用户名: 密码: 验证码:
磷富集植物筛选及其吸收机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表径流中水溶性磷是水生系统中水体富营养化的主要原因之一,目前已成为全球关注的热点环境问题。利用富集植物修复污染土壤已成为当今国际生物修复研究的热点和前沿。通过野外采样,筛选出对磷富集能力差异较大的矿山生态型和非矿山生态型植物种类,结合盆栽试验,验证两种生态型磷富集植物对磷的富集能力差异,揭示矿山生态型磷富集植物对磷的吸收特性。主要研究结果如下:
     1.通过野外采样,分析了什邡磷矿区采集的12种优势植物矿山生态型及相对应的采自雅安市雨城区的非矿山生态型的磷富集能力。粗齿冷水花(Pilea sinofasciata)和水蓼(Polygonum hydropiper)在花期的地上部磷含量较高,分别为16.23和8.59g kg~(-1),是相对应非矿山生态型的3.4和7倍。这两种植物对应根际土壤的速效磷含量分别为112.84和121.78mg kg~(-1),是非根际土壤的12和4倍。12种优势植物矿山生态型地上部磷含量与相对应根际土壤速效磷含量呈显著负相关(p<0.05),在非矿山生态型植物中得到相反结果。粗齿冷水花(Pilea sinofasciata)和水蓼(Polygonum hydropiper)地上部磷含量高于其他植物,可作为潜在的磷污染环境修复材料。
     2.随着土壤磷浓度的增加,矿山生态型水蓼地上部生物量急剧增加,非矿山生态型却呈减小趋势。矿山生态型水蓼磷累积量是非矿山生态型的3-5倍。与种植前相比,两种生态型水蓼根际土壤的速效磷含量均有一定程度的增加,矿山生态型水蓼的增加幅度是非矿山生态型的1.05-63.02倍。矿山生态型水蓼叶片叶绿素含量随土壤磷浓度的增加而增加,在200mg P kg~(-1)时略有下降,但差异不显著。与对照相比,矿山生态型水蓼叶片SOD活性增加了7-9倍,在200 mg P kg~(-1)时,增加幅度达到了634%(p<0.05),但非矿山生态型水蓼叶片SOD活性逐渐降低。矿山生态型水蓼叶片POD活性随土壤磷浓度的增加而增加,在100 mg P kg~(-1)时,POD活性增加了29.5倍。矿山生态型水蓼叶片CAT活性随着磷浓度的增加而增强,增加幅度为66-210%。矿山生态型水蓼叶片MDA含量随着土壤磷浓度的增加而降低,降低幅度为133-210%,非矿山生态型叶片MDA含量呈现相反的变化趋势。
     3.矿山生态型粗齿冷水花地上部生物量随着土壤磷浓度的增加而增加,非矿山生态型显著降低(p<0.05)。在200mg P kg~(-1)时,矿山生态型粗齿冷水花的生物量比非矿山生态型的高246%。矿山生态型粗齿冷水花地上部磷含量随土壤磷浓度的增加而增加,非矿山生态型显著降低。随着生育期延长,两种生态型粗齿冷水花地上部磷含量均呈下降趋势,其中,矿山生态型的降幅比非矿山生态型小4%。矿山生态型粗齿冷水花地上部磷累积量比非矿山生态型高10-276%。矿山生态型粗齿冷水花的叶绿素a含量随着磷浓度的增加而增加,在200 mg P kg~(-1)时达到最大值,但处理间差异不显著。两种生态型粗齿冷水花叶绿素b含量处理间差异均不显著。矿山生态型粗齿冷水花叶片CAT活性与对照相比增强,非矿山生态型叶片CAT活性呈先增后降的趋势。在200 mg P kg~(-1)时,矿山生态型叶片CAT活性为非矿山生态型的3倍。磷处理引起了矿山生态型粗齿冷水花叶片POD活性的增加。在50mg P kg~(-1)时,非矿山生态型叶片POD活性达最大值,随着磷浓度的增加急剧减少。在200 mg P kg~(-1)时,矿山生态型粗齿冷水花叶片POD活性比非矿山生态型高132.95%。矿山生态型粗齿冷水花叶片SOD活性随土壤磷浓度的增加而增加,非矿山生态型显著降低。磷处理条件下,矿山生态型粗齿冷水花叶片SOD活性比非矿山生态型高46.88-108.33%。非矿山生态型叶片游离脯氨酸和MDA含量随着土壤磷浓度的增加而增加,显著高于矿山生态型。
1.Movement of soluble phosphates (Pi) from phosphorus-impacted soils poses tremendous threats to the degradation of the aquatic and other eco-systems and triggers serious environmental consequences. Plant-assisted clean-up strategies have demonstrated great advantages over conventional methods in redundant phosphorus removal from soils. Phosphorus accumulation potentials were investigated for 12 dominant plant species growing in a phosphorus mining area in Shifang, as well as their corresponding non-mining ecotypes growing in Ya'an, China. High phosphorus concentrations were observed in the seedling and flowering stages of two species, Pilea sinofasciata and Polygonum hydropiper, up to 16.23 and 8.59 g kg~(-1) respectively, which were 3.4 and 7 times higher than in the non-mining ecotypes. Available phosphorus levels in the respective rhizosphere soils of these plants were 112.84 and 121.78 mg kg~(-1), 12 and 4 times higher than in the non-rhizosphere soil. Phosphorus concentrations in shoots of the mining ecotypes of all 12 species were significantly negatively correlated with available phosphorus in the rhizosphere soils (p<0.05), whereas a positively correlation was observed in the non-mining ecotypes. The results suggested that Pilea sinofasciata and Polygonum hydropiper were efficient candidates among the tested species for phosphorus accumulation in shoots, and that further studies should be conducted to investigate their potential to be adopted as phosphorus accumulators.
