用户名: 密码: 验证码:
攀枝花钒钛矿区植被群落调查及植物金属含量分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染因其难以根除、常年累积的特性而成为一类备受关注的环境问题,植物修复技术的出现给土壤污染治理带来了新的希望。而植物修复技术能得以应用的前提就是找到相应重金属的超富集植物或者耐性植物,这些植物大多存在于常年开采的矿床周围。本文通过野外实地调查、采样,结合室内分析的方法对四川攀枝花朱家包包钒钛矿区的植被群落组成及土壤特性进行了研究。通过对土壤基本理化性质、植物和土壤中重金属以及钛含量的测定分析,了解矿区土壤的基本理化性质和重金属污染状况,弄清了矿区的植被类型、群落组成及其优势植物种类,并探讨了植物与土壤金属含量间的关系,具体研究结果如下:
     (1)由于矿区的长期开采,原生植被已经被破坏,无常绿阔叶林,取而代之的是灌木和草本,植被主要以人工栽种的油桐等人工次生林为主。植被总覆盖度约为40%,在矿区群落结构的分层中,乔木层以油桐为代表,灌木层主要是车桑子、马缨丹、戟叶酸模,草本层则以从毛羊胡子草为代表。本研究所调查的75种植物,分属22科52属,种类较多的是菊科22种,禾本科13种,豆科9种。矿区优势草本植物有紫茎泽兰、紫花香薷、从毛羊胡子草、戟叶蓼、糙野青茅、罗氏草、百日菊,优势灌木植物有车桑子、马桑、马缨丹以及乔木植物油桐。在某些地段植物单种优势度较高,如马鞭草、戟叶酸模、辣子草、小白酒草、狗尾草和狼牙草等。
     (2)矿区土壤呈中性偏弱碱性,有机质含量普遍较高。土壤中Ti、Pb和Cd含量平均达到了17082 mg·kg~(-1)、4.97 mg·kg~(-1)、18401mg·kg~(-1),表现异常,Ti含量高与所在矿区矿种有关,Pb和Cd的含量都超过了土壤环境质量三级标准500mg·kg~(-1)和1mg·kg~(-1),说明矿区土壤受到铅、镉的严重污染。土壤中金属含量趋势表现为:Pb>Ti>Zn>Cr>Cu>Cd。
     (3)植物中各种金属含量大体表现为:Pb>Ti>Zn>Cr>Cu>Cd,与调查区土壤中重金属含量的趋势一致。紫茎泽兰、青蒿、臭根子草、车桑子、紫花香薷、从毛羊胡子草、驳骨丹、马鞭草、芦竹、糙野青茅、猪屎豆和万寿菊等13种植物体地上部和地下部含Pb量都在10 mg·kg~(-1)以内,同时,紫茎泽兰、戟叶酸模、车桑子、从毛羊胡子草、马缨丹、罗氏草、糙野青茅、黑荆、狼牙草、毛臂形草、拐枣、荞麦、猪屎豆、苋和何首乌等15种植物地上部和地下部含Cd量都在0.1-0.5 mg·kg~(-1)之间,含量极低,初步筛选出这些长势优良的植物作为Pb和Cd的耐性品种进一步研究。
     (4)植物地上部Zn、Cr的含量与土壤中有机质、全氮、碱解氮、速效磷、速效钾含量成极显著正相关,Pb含量与土壤中全氮和碱解氮含量呈显著正相关。植物地下部Cr含量与土壤中pH和速效磷呈显著正相关,Ti含量与土壤中的速效磷和速效钾呈显著正相关。
     植物地上部和地下部的Cr、Cu、Cd含量与相应土壤中Cr、Cu、Cd含量均呈极显著正相关,说明植物中这三种重金属含量与土壤相应重金属含量有必然联系。而植物中Pb、Zn、Ti含量与相应土壤中Pb、Zn、Ti含量的相关性不显著。
Soil contamination has become the focal point of environmental problems,for hard to extirpate and accumulating year by year.Therefore,phytoremediation-a new green technique was proposed.Hyperaccumulator or tolerant plants was the key to apply the technique to heavy metal contaminated soil,so the author investigated to screening out of such plant species.A survey was conducted on plant vegetation in Pan zhihua Ti-lead mine area,Sichuan Province,respectively in August,2007 and August,2008.By analyzing the soil properties and heavy metal concentrations in both collected plants and soil samples,the major results were revealed as followed:
     (1)The original subtropical plants were destroyed due to the exploitation of mine, there is no evergreen broad-leaved forest,formed secondary bush and herbaceous land, the coverage of which was about 40%.And it is Vernicia fodii along the road.In plant vegetation,the representative plants were Vernicia fodii for arbor layer; Dodonaea viscose,Lantana camara,Rumex hastatus for brushwood layer; Eriophorum comosum for herbaceous layer.There were 75 kinds of plants which were mostly herbs,belonged to 22 families and 52 genuses.The dominant plant species included Eupatorium adenophorum、Elsholtzia argyi、Eriophorum comosum、Polygonum thunbergii、Deeuxia scabrescens、Rottbellia exaltata、Zinnia elegans、Polygonum multiflorum、Artemisia argyi、Bidens pilosa、Adenostemma lavenia、Crassocephalum crepidioides、Dodonaea viscose、Coriaria sinica、Lantana camara、Vernicia fodii,and Verbena officinalis、Rumex hastatus、Galinsoga parviflora、Conyza Canadensis、Setaria viridis、Indigofera pseudotinctoria in some special places.
