo Jose Amaral Serni. Load torque identification in induction motor using neural networks technique[J].Electric Power Systems Research,2007 (77): 35-45.
    [55]Emil Levi,Mingyu Wang.A Speed Estimator for High Performance Sensorless Control of Induction Motors in the Field Weakening Region[J].IEEE Tral1s.on Power Elect,(S0885.8993),2002,l7(5):365-378.
    [56]SHI K L,CHAN T F,WONG Y K,et a1.Speed estimation of an induction motor drive using an optimized extended Kalman filter[J].IEEE Transactions on Industrial Electronics,2002,49(1):124-133.
    [57]李剑飞,尹泉,万淑芸.基于扩展卡尔曼滤波器的异步电机转速辨识[J].电工技术学报,2002,17(5):40-44.
    [58]杨文强,李树广,贾正春.基于降阶推广卡尔曼滤波算法的交流感应电动机无速度传感器矢量控制系统[J].上海交通大学学报,2003,37(9):1362-1365.
    [59] Raja S. Toqeer,N. Suha Bayindir.Speed estimation of an induction motor using Kalman neural network[J].Neurocomputing , 2003 (55): 727-730.
    [60]陈德传,何旭亮.异步电动机T型等值电路参数估算的新方法探讨[J].电气传动自动化,2003,25(1),20-23. CHEN De-chuan, HE Xu-liang, Study of new methods on parameter estimation for T-mode equivalent circuit of induction motors[J], ELECTRIC DRIVE AUT0MAT10N, 2003,25(1):20-23.
    [61]董改花.三相异步电动机等效电路参数计算的综述[J].煤矿机械,2006,27(2),207-210.
    [62]高越农,阎文金,陈润年,陈胜波.异步电动机数学模型的非线性[J].电气传动自动化,2O04,26(1):28-29.
    [63]李虎君,张继芬,支连友.利用抽油机井实测功率曲线预测示功图[J].大庆石油地质与开发, 1991, 10(4): 63-67,34.
    [64]柴满州.抽油机井电功率实时监控系统的开发[J].江汉石油学院学报,25(3),2003:120-121.
    [65]张世荣,李昌禧.游梁式抽油机示功图的间接测量[J].华中科技大学学报(自然科学版), 2004,32(11):62-61.
    [66]冯国强,谢雄,韩岐清,周文胜,张津红,赵鹏.抽油机井系统动态实时分析模型[J].中国石油大学学报(自然科学版), 2010,34(4):84-88.
    [67]辜承林,陈乔夫等.电机学[M].华中科技大学出版社,2005.
    [68] Svinos J G. Exact Kinematic Analysis of Pumping Units[A]. The 58th Annual Technical Conference and Exhibit, San Francisco,1983.
    [69]万邦烈.采油机械的设计计算[M].石油工业出版社,1988.
    [70]汤淑文,谭英杰.游梁抽油机动平衡精确分析[J].石油学报,1994,15(1):141~145.
    [71]王常斌,陈涛平,郑俊德.游梁式抽油机运动参数的精确解[J].石油学报,1998,19 (2):107-l10.
    [72]齐俊林,曹和平.游梁式抽油机分析的数值法[J].石油机械,2006,34(3):32-35,42.
    [73]郑满圈.游梁式抽油机运动规律的多体动力学分析[J].石油机械,2006,34(5):22-24.
    [74] Lukasiewicz, S.A.. Dynamic Behavior of Sucker Rod String in the Inclined Well[J].paper SPE 21665 presented at the 1991 Production Operations Symposium, Oklahoma City, Oklahoma, April 7-9: 313-321.
    [75] Gibbs, S.G.. Design and Diagnosis of Deviated Rod-Pumped Wells[J]. JPT, 1992, (7) :774-781.
    [76] Xu, J.. A New Approach to the Analysis of Deviated Rod-Pumped Wells[J]. paper SPE 28697 presented at the 1994 SPE International Petroleum Conference & Exhibition of Mexico held in Veracruz, Mexico, Oct. 10-13: 9-19.
    [77] Xu, J., Shirazi, S.A. and Doty, D. R.. Prediction of Turbulent Friction in Rod-Pumped Wells[J]. paper SPE 39800 presented at the 1998 SPE Permian Basin Oil and Gas Recovery Conference held in Midland, Texas, March 25-27: 397-406.
    [78]王海涛,伊向艺等.井筒气-液两相垂直管流的研究现状[J].新疆石油地质,2006,27(6):740-742.
    [79] Poettmann F H,Carpenter P G.The Multiphase Flow of Gas,Oil,and Water through Vertical Flow Strings with Application to the Design of Gas-Lift Installations[J].Dril1.and Prod.Prac.,API,1952:257-3l7.