     2.In this study, phosphorus concentration, physiological and biochemical characteristics of Polygonum hydropiper leaves in the phosphorus mining ecotype (ME) and the non-mining ecotype (NME) were investigated under different soil phosphorus status. The results showed that significant increase (p<0.05) in biomass was observed in ME with ascending soil phosphorus, while reverse tendency was observed in NME. The phosphorus concentration in Polygonum hydropiper leaves was higher than in the shoot and root. The phosphorus accumulation of Polygonum hydropiper was 3-5 times higher than in NME. Significant increase in available phosphorus concentration in rhizosphere was observed in both ecotypes after planting, the increase in ME was 1.05-63.02 times higher than in NME. Chlorophyll a and chlorophyll b of leaves in ME increased proportionally with the ascending soil phosphorus. The plants of ME growing under higher phosphorus concentration presented higher bio-activities of CAT, SOD and POD than under low phosphorus conditions. Significant increase (p<0.05) in activity of SOD was observed in ME with ascending soil phosphorus, nearly 634% higher than the control at 200 mg P kg~(-1), while reverse tendency was observed in NME. Significant increase (p<0.05) in concentration of malondialdehyde (MDA) was observed in the NME, while reverse tendency was manifested in plants from the ME.
     3. In this study, Phosphorus concentration, physiological and biochemical characteristics of Pilea sinofasciata leaves in the phosphorus mining ecotype (ME) and the non-mining ecotype (NME) were investigated under different soil P status. Significant increase (p<0.05) in biomass was observed in ME with ascending soil phosphorus, while reverse tendency was observed in NME. The biomass of the mining ecotype was nearly 246% higher than in the non-mining ecotype at 200 mg P kg~(-1). Significant increase (p<0.05) in phosphorus concentration of shoot was observed in ME with ascending soil phosphorus, while reverse tendency was observed in NME. The phosphorus accumulation of shoot in ME was nearly 10-276% higher than in NME. The results showed that chlorophyll a and of leaves in ME increased proportionally with the ascending soil P. No significant variation was observed both in ME and NME. The plants of ME growing under high P concentration presented higher bio-activities of CAT, SOD and POD than under low P conditions. Significant increase (p<0.05) in concentration of malondialdehyde (MDA) and free proline was observed in the NME, while reverse tendency was manifested in plants from the ME.