     (2) The mine soil was slightly acali,and the contents of organic matter were quite high in common.Soil there was higly contaminated by Pb、Ti、Cd.The heavy metal concentrations in soils were in an order of:Pb>Ti>Zn>Cr>Cu>Cd.
     (3) The tendency of heavy metal concentrations in plants is:Pb>Ti>Zn>Cr>Cu>Cd,which is the same as the concentrations in soil communities.Of these plants, We got 13 kinds of plants which only absorb few Pb and 15 kinds which absorb few Cd,and,we defound these plants be ecosystem revegetation types,such as Eupatorium adenophorum Spreng and Rumex hastatus D.Don etc.
     (4) The correlation analyses between heavy metal concentrations of soils and plants suggested that there was certain relationship between Cr、Zn concentrations in plant communities and value of CEC、TN、AN、AP、AKin soil,between Pb and TN andAN,Cr and pH、AP,Ti and AP、AK.Additionally,there were certain positive correlations between heavy metal concentrations in plants and associated soils,such as Cu、Cd、Cr.
引文
[1]崔龙鹏,白建峰,史永红等.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):896-904.
    [2]王玉梅.土壤的重金属污染与防治[J].安徽农业通报,2005,11(7):46-47.
    [3]Staglini W M,Doelman P,Salomon S W,et al.Chemical time bombs:predicting the umpredictable[J].Envrionment,1991,33:4-30.
    [4]Chen T B,Wong J W C,Zhou H Y,et al.Assessment of trace metal distribution and contamination in surface soils of Hong Kong[J].Environmental pollution,1997,96:1-68.
    [5]Manta D S,Angelone M,Bellanca A,et al.Heavy metal in urban soil:a case study from the city of Palemo(Sicity),Italy[J].The Science of the Total Environmental,2002,300:229-243.
    [6]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [7]Raskin I,Kumar PBAN,Dushenkov S,et al.Bioconcentration of heavy metals by plants.Curr[J].Opim.Biotechnol.1994,5:285-290.
    [8]Salt D E,Blaylock M,Kumar P B A N,et al.:Phytoremediation:a novel strategy foe the removal of toxic metals from the environment using plants[J].Bio-Technology,1996,13:468-474.
    [9]Salt D E,Smith R D,Raskin I.Phytoremediation.Annu.Rev.Plant Physiol[J].Plant Mol.Biol.1998,49:68-643.
    [10]Newman L A,Strand S E,Choe N,et al.Uptake and biotransformation of trichloroethylene by hybrid poplars[J].Environ.Sci.Technol.1997,31:67-1062.
    [11]Shang T Q,Newman L A,Gordon M P.Fate of tricholorethylene in terrestial plants.In Phytoremediation:Transformation and control of Contaminants[J],ed.SC McCutcheon,JL Schnoor,New York:Wiley,2003,pp.60-529.
    [12]Burken J G,Schnoor J L.1997.Uptake and metabolism of atrazine by poplar trees[J].Environ.Sci.Technol.31:406-1399.