    [80] Tek M R.Multiphase Flow of Water,Oil and Nature Gas through Vertical Flow Strings[J].JPT,1961,13(10):1029-036.
    [81] Baxendell P B, Thomas R . The Calculation of Pressure Gradients in High-Rate Flowing Wells[J].JPT,1961,(10):1023-l032.
    [82] Francher G H , Brown K E . Prediction of Pressure Gradients for Multiphase Now in Tubing[J].SPE440-PA,1963,(3):59-69.
    [83] Hagedorn A R,Brown K E.Experimental Study of Pressure Gradients Occurring during Continuous Two-Phase Flow in Small Diameter Vertical Conduits[J].JPT,1965,(4):475-484.
    [84] Aziz, K., Govier, G.W., and Fogarasi, M. Pressure Drop in Wells Producing Oil and Gas[C]. Cdn. J. Pet. Tech. (July-September 1972):38.
    [85]陈家琅.石油气液两相管流[M].北京:石油T业出版社,l989.
    [86]陈涛平,石在虹等.抽油泵的效率与排量系数[J].大庆石油学院学报,1993,17(4):48-51.
    [87]石在虹,陈家琅等.抽油泵效率和功率损失及排量系数的计算[J].石油学报, 1994,15(4):139-146.
    [88]杨海滨,张琪.抽油泵漏失系数的概念与计算方法修正[J].石油机械,2004,32(3):13-15.
    [89]董世民,冯娜娜等.抽油泵柱塞与泵筒间隙漏失量计算方法的研究[J].石油机械,2006,34(11):20-23.
    [90] D. Rogers, C.G. Guffey, and W.J.B. Oldiiam. Artificial Neural Net works for Identification of Beam Pump Dynamometer Load Cards[J]. SPE20651, 1990.
    [91] LA. Hutchins, R.K. Burton, D.J. Macintosh. An Expert System For Analyzing Well Performance[J]. SPE35705, 1995.
    [92] David K. Gold, Terry Treiberg. Implementation of Automated Expert Diagnostics to Provide Enhanced Rod Pump Surveillance at S. Belridge Field, CA[J]. SPE 71527, 2001.
    [93] Lideniro Alegre, Petrobras S.A., C.K. Morooka, A.F. da Rocha .Intelligent Diagnosis of Rod Pumping Problems[J]. SPE 26516,1993.
    [94]陈镭.油管“示功图”与井下泵工况的关系研究[J].油气井测试,2009,9(3):22-24.
    [95]姜士湖,闫相祯,苏庆民.不同原油粘度下API游梁式抽油机模型示功图分析[J].石油矿场机械, 2005,34(4):35~38.
    [96]张琪.采油工程原理与设计[M].东营:石油大学出版社, 1989,138-143.
    [97]郑海金,邓吉彬,唐东月.提高机械采油系统效率理论研究及应用[J].石油学报, 2004, 25(1): 93-96.
    [98]何迪,周思柱等.游梁式抽油机专家数据库的建立[J].石油机械,2OO4,32(1):23-24.
    [99]岳继红,左维军,李洪伟.抽油机井示功图矩特征识别方法[J].油气田地面工程(OGSE),1999,18(3):15-16.
    [100] D. Rogers,C.G. Guffey,and W.J.B. Oldiiam. Artificial Neural Net works for Identification of Beam Pump Dynamometer Load Cards[J].SPE20651,1990.
    [101]董世民著.抽油机井动态参数的计算机仿真与系统优化[M].北京:石油工业出版社, 2003.
    [102]董世民,冯娜娜.抽油机井系统效率的计算机仿真模型[J].系统仿真学报,2007,19(8): 1853-1856.
    [103]严长亮,彭勇.泵示功图单井自动量油技术研究[J].西安石油大学学报(自然科学版),2006,21(6):92-95.
    [104] McCoy, J.N., Ott, R. E., Podio, A. L., Collier, Forrest, Becker, Dieter. Beam Pump Balancing Based on Motor Power Utilizition[A]. SPE Production Operations Symposium, 2-4 April 1995, Oklahoma City, Oklahoma.
    [105] Gibbs SG. .Predicting the Behavior of Sucker Rod Pumping Systems.[J]. Shell Development Co, Houston Texas, J. P. T., (S0021-9487),1963, 4(4): 116-121.
    [106]余国安.有杆泵抽油井的三维振动[J].石油学报, 1989, 10(2):16-21.
    [107] A. Khodabandeh, S, Miska. A Simple Method for Predicting the Performance of a Sucker-Rod Pumping System[J]. SPE 23429, 1991.
    [108]周兴付.深井有杆抽油系统数值模拟研究[D].西南石油学院工学硕士学位论文, 2004.