引文
[1]曹黎明,潘晓华.水稻耐性机理初探[J].作物学报,2002,28(2):260-264
    [2]蔡美芳,刘玉荣,党志.植物修复重金属污染土壤的研究进展[J].重庆环境科学.2003,25(11):174-180
    [3]陈廷伟.解磷巨大芽抱杆菌分类名称、形态特征及解磷性能评述[J].土壤肥料,2005(1):7-11
    [4]陈国祥,刘双,王娜等.磷对水生植物菱及睡莲叶生理活性的影响[j].南京师大学报(自然科学版),2002,25(1):71-77
    [5]丁玉川,陈明昌,程滨等,.作物磷营养效率生理生化基础研究进展[J].山西农业科学,2004,32(3):25-29
    [6]郭长城,喻国华,王国祥.湖滨带植物群落对挟沙水体氮、磷污染物的截留效果[J].生态环境,2007,16(3):866-870
    [7]郭长城,喻国华,王国祥.菹草对水体悬浮泥沙及氮、磷污染物的净化[J].水土保持学报,2007,21(3):108-111,117
    [8]黄长干,邱业先.植物对环境重金属污染的修复技术研究进展[J].江西农业大学学报,2003,25(5):676-680
    [9]胡开辉,罗庆国,汪世华等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2006,17(6):1060-1064
    [10]李明良,李承志,王义庆等.富钾野生植物筛选及其应用简报[J].莱阳农学院学报,1990,7(2):131-133
    [11]李廷轩,马国瑞.籽粒苋富钾基因型筛选研究[J].植物营养与肥料学报,2003,9(4):473-479
    [12]李廷轩,马国瑞.籽粒苋不同富钾基因型根际钾营养与根系特性研究[J].水土保持学报,2004,18(3):90-93
    [13]李廷轩,马国瑞.籽粒苋富钾基因型的生理生化基础研究[J].植物营养与肥料学报,2004,10(4):380-385
    [14]李廷轩,马国瑞.籽粒苋不同富钾基因型根系分泌物中有机酸和氨基酸的变化特点[J].植物营养与肥料学报,2005,11(5):647-653
    [15]李俊梅,王焕校.小麦根系对镉胁迫的适应机理[J].土壤通报,2002,33(1):61-65
    [16]李继云,李振声,周伟等.有效利用土壤营养元素的作物育种新技术研究[J].中国科学,1995,25(1):41-47
    [17]李继云,孙建坐,刘全友等.不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究[J].西北植物学报,2000,20(4):503-510
    [18]李海波,夏铭,吴平.磷胁迫对水稻侧根生长及养分吸收的影响[J].植物学报,2001,43(11):1154-1160
    [19]李振高,李良谟,潘映华等.小麦苗期根系分泌物对根际反硝化细菌的影响[J].土壤学报,1995,7(11):10-14
    [20]李宾兴,肖凯,李雁鸣.低磷胁迫下不同基因型小麦品种的光和特性差异[J].河北农业大学学报,2002,25(1):5-9
    [21]李硕,刘云国,李永丽等.水葱修复土壤镉污染潜力的研究[J].环境污染防治,2006,28(2):40-43
    [22]李志敏,刘东辉,王明国.评价减少磷污染最佳管理措施有效性模型[J],水土保持科技情报,2005,6:17-18
    [23]鲁如坤等.土壤农化分析.北京:中国农业科技出版社,1999
    [24]梁秀兰,林英春,年海等.低磷胁迫对不同基因型玉米主要生理生化特性的影响[J].作物学报(研究简报),2005,31(5):667-669
    [25]刘鸿雁,黄建国,魏成熙等.磷高效基因型玉米的筛选研究[J].土壤肥料,2004(5):25-29
    [26]廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异[J].植物学报,2000,42:913-919
    [27]刘秀梅,聂俊华,王庆仁.植物修复重金属污染土壤的研究进展[J].甘肃农业大学学报.2001,1(8):8-13
    [28]林文雄,石秋梅,郭玉春等,水稻磷效率差异的生理生化特性[J].应用与环境生物学 报,2003,9(6):578-583
    [29]聂艳丽,郑毅,林克惠.根系分泌物对土壤中磷的活化作用[J].云南农业大学学报.2002,17(3):281-286
    [30]梁秀兰,林英春,年海等.低磷胁迫对不同基因型玉米主要生理生化特性的影响[J].作物学报,2005,31(5):667-669
    [31]刘敏娟,李秧秧,张岁歧.小麦进化材料氮、磷养分利用效率间的关系[J].麦类作物学报,2002,22(3):34-37
    [32]林咸永,章永松,苏玲等.磷钾营养对渍水条件下大麦若干生理生化性状的影响[J].植物营养与肥料学报,2000,6(2):159-165
    [33]陆文静,何振立,许建平等.石灰性土壤难溶态磷的微生物转化和利用[J].植物营养与肥料学报,1999,5(1):7-11
    [34]林启美,赵小蓉,孙炎鑫等.四种不同生态环境土壤中解磷细菌的数量及种群分布[J].土壤与环境,2000,9(1):34-37
    [35]刘立岩,吕兴娜.用水葫芦净化水质中氮,磷污染物的研究分析[J].丹东纺专学报,2005,12(46):15-19
    [36]马祥庆,梁霞.植物高效利用磷机制的研究进展[J].应用生态学报,2004,15(4):712-716
    [37]聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报,2004,20(4):255-258
    [38]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480
    [39]沈宏,施卫明,王校常等.不同作物对低磷胁迫的适应机理研究[J].植物营养与肥料学报,2001,7(2):172-177
    [40]沈宏,杨存义,范小威等.大豆根系分泌物和根细胞壁对难溶性磷的活化[J].生态环境,2004,13(4):633-635
    [41]孙海国,张福锁.缺磷条件下的小麦根系酸性磷酸酶活性研究[J].应用生态学报,2002,13(3):379-381
    [42]鹿欣,张福锁,李春俭.部分根系供磷对黄瓜根系和幼苗生长及根系酸性磷酸酶活性影响[J].植物生理学报,2000,(2):153-158
    [43]孙羲.植物营养原理[M].北京:中国农业出版社,1995,336-340
    [44]宋静.土壤重金属植物有效性评价及铜污染土壤的植物修复研究.中国科学院博士论文,2002
    [45]丁玉川,陈明昌,程滨.作物磷营养效率生理生化基础研究进展[J].山西农业科学,2004,32(3):25-29