    [13]Hughes J B,Shanks J,Vanderford M,et al.Transformation of TNT by aquatic plants and plant tissue cultures.Environ[J].Sci.Technol.1997,31:71-266.
    [14]Aprill W,Sims R C.1990.Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil[J].Chemosphere 20:65-253.
    [15]Olson P E,Reardon K F,Pilon-Smits E A H.Ecology of rhizosphere bioremediation.In Phytoremediation:Transformation and Control of Contaminants[J],ed.SC McCutcheon,JL Schnoor,2003,pp.54-317.New York:Wiley.
    [16]Schnoor J L,Licht L A,McCutcheon S C,et al.Phytoremediation of organic and nutrient contaminants[J].Environ.Sci.Technol.1995,29:23A-318A.
    [17]Davis L C,Erickson L E,Narayanan N,Zhang Q.2003.Modeling and design of phytoremediation.In Phytoremediation:Transformation and Control of Contaminants[J],ed.SC McCutcheon,JL Schnoor,New York:Wiley.pp.94-663.
    [18]Harms H,Bokern M,Kolb M,et al.Transfomation of organic contaminants by different systems.In Phytoremediation:Transformation and Control of Contaminants[J],ed.SC McCutcheon,JL Schnoor,New York:Wiley.2003,pp.285-316.
    [19]Nriagu J O.Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere[J].Nature,1979,279:409-11.
    [20]Blaylock M J,Huang J W.2000.Phytoextraction of metals.In Phytoremediation of Toxic Metals.Using Plants to Clean up the Environment[J],ed.I Raskin,BD Ensley,pp.53-70.New York:Wiley.
    [21]Home A J.Phytoremediation by constructed wetlands.In Phytoremediation of Contaminated Soil and Water[J],ed.N Terry,G Banuelos,Boca Raton:Lewis,2000,13-40.
    [22]Dushenkov S.2003.Trends in phytoremediation of radionuclides[J].Plant Soil 249:167-75.
    [23]Dushenkov S,Kapulnik Y.2000.Phytofiltration of metals[J].In Phytoremediation of Toxic Metals.
    [24]Negri M C,Hinchman R R.The use of plants for the treatment of radionuclides.In Phytoremediation of Toxic Metals.Using Plants to Clean up the Environment[J],ed.I Raskin,BD Ensley,New York:Wiley,2000,107-32.
    [25]Banuelos G S.2000.Factors influencing field phytoremediation of selenium-laden soils[J].In Phytoremediation of Contaminated Soil and Water,ed.N Terry,G Banuelos,Boca Raton:Lewis,41-61.
    [26]Rock S A.Field evaluations of phytotechnologies[J].In Phytoremediaton:Transformation and Control of Contaminants,ed.SC McCutcheon,JL Schnoor,2003,pp.24-905.New York:Wiley
    [27]Winter Sydnor M E,Redente E F.Remediation of high-elevation,acidic mine waste with organic amendments and topsoil[J].Environ.Qual.,2002,31:1528-37.
    [28]EPA publ.542-B-003.1999.Phytoremediation resource guide.
    [29]Morikawa H,Takahashi M,Kawamura Y.Metabolism and genetics of atmospheric nitrogen dioxide control using pollutant-philic plants.In Phytoremediation:Transformation and Control of Contaminants,ed.SC McCutcheon,JL Schnoor,New York:Wiley,2003:765-86.
    [30]Bradshaw A D,Chadwick M J.The Restoration of Land.Berkeley:University of California press,1980.
    [31]Megher R B.Phytoremediation of toxic elemental and organic pollutants.Curr Opin in P1Biol,2000,3(2):153-162.
    [32]唐莲,刘振中,蒋任飞.重金属污染土壤植物修复法[J].环境保护科学,2003,29(120):33-36.
    [33]陈承利,廖敏.重金属污染土壤修复技术研究进展[J].广东微量元素科学,2004,11(10):1-8.
    [34]周国华.被污染土壤的植物修复研究[J].物探与化探,2003,27(6):473-475,489.
    [35]Baker A J M,Brooks R R,Pease A J,etal.Studies on copper and cobalt tolerance in three closely related taxa within the genus Silence L.(Caryophyllaceae) from Zaire[J].Plant and Soil,1983,73:377-385.