    [109]姚春东.提高抽油机井系统效率的计算机仿真分析[J].石油学报, 2005,26(4):106-110,114.
    [110]景瑞林,田宝国等.抽油机井诊断技术系统的设计与实现[J].油气田地面工程2002,21(6):68.
    [111]刘一江,刘军.有杆泵系统优化设计技术的应用研究[J].石油大学学报(自然科学版),2001,25(2):26-27,30.
    [112]曹言光,贺素玲等.抽油机井综合测试系统[J].石油机械,2004,32(3):23-25.
    [113] J. F. Lea, H. W. Winker. New and Expected Developments in Artificial Lift[J]. SPE 27990, 1994.
    [114] A.L. Podio, J.N.McCoy, et al. Modern Total Well Management-Sucker Rod Lift Case Study[J]. SPE 68864,2001.
    [115]郜云飞,吴晓东,金潮苏.游梁式抽油机皮带传动效率分析[J].石油钻探技术,2002,30(6):42-47.
    [116]崔振华,余国安等著.有杆抽油系统[M].石油工业出版社,1994.
    [117]张明亮,雷长森,田小兰,易晓辉.抽油机曲柄平衡的调整计算及效果预测[J].石油机械, 2001,29(5):36-39.
    [118] SY/T 5044—2003,游梁式抽油机[S],中华人民共和国石油天然气行业标准
    [119]尹强,罗炼钢,陈广晔,刘明,刘成祥.抽油机井功率平衡技术探讨[J].油气田地面工程, 2009,28(5):52-53.
    [120]石正宝.基于悬点实测示功图的抽油机井动态仿真研究[D].燕山大学工学硕士学位论文, 2010.
    [121] S.G. Gibbs. Utility of Motor-Speed Measurements in Pumping-Well Analysis and Control[J]. SPE 13198, 1987.
    [122] J.F. Lea,and J.F. Bowen. Dynamic Measurements of Beam-Pump Parameters[J].SPE18187,1991.
    [123]马广杰,张继震,孙景丽,张绪龙.连续实时抽油井工况巡检系统介绍[J].油气井测试,10(3),2001:68-70,73.
    [124]秦余福,蒲仁瑞,胡慧芳,郭海霞,姚光明,蒲海龙.抽油机井工况信息连续监测技术研究及应用[J].油气田地面工程, 2003,22(8):36-37.
    [125] J.N. McCoy, R.E. Ott, A.L. Podio, Forrest Collier, and Dieter Becker. Beam Pump Balancing Based on Motor Power Utilization[J]. SPE 29533, 1995.
    [126] B.K.Bose.Modern Power Electronics and AC Drives,现代电力电子与电力传动(英文版)[M].北京,机械工业出版社,2003.
    [127]李洁,钟彦儒.异步电机无速度传感器控制技术研究现状与展望[J].电力电子,2007(5):3-11.
    [128] Pablo M. de la Barrera, Guillermo R. Bossio,Jorge A. Solsona, Guillermo O. García. On-line iron loss resistance identification by a state observer for rotor-flux-oriented control of induction motor[J].Energy Conversion and Management, 2008 (49) :2742-2747.
    [129]钟建伟.感应电动机转差一功率曲线的解析[J].湖北民族学院学报(自然科学版), 2009,27(3): 324-326.
    [130] M. Menaa, O. Touhami, R. Ibtiouen, M. Fadel. Sensorless direct vector control of an induction motor[J]. Control Engineering Practice , 2008 (16): 67–77.
    [131]邓双城,蒋力培等.基于LabVIEW的异步电动机准确数学模型仿真[J].北京石油化工学院学报,2005,13(4):1-5.
    [132]朱君.有杆抽油系统井下工况诊断方法研究[D].大庆石油学院工学博士学位论文,2003.
    [133]吴长杰.抽油杆柱有限元分析模型的改进及实际应用[D].燕山大学工学硕士学位论文, 2010.
    [134]孙振华,田学民.游梁式抽油机悬点载荷的动态响应分析[J].石油机械,2008,36(8):39-42,50.
    [135] L.S. Firu, T.Chelu,C.Militaru-Petre. A Modern Approach to the Optimum Design of Sucker-Rod Pumping System[J]. SPE84139, 2003.10.
    [136]齐俊林等,游粱式抽油机分析的数值法[J].石油机械,2006,34(3):32-35.
    [137]孙恒,傅则绍著.机械原理[M].北京:高等教育出版社,1989.2.
    [138] Petre,N. and Chitu-Militaru, P.. Oil Production With Sucker-Rod Pumping System[M]. Technical Publishing House, Bucharest, 1986.
    [139] L.S. Firu,Chitu-Militaru, P.. Sucker Rod Pumping System[M].Didactic and Pedagogic Publishing House, Bucharest, 1999.