    [46]魏树和,周启星,王新等.农田杂草的重金属超积累特性的筛选研究[J].自然科学进展,2003,13(12):1259-1265
    [47]王激清,刘波,苏德纯.超积累镉油菜品种的筛选[J].河北农业大学学报,2003,26(1):13-16
    [48]万美亮,邝炎华.低磷胁迫下不同基因型甘蔗品种的生理特性研究[J].华南农业大学学报,1999,20(1):45-50
    [49]吴俊江,刘丽君,钟鹏,林蔚刚,董德建.低磷胁迫对不同基因型大豆保护酶活性的影响[J].大豆科学,2008,27(3):437-441
    [50]熊愈辉,杨肖娥,叶正钱等.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学学报(自然科学版),2004,32(6):84-86
    [51]谢一青,李志真,王志洁.不同磷效率基因型大豆根际微生物特性研究[J].江西农业大学学报,2003,25(4):509-513
    [52]袁华山,熊正为,汤池.流域总磷污染动态模拟模型与检验[J].南华大学学报(自然科学版),2006,20(3):70-73,82
    [53]杨兴洪,王玮,邹琦.DPC和KH_2PO_4浸种对棉花叶片光合特性的影响[J].植物学通报,1999,16(3):90-101.
    [54]张西科,张福锁,毛达加.水稻根表铁氧化物胶膜对水稻吸收磷的影响[J].植物营养与肥料学报,1997,3(4):295-299
    [55]邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征[J].植物营养与肥料学报,2001,7(1):36-43
    [56] 张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250
    [57] 张恩和,王惠珍,阎秋洁.不同基因型春小麦对磷胁迫的适应性反应[J],麦类作物学报,2006,26(2):117-120
    [58] 赵明,沈宏,严小龙等.不同菜豆基因型对难溶性磷的吸收动力特性[J].植物营养与肥料学报,2002,8(4):435-440
    [59] 赵小蓉.林启美.微生物解磷的研究进展[J].土壤肥料,2001,5(3):7-11
    [60] 赵小蓉,林启美,孙众鑫.玉米根际与非根际解磷细菌的分布[J].生态学杂志,2001,20(6):62-64
    [61] 湛方栋,陆引里,黄建国.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-491
    [62] 章明奎,符娟林,厉仁安.杭州市居民区土壤磷的积累和释放潜力[J].浙江大学学报(农业与生命科学版),2004,30(3):300-304
    [63] 张瑞敏,王三根,黄爱缨等.施磷水平对不同基因型玉米生理特性及膜保护酶的比较研究[J].西南大学学报(自然科学版),2008,30(6):60-63
    [64] 朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105
    [65] Ae N, Arihara J, Okada K, et al. Phosphorous uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science, 1990, 284:477-480
    [66] Azcon R., Ambrosano E., Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration [J]. Plant Science, 2003,165:1137-1145.
    [67] Babatunde A.O., Zhao Y.Q., Neill M.O. et al. Constructed wetlands for environmental pollution control: A review of developments, research and practice in Ireland [J]. Environment International,2008,34: 116-126
    [68] Baker A.J.M.,McGrath S.P.,Sidoli C.M.D. et al.The possibility of in situ heavy metal decontamination of polluted soils using corps of metal accumulating plants[J]. Resources,Conservation and Recycling, 1994,11:41-49
    [69] Bates T.R, Lynch J.P. Simulation of root hair elongation in Arab idopsisthaliana by low phosphorus availability [J]. Plant Cell Environment, 1996, 19:529-538
    [70] Baon, J. B.; Smith, S. E.; Alston, A..M. Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection[J]. Journal of Plant Nutrition, 1994, 17,479-492
    [71] Bates, L.S., Waldren, R.P., Teare, J.D. Rapid determination of proline for water stress studies [J].Plant Soil, 1973, 39, 205-207.
    [72] Becard G, Kosuta S., Tamasloukht M, et al. Partner communication in the arbuscular mycorrhizal interactionl[J]. Canadian Journal of Botany, 2004,82(8):1186-1197
    [73] Bondada B.R., Tu S.X, Ma L.Q. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.) [J]. Science of the Total Environment, 2004, 332:61-70
    [74] Bowler, C, Montagu, M.V., Inze, D. Superoxide dismutase and stress tolerance [J]. Annual Reviews in Plant Physiology, 1992, 43: 83-116.