    [36]聂发辉.关于超富集植物的新理解.生态环境2005,14(1):136-138.
    [37]周琼.我国超富集·富集植物筛选研究进展.安徽农业科学,2005,33(5):910-912,916.
    [38]Salt D E,Smith R D,Raskin I.Phytoremediation[J].Annu Rev Plant Physiol Plant Mol Biol,1998,49:643-668.
    [39]韦朝阳,陈同斌.高砷区植物的生态与化学特征[J].植物生态学报,2002,26(6):695-700.
    [40]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [41]龙新宪.东南景天(Sedum alfredii)对锌的耐性和超积累机制研究[D].杭州:浙江大学博士学位论文,2002.
    [42]曹德菊,王光宇,汪琰等.安徽铜陵矿区优势植物的重金属富集特性研究.农业环境科学学报,2005,24(6):1079-1082.
    [43]魏树和,周启星,王新.18种杂草对重金属的超积累特性研究[J].应用基础与工程科学学报,2003,1(2)157-159.
    [44]魏树和,周启星,王新,等.杂草中具有重金属超积累特征植物的筛选[J].自然科学通报,2003,13(2):1259-1269.
    [45]王激清,刘波,苏德纯.超积累镉油菜品种的筛选[J].河北农业大学学报,2003,26(1):13-15.
    [46]Chaney,et al.Proceedings of Extracted Abstracts of 5th International Conference on the Biogeochemistry of Trace Elements,1999,1:14-15.
    [27]Flathman P E and Lanza G R.Phytoremediantion:current views on an emerging green technology[J].Journal of Soil Contamination,1998,7:415 -432.
    [47]王剑虹,麻密.植物修复的生物学机制「J」.植物学通报,2000,17(6):504-510.
    [48]Maitani T.The composition of metals bound to class Ⅲ metallothionein(Phytochelation and itsdesglycyl petitide) induced by various metals in root cultures of Rubia tinctorum[J].Plant Physiol,1996,110:1145-1150.
    [49]李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631.
    [50]王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-510.
    [51]Kramer U,Janet D,Cotter-Howells,et al.Free histidine as a metal chelator in plants that accumulate nickel[J].Nature,1996,379:635-638.
    [52]郎明林,张玉秀,柴团耀.植物重金属超富集机理研究进展[J].西北植物学报,2003,23(11):2021-2030.
    [53]Kupper H,Lombi E,Zhao F J,et al.Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulation[J].Arabidopsis halleri Planta,2000,212(1):75-84.
    [54]Zhao H,Butler E,Rodgers J,et al.Regulation of zinc homeostasis in yeast by binding of the ZAP 1 transcriptional activator to zinc responsive promoter elements[J].J Biol Chem,1998,273(44):28713-28720
    [55]Kramer U,Pickering I J,Prince R C,et al.Subcellular localization and speciation of Nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant Physiol,2000,122:1343-1353.
    [56]Lasat M M,Baker A J M,Kochian L V,Physiological characterization of root Zn2+absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J].Plant Physiology,1996,112:1715-1722.
    [57]Shen Z G,Zhao F J,Mcgrath S P.Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the Non-hyperaccumlator Thlaspi ochroleucum[J].Plant Cell Environ,1997,20:898-906.
    [58]Chaney R L,Malik M,Li Y M,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997,8:279-284.
    [59]Jaffer T,Reeves R D,Beequer T.The ecology of ultramafic and metalliferous areas,(Proc.Second Intern.Conf Serpentine Ecology,Noumea,New Caledonia,July 31-Aug.5,1995).ORSTOM,New Caledoaledonia,1997.
    [60]Jaffer T,Brook J,Lee and Reeves R.D Sebertia acuminata:A hyperaccumulator of nickel[J].New Caledonia Science,1976,(193):579-580.
    [61]Robinson B H,Brooks R R,Howes A W,et al.The potential of the high biomass nichel hyperaccumulator Berkheya coddii for phytoremediation and phytomining[J].Journal of Geochemical Exploration,1997,60:115-126.
    [62]Duvigneaud P,Denaeyer—De Smet S.Cuivreet vegetation au Katanga[J].Bulletin de la Societe Royale Botanique de Belgique,1963,96:93-231.