    [140] Dariusz Janecki. A generalized L2-spline filter[J]. Measurement, 2009(42): 937–943.
    [141] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. Royal Soc. Lond. A454(1998), 903-995.
    [142] V. Vatchev. Intrinsic Mode Functions and the Hilbert Transform[D]. Ph.D Dissertation, Department of Mathematics, University of South Carolina, 2004.
    [143] Z.H. Wu and N.E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method[A]. Proceedings of the Royal Society of London, 2004 (460):1597–1611.
    [144] Zheng.Fractional Fourier Transform and Its Applications[J].Chinese Journal of Electronics,1996,24(12):60-65.
    [145] TAO Ran , QI Lin , WANG Yue . Theory and applications of the Fractional Fourier Transform[M].Beijing:Beijing University Press,2004.
    [146]张宇,王希勤,彭应宁.自适应中心加权的改进均值滤波算法[J].清华大学学报(科学与技术), 1999, 39(9):76-79.
    [147] Tamal Bose,Jim Schroeder. Adaptive Mean/Median Filtering. Proceedings of the Acoustics, Speech, and Signal Processing[A]. IEEE International Conference, 2000( 06): 3830-3833.
    [148] Martin Welk, Joachim Weickert, Florian Becker et al. Median and related local filters for tensor-valued images[J]. Signal Processing, 2007 (87): 291–308.
    [149]李秀峰,苏兰海,荣慧芳,陈华.改进均值滤波算法及应用研究[J].微计算机信息, 2008, 24(1):235-236,202.
    [150]常瑞娜,穆晓敏,杨守义等.基于中值的自适应均值滤波算法[J].计算机工程与设计, 2008, 29(16): 4257-4259.
    [151] Xuming Zhang, Zhouping Yin, Youlun Xiong. Adaptive Switching Mean Filter for Impulse Noise Removal[A]. Congress on Image and Signal Processing IEEE, 2008: 275-278.
    [152] Abdullah Toprak, Inan Güler. Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter[J]. Digital Signal Processing, 2007 (17): 711–723.
    [153] Yueli Hu, Huijie Ji. Research on Image Median Filtering Algorithm and Its FPGA Implementation[J]. Global Congress on Intelligent Systems 2009, IEEE: 226-230.
    [154] J. Zhang. An efficient median filter based method for removing random-valued impulse noise[J]. Digital Signal Process (2009) doi:10.1016/j.dsp.2009.11.003.
    [155]孙振华,田学民.一种新型信号奇异值预处理方法[J].江南大学学报(自然科学版),2010,9(4):423-426.
    [156] B.B. Oashash. Estimating and interpreting the instantaneous frequency of a signal-part 1: fundamentals[J]. USA: Proc. IEEE, 1992, 80 (4):520-538.
    [157] Sun Zhen-Hua, Tian Xue-Min, Wang Ping. A novel signals splitting method for intermittent sampling in deficient period[A]. Proceedings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering, ISKE 2008:656-661.
    [158] More, J.J. and D.C. Sorensen. Computing a Trust Region Step[J]. SIAM Journal on Scientific and Statistical Computing, 1983(3): 553-572.
    [159] OU Yi-gui. Research on trust region algorithms for nonlinear programming[J]. University of Science and Technology of China, Doctor Dissertation, 2003.
    [160] ZHAO Zhi-dong, TANG Xiang-hong, ZHAO Zhi-jin, et al. Spectrum Analysis of Heart Sound Signal Based on Hilbert-Huang Transform[J]. Chinese Journal of Sensors and Actuators, 2005,18(1):18-22.
    [161] ZHENHUA SUN, XUEMIN TIAN. A Novel Well Conditions Analysis Method through SFPI Algorithm[J]. WSEAS TRANSACTIONS on SYSTEMS and CONTROL, 2010, 5(6):403-412.
    [162] Zhenhua Sun, XueminTian. Signals Time-Frequency Analysis Method with Specific Frequency PolarImages[A]. IMCAS’10, Hangzhou, China, April 11-13,2010: 114-118.
    [163] F. Yavuz, J. F. Lea, D. Garg, T. Oetama, J. Cox, H. Nickens. Wave Equation Simulation of Fluid Pound and Gas Interference[J]. SPE94326, 2005.
    [164] Lien. Etc. Multiscale regularization of flooding optimization for smart field management[J]. paper SPE 99728 presented at 2006 SPE Intelligent Energy Conference and Exhibition, Amsterdam, The Netherlands, 11-13 April.
    [165] Jansen etc. Closed-loop reservoir management[R]. SPE meeting, First Break, 2005(23): 43-48.
    [166]肖述琴.智能完井综合系统的数学模型研究[J].西安石油大学工学硕士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700