    [75] BonserA, Lynch J.P, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolusvulgari[J]. New Phytologist, 1996,132:281-288
    [76] Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of Protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254.
    [77] Brink, G.E., Pederson, G.A., Sistani, K.A., Fairbrother, T.E. Uptake of selected nutrients by temperate grasses and legumes [J]. Agronomy Journal, 2001,93:887-890.
    [78] Burkholder J, Glasgow H.B. Pfeisteria piscicida and other Pfeisteria like dinoflagellates: behavior,impacts, and environmental controls [J]. Limnology and Oceanography, 1997, 42: 1052-1057
    [79] Boujelben N., Bouzid J., Elouear Z., Feki M., Jamoussi F.et al. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J].Journal of Hazardous Materials,2007,5:1-8
    [80] Brink G E., Pederson G. A., Sistani K.A, Fairbrother T. E. Uptake of selected nutrients by temperate grasses and legumes[J]. Agronomy Journal, 2001,93: 887-890.
    [81] Cakmak, I., Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase, and glutathione reductase in bean leaves [J]. Plant Physiology, 1992,98:1222-1227.
    [82] Chapin F.S. In: Genetic Aspects of Plant Nutrition. Saric M.R and Loughnan B.C eds[J]. German:Matrinus Nijhoff Publishers, 1983:217-221
    [83] Chassot, A.; Richner, W. Root characteristics and phosphorus uptake of maize seedlings in a bilayered soil[J]. Agronomy Journal, 2002, 94: 118-127.
    [84] Chen M., Chen J., Sun F. Agricultural phosphorus flow and its environmental impacts in China [J]. Science of the total environment, 2008, 405:140-152.
    [85] Chen R.F, Shen R.F, Gu P et al. Response of Rice (Oryza sativa) with Root Surface Iron Plaque Under Aluminium Stress [J]. Annals of Botany,2006,98:389-395
    [86] Clark R. B. Plant genotype differences in the uptake, translocation and use of mineral elements required for plant growth [J].Plant and Soil, 1983,72:175-196
    [87] Codling, E.E., Mulchi, C.L., Chaney, R.L. Biomass yields and phosphorus availability to wheat grown on high phosphorus soils amended with phosphate-inactivating residues [J]. II. Iron rich residue. Communications in Soil Science and Plant Analysis, 2002, 33:1063-1084.
    [88] Council for Agricultural Science and Technology. Animal diet modifica-tion to decrease the potential for nitrogen and phosphorus pollution. CAST, Ames, IA. 2002.Issue Paper 21.
    [89] Comerford N. B.In Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes; Lynch, J. P., Deikman, J., eds.; American Society of Plant Physiology: Rockville, MD, 1998; pp 136-147.
    [90] Cooper P. The constructed wetland association UK database of constructed wetland systems. Proceedings of the 10th International conference on wetland systems for water pollution control [J].Lisbon, Portugal, 2006, 6:11-16
    [91] Darrah P.R .Model of the rhizosphere [J].Plant and Soil,1991,138:147-158
    [92] Delorme T. A., Angle J.S., Coale F. J., Chaney R. L. Phytoremediation of phosphorus-enriched soils[J].International Journal of Phytoremediation, 2000,2: 173-181.
    [93] Dhanda, G.S., Sethi, R.K., Behl, R.K. Indices of drought tolerance in wheat genotypes at early stages of plant growth[J]. Journal of Agronomy and Crop Science, 2004, 190: 6-12.
    [94] Deng D.M., Shu W.S., Zhang J., Zou H.L., Lin Z. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii[J]. Environmental Pollution, 2006, 5:1-6
    [95] Dou Z., Zhang G.Y., Stout W.L., Toth J.D., Ferguson J.D. Efficacy of alum and coal combustion by-products in stabilizing manure phosphorus [J]. Journal of Environmental Quality, 2003 (32): 1490-1497.
    [96] El-Moshaty, F.I.B., Pike, S.M., Novacky, A.J., Sehgal, O.P. Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus[J]. Physiological and Molecular Plant Pathology, 1993,43: 109-119.
    [97] Fan, Y.Y., Yuan, M. M., Deng, M. F., Yang, W.N. Effects of High N、P Water o1n Activities of SOD, POD and CAT of Elodeanattalii [J]. Amino Acids and Biotic resources. 2007,29(3): 38-41
    [98] Fischerov Z., Tlustos P., Szakova J., Sichorova K. A comparison of Phytoremediation capability of selected plant species for given trace elements[J]. Environmental Pollution, 2006 (144): 93-100.
    [99] Frossard, E., Condron, L.M., Oberson, A., Sinaj,S., Fardeau, J.C. Processes governing phosphorus availability in temperate soils[J]. Journal of Environment Quality,2000,29: 15-23.
    [100] Furihata T., Suzuki M., Sakurai H, Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus- roseus protoplasts[J]. Plant Cell Physiology, 1992(33): 1151-1157.
    [101] Ghaderian S.M., Mohtadi A., Rahiminejad M.R., Baker A.J.M. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran[J]. Environmental Pollution, 2006,3:1-6
    [102] Gilbert G, Knight J. D, Vanceet C et al. Proteoid Root Development of Phosphorus Deficient Lupin is Mimicked by Auxin and Phosphonate[J]. Annals of Botany,2000,85(6):921-928
    [103] Hawkins, H J., Hettasch, H., Mesjasz-Przybylowicz, J., et al. Phosphorus toxicity in the Proteaceae: A problem in post-agricultural lands. Scientia Horticulturae,2008,117:357-365.
    [104] Hernandez, I., Niell, F.X., Fernandez, J.A. Alkaline phosphatase activity in marine macrophytes: histochemical localization in some widespread species in southern Spain [J]. Marine.Biollogy. 1994,120:501-509.
    [105] Hemminga, M.A., Marba, N., Stapel, J. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems[J]. Aquatic Botany,1999, 65:141-158.
    [106] Hisashi Kato-Noguchi. Allelopathic substance in rice root exudates:Rediscovery of momilactone B as an allelochemical[J]. Journal of Plant Physiology, 2004,161,(3):271-276
    [107] Hunger, S., Sims, J.T., Sparks, D.L. How accurate is the assessment of phosphorus pools in poultry litter by sequential extraction[J]. Journal of Environmental Quality,2005, 34: 382-389.
    [108] Huang, W.W ., Wang, S.B., Zhu, Z. H., Li, L., Yao, X. D et al. Phosphate removal from wastewater using red mud[J]. Journal of Hazardous Materials, 2008(158): 35-42.
    [109] Illmer,P.and Schinner,F.Solubilization of inorganic calcium phosphates solubilization mechanisms[J].Soil Biology Biochemistry, 1995,27(3):257-263
    [110]Juszczuk, I., Malusa, E., Rychter, A .M. Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.) [J].Journal of Plant Physiology, 2001,158, 1299-1305
    [111] Cakmak, Strbac D and Marschner H, Activities of Hydrogen Peroxide-Scavenging Enymes in Germinating Wheat Seeds [J]. Journal of Experimental Botany, 1993,44(1):127-132
    [112] Koller C.E., Patrick J.W., Rose R.J et al. Pteris umbrosa R.Br. as an arsenic hyperaccumulator accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata[J], Chemosphere,2006,7:1 -8
    [113] Koopmans, GF., Chardon, W.J., Ehlert, P.A.I., Dolfing, J., Suurs, R.A.A., Oenema, O., vanRiemsdijk,W.H. Phosphorus availability for plant uptake in a phosphorous-enriched non-calcareous sandy soil[J]. Journal of Environmental Quality,2004, 33:965-975.
    [114] Lai, Y, Wang, Q.Q, Yang, L.M, Huang, B.L. Subcellular distribution of rare earth elements and characterization of their binding species in a newly discovered hyperaccumulator Pronephrium simplex [J].Talanta,2006,70:26-31
    [115] Lapointe, B.E., Tomasko, D.A., Matzie, W.R. Eutrophication and trophic state classification of seagrass communities in the Florida keys[J]. Bulletin of .Marine.Science, 1994,54: 696-717.
    [116]Lichtenthaler, H.K. Chlorophylls and Carotenoidspigments of Photosynthesis Biomembranes. Academic Press, 1987, New York.
    [117] Liu, H., Hull, R. J., Duff, D.T. Comparing cultivars of three cool-season turf grasses for phosphate uptake kinetics and phosphorus recovery in the field [J]. Journal of Plant Nutrition, 1995, 18:523-540.
    [118] Loughman B.C, Roberts S.C. Varietal difference in physiobgical and biochemical responses to changes in the ionic environment[J]. Plant and Soil, 1983,72:245-259
    [119] Lynch J, Beebe S. Adaptation of beans (Phaseolusvulgaris L.) to low phosphorus availability V. Hort Science, 1995, 30(6):l 165-1171
    [120] Martinei-toledo M.V. Root exudates of zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum[J].Plant and Soil, 1988,110:149-155
    [121] Marschner P., Solaiman Z., Rengel Z, Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions[J]. Soil Biology and Biochemistry,2007,39: 87-98.
    [122] McComas C, McKinley D, et al. Reduction of phosphorus and other pollutants from industrial dischargers using pollution prevention[J]. Journal of Cleaner Production,2007, 2:1-7
    [123] Mikkelsen, R. L. In Agricultural uses of byproducts and wastes; Rechcigl, J. E., Mackinnod, H. C, Eds. American Chemical Society: Washington, DC, 1997; pp 110-119.
    [124] Montangero A, Le N.C, Nguyen V.A. Optimising water and phosphorus management in the urban environmental sanitation system of Hanoi, Vietnam[J]. Science of the Total Environment, 2007,384:55-66
    [125] McGrathS.P.Planta.that.hyper-accumulate.heavymetals[J].BrooksRR(ed).CABinternational, Walling-ford, UK, 1998,261-287
    [126] Mclachlan, K. D. Effects of drought, aging and phosphorus status on leaf acid phosphatase activity in wheat[J]. Australia Agriculture. 1987, 35:777-787.
    [127] Missouri A..M., Boerma H.R., Bouton J.H. Genetic variation and heritability of phosphorus uptake in Alamo switch grass grown in high phosphorus soils[J]. Field Crops Research. 2005,93:186-198.
    [128] Moore P. A. Jr., Miller D. M. Decreasing phosphorus solubility in poultry litter with aluminum, calcium, and iron amendments[J]. Journal of Environment Quality. 1994, 23:325-330.
    [129] Newton G.L., Bernard J.K., Hubbard R.K., Allison J.R., Lawrence R.R et al.Managing manure nutrients through multi-crop forage production[J]. Journal of Dairy Science, 2003, 86:2243-2252.
    [130] Novak J. M., Chan A. S. K. Development of P hyperaccumulator plant strategies to remediate soils with excess P concentrations[J]. Critical Reviews in Plant Sciences, 2002 ,21:493-509.
    [131] Pant H. K., Mislevy P., Rechcigl J. E. Effects of phosphorus and potassium on forage nutritive value and quantity: environmental implications [J]. Agronomy Journal,2004,96: 1299-1305.
    [132] Pedersen, M.F., Borum, J. An annual nitrogen budget for a seagrass Zostera marina population [J]. Marine.Ecollogy.Progress.Series, 1993,101:169-177.
    [133] Priya P., Sahi S.V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium) [J]. Plant Physiology and Biochemistry, 2009 (47): 31-36.
    [134] Rao I .M, Abadia J , Terry N. The role of orthophosphate in the regulation of photosynthesis in vivo [J]. Progress in Photosynthesis Research ,1987,3 (a):325-328.
    [135] Rao, I. M, Borrero, V., Ricaurte, J., Garcia, R. Adaptive attributes of tropical forage species to acid soils. V. Differences in phosphorus acquisition from less available inorganic and organic sources of phosphate[J]. Journal of Plant Nutrition, 1999,22: 1175-1196.
    [136] Rao, K.V.M., Sresty, T.V.S. Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses [J]. Plant Science, 2000,157:113-128.
    [137] Reddy, A..M, Kumar, S.G., Gottimukkala, J., Thimmanaik, S., Sudhakar, C. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) [J]. Chemosphere, 2005, 60:97-104.
    [138] Salt E D.,et al.Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants [J].Biotechnology, 1995, 13:468-471
    [139] Salt D.E. Phytoexaction: Present applications and future promise. In: Wise D L,et al .eds.Bioremediation of Contaminated Soils, New York: Marcel Dekker,2000,16:201-204
    [140] Schippers B et al. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology, 1987,25(3):339-358
    [141] Sharpley A.N., McDowel R.W., Kleinman P.J.A. Phosphorus loss from land to water: integrating agricultural and environmental management [J]. Plant and soil, 2001,237:287-307.
    [142] Sharma N.C., Sahi S.V.Characteristics of phosphate accumulation in Lolium multiflorum for remediation of phosphorus-enriched soils [J]. Environmental Science and Technology, 2005, 39: 5475-5480.
    [143] Sharma N.C., Starnes D.L., Sahi S.V. Phytoextraction of excess soil phosphorus[J]. Environmental Pollution, 2007,146:120-127.
    [144] Sharma N.C., Sahi S.V, Jain J.C., Raghothama K.G. Enhanced accumulation of phosphate by Lolium multiflorum cultivars grown in phosphate-enriched medium[J]. Environmental Science and Technology, 2004,38:2443-2448.
    [145] Shen Z.G, Liu Y.L. Progress in the study on the plants that hyperaccumulate heavy metal[J]. Plant Physiol Commun,1998, 34:133-139
    [146] Sims J.T., Edwards A..C, Schoumans O.F, et al. Integrating soil phosphorus testing into environmentally-best agricultural management practices[J]. Journal of Environmental Quality, 2000, 29:60-71
    [147] Sonzogni, W. C.; Chapra, S. C.; Armstrong, D. E.; Logan, T. J. Bioavailability of phosphorus inputs to lakes[J]. Journal of Environment Quality, 1982, 11.555-563.
    [148] Staats, K. E.; Arai, Y.; Sparks, D. L. Alum amended effects on phosphorus release and distribution in poultry litter-amended sandy soils [J]. Journal of Environment Quality, 2004, 33, 1904-1911.
    [149] Starnes D.L, Padmanabhan P, Sahi S.V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass(Lolium multiflorum L.) [J]. Plant Physiology and Biochemistry, 2008,46: 580-589
    [150] Stricker J.A. High value crop potential of reclaimed phosphatic clay soil, In Proceeding of Annual meeting of the American Society for Surface Mining and Reclamation, Tampa, 2000.
    [151] Smith S.E., Ryan PR., Smith F.A. The soil-plant interface: rhizosphere and mycorrhizosphere, Plant Nutrition for Food Security[J]. Human Health and Environment Protection, 2005, 12:10-11.
    [152] Smith D. R., Moor P. A. Jr., Griffis C. L., Daniel T. C, Edwards D. R et al. Effects of alum and aluminum chloride on phosphorus runoff from swine manure[J]. Journal of Environment Quality,2001 (30):992-998.
    [153] Tarkalson D.D, Mikkelsen R.L. A phosphorus budget of a poultry farm and a dairy farm in the southeastern U.S. and the potential impacts of diet alterations [J]. Nutritional Cycling in Agroecosystem, 2003, 66: 295-303
    [154] Touchette, B.W. Physiological and Developmental Responses of Eelgrass(Zostera marina L.)to Increases in Water-Column Nitrate and Temperature.Ph.D.dissertation. North Carolina State University. Raleigh, NC. 1999
    [155] Turner B. L, Paphazy M.J, Haygarth P.M et al. Inositol phosphates in the environment, Philos. Trans. R. Soc. London B, 2002,357:449-469
    [156] Usuda, H. Phosphate deficiency in maize. V . Mobilization of nitrogen and phosphorus within shoots of young plants and its relationship to senescence [J]. Plant Cell Physiology ,1995,36:1041-1049.
    [157] Vadas, P.A., Meisinger, J.J., Sikora, L.J., McMurtry, J.P., Sefton, A.E. Effect of poultry diet on phosphorus in runoff from soils amended with poultry manure and compost[J]. Journal of Environmental Quality, 2004, 33:1845-1854.
    [158] Visoottiviseth P., Francesconi K., Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land[J]. Environmental Pollution, 2002,118:453-461.
    [159] Wang H.B., Wong M.H., Lan C.Y., Baker A.J.M., Qin Y.R. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution,2006,03:1-9
    [160] Wenger K, Bigler L, Suter M J-F, et al. Effect of Corn Root Exudates on the Degradation of Atrazine and its Chlorinated Methods in soils,Journal of Environmental Quality ;2005 ;34,6:2187-2196
    [161] Wen, G.; Bates, T. E.; Voroney, R. P.; Winter, J. P.; Schellenbert, M. P. Comparison of phosphorus availability with application of sewage sludge, sludge compost, and manure compost[J]. Communications in Soil Science and Plant Analysis, 1997, 28: 1481-1497.
    [162] Whitehead D. C. Nutrient elements in grasslands: soil-plant-animal relationship; CABI Publishers: New York, 2000.
    [163] Wiren N, Marschner V.H, Romanheld V. Uptake kinetics of iron-phytosiderophores in two maize genotypes differing in iron efficiency [J]. Plant Physiol, 1995,93:611-616
    [164] Yan X.L, Miller C.R, Lynch J.P. Genetic variation in bean root traits in response to phosphorus deficiency. In: Flores H.E, Lynch J.P, and Eisenstat D eds. Radical Biology: Advances and Perspectives on the Function of Plant Roots [J]. Maryland: American Society of Plant Physiologists, 1998, 397-399
    [165] Yan X.L, Liao H, Lynch J.P, Trull M.C. Genetic control of acid phosphatase activity in common bean. In: Lynch JP and Deikman J eds. Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes[J]. Maryland: American Society of Plant Physiologists, 1999a,381-384
    [166] Yan X.L, Lynch J.P, Beebe S. Genetic variation for rhizospheric H~+ and organic acid exudation in common bean. Abstracts for ASA, CSSA, SSSA 1998 Annual Meetings, Baltimore, USA.(Abstract), 1999b
    [167] Yan X.L, Lynch J.P.Genetic variation for root hair density and length in the common bean in response to low Phosphorus availability. In:Lynch J.P and DeikmanJ eds. Phosphorus in Plant Biology: Regulatory Roles in Molecular, Celllular, Organismic and Ecosystem Processes. Maryland: American Society of Plant Physiologists, 1999, 332-334
    [168] Yao, Q.L., Yang, K.C., Pan, G.T., Rong, T.Z. The Effects of Low Phosphorus Stress on Morphological and Physiological Characteristics of Maize (Zea mays L