    [63]Reeves R D and Brooks R R.Hyperaccumulation of lead and zinc by two metallophytes from a mine area of Central Europe[J].Environ Pollut Ser,1983,31):277-287.
    [64]Kumar,P B A N,Sushenkov V,Motto H,et al.Phytoextraction the use of plants to remove heavy metals from soils[J].Environ Sci Tchnol,1995,29(5):1232-1238.
    [65]刘金林.水生维管束植物对重金属的吸收和超集累的研究[J].中国环境科学,1985,5(2):24-28.
    [66]龙育堂,刘世凡,熊建平.竺麻对稻田土壤汞净化效果研究[J].农业环境保护,1994,13(1):30-33
    [67]林匡飞,张大明,李秋洪等.苎麻吸镉特性及镉土的改良试验[J].农业环境保护,1996,15(1):1-4.
    [68]魏树和等.某铅锌矿坑口周围具有重金属超积累特征植物的研究[J].环境污染治理技术与设备,2004(3):33-39.
    [69]魏树和,周启星,王新,等.农田杂草的重金属超积累特性研究[J].中国环境科学,2004,24(1):105-109.
    [70]方维萱,兀鹏武,左建莉,李幸凡。硒钼钒污染环境的生态地球化学修复物种筛选与展望[J].矿物岩石地球化学通报,2005,24(3):222-231
    [71]Tang S R,Wilke B M and Huang C Y.The uptake of copper by plants dominant lygrowing on copper mining spoils along the Yangtze River,the People's Republic of China[J].Plant and Soil,1999,209(2):225-232.
    [72]李红艳,唐世荣,郑洁敏.两种生长在铜矿渣上的菊科植物的铜含量[J].农村生态环境,2003,19(4):53-55.
    [73]唐世荣,重金属在海州香薰和鸭跖草叶片提取物中的分配[J].植物生理学通讯,2000,36(2):128.
    [74]束文圣,杨开颜,张志权,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12.
    [75]李华,骆永明,宋静.不同铜水平下海洲香薷的生理特性和铜积累研究[J].土壤,2002,(4):225-228.
    [76]姜理英,杨肖娥,叶正钱,等海州香薷和紫花香薷对Cu,Zn的吸收和积累[J].农业环境科学学报,2003,24(5):524-528.
    [77]黄长干,张莉,余丽萍,等.德兴铜矿铜污染状况调查及植物修复研究[J].江西农业大学学报,2004,26(4):629-632.
    [78]钱海燕等,黑麦草连茬对铜、锌污染土壤的耐性及其修复作用[J].江西农业大学学报,2004,26(5):801-804.
    [79]黄会一,蒋德明,张春兴等.运用森林生态工程控制福污染土壤的研究[J].中国环境科学,1989,9(6):419-426.
    [80]苏德纯,黄焕忠.油菜作为超累积植物修复镉污染土壤的潜力[J].中国环境科学,2002,22(1):48-51.
    [81]王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J].福建农林大学学报(自然科学版),2004,33(1):94-99.
    [82]黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性的研究[J].中国环境科学,1989,9(5):327-330.
    [83]周青,黄晓华,施国新,等.镉对5种长绿树木若干生理生化特性的影响[J].环境科学研究,2001,14(3):9-12.
    [84]林治庆,黄会一.木本植物对汞污染的预防机制[J].中国环境科学,1988,8(3):35-40.
    [85]李永丽,李欣,李硕等.东方香蒲(Typha orientalis Presl)对铅的富集特征及其EDTA 效应分析[J].生态环境,2005,14(4):555-558.
    [86]刘秀梅,聂俊华,王庆仁.6种植物对Pb的吸收与耐性研究[J].植物生态学报,2002,26(5):533-537.
    [87]柯文山,陈建军,黄邦全,等.十字花科芸堇属5种植物对Pb的吸收和富集[J].湖北大学学报(自然科学版),2004,26(3):236-238.
    [88]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [89]陈同赋,韦朝阳,黄泽春等.华南的一些砷超集累植物种类[A].国际会议中关于土壤修复的研究进展[C].杭州:2000,194-195.
    [90]杨肖娥,龙新宪,倪吾钟等.东南景天——一种新的锌超富集植物[J].科学通报,2002,47(13):1003-1007.
    [91]薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物—商陆[J].生态学报,2003,23(5):935-937.
    [92]张慧智,刘云国,黄宝荣,等,锰矿尾渣污染土壤上植物受重金属污染状况调查[J].生态学杂志,2004,23(1):111-113.
    [93]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    [94]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2049.
    [95]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(solanum nigrum L).科学通报,2004,49(24):2568-2573.
    [96]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物——李氏禾(Leersia hexandra Swartz).生态学报,2006,26(3):950-953.
    [97]汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物——圆锥南芥(Arabis paniculata L.).中山大学学报(自然科学版),2005,44(4):135-136.
    [98]李宏禄.攀枝花地区环境地质问题[J].中国地质,1999,(2):29-30.
    [99]杨秀红,胡振琪,张迎春.利用工业矿物治理重金属污染土壤的探讨[J].金属矿山,2003, 3(3):52-55.
    [100]王庆仁,刘秀梅,崔岩山,等.我国几个工矿与污灌区土壤重金属污染状况及其原因探讨[J].环境科学学报,2000,22(3):354-358.
    [101]Li Xiao-ming,Zeng Guang-ming.Prediction the Amount of Urban Waste Solids by Applying a Gray Theoretical Model[J].Journal Environmental Sciences,2003,15(1):43-46.
    [102]张磊,宋凤斌,王晓波.中国城市土壤重金属污染研究现状及对策[J].生态环境,2004,13(2):258-260.
    [103]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报2001,21(7):1196-1204.
    [104]李红霞,马伟芳,赵新华.植物修复受污染土壤重金属的研究[J].安徽农业科学,2005,33(4):699-700,702.
    [105]蔡美芳,刘玉荣,党志.植物修复重金属污染土壤的研究进展[J].重庆环境科学,2003,25(11):174-176,180
    [106]Allen SE.Chemical.Analysis of Ecological Materials.2nd edn.Oxford:Blackwell Science Publishers.1989
    [107]《环境污染分析方法》科研协作组.环境污染分析方法[M],北京;科学出版社,1987.
    [108]张素荣,曹星星.对比不同消解方法测定土壤中重金属[J].环境科学与技术(增刊),2004,8(27):49-51
    [109]王志强,曹福成,孔鲁裔.微波消解与传统消化方法的比较[J].科学咨询导报,2007,23:132
    [110]陈丰,刘芳.微波消解/ICP-AES法测定土壤中的环境有效态金属元素[J].上海环境科学,2003,22(12):967-970
    [111]北京化学试剂公司,化学试剂标准手册[M],北京;化学工业出版社,2003:432-434,458
    [112]Bowen HJM.Environmental Chemistry of the Element.Academic Press,London,1979.243-272.
    [113]Bradshaw A D.Restoration of Mined Lands Using Natural Process.Ecological Engineering,1997,(8):255-269.
    [114]张国军,邱栋梁,刘星辉.Cu对植物毒害研究进展.福建农林大学学报,2004,33(3):289-294
    [115]张磊,宋凤斌,王晓波.中国城市土壤重金属污染研究现状及对策.生态环境,2004,13(2):258-260.
    [116]高拯民.中国百科全书环境科学卷.北京:中国大百科出版社,1983,383-386.
    [117]郭路,李云峰,姬亚东.矿业开发与环境保护关系综述[J].西北地质,2005,38(2):94-97
    [118]Eriksson J E.The influence of pH,soil type and time on adsorption and by plants of Cd added to the soil.Water,Air and Pollut,1989,48:317-335.
    [119]杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究.云南农业大学学报,2005,20(4):539-543.
    [120]Kumar P B A N,Sushenkov V,Motto H,et al.Phytoextraction the use of plants to remove heavy metals from soils[J].Environ Sci Tchnol,1995,29(5):1232-1238.
    [121]Brown S L,Chaney R L,Angle J S,et al.1994.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadium-contaminated soil.Journal of Environmental Quality 23,1151-1157.
    [122]李玉双,孙丽娜,孙铁珩,王洪.超富集植物叶用红恭菜(Beta vulgaris vat.cicla L.)及其对Cd的富集特征.农业环境科学学报,2007,26(4):1386-1389.
    [123]周启星.土壤环境污染化学与化学修复研究最新进展.环境化学,2006,25(3):257-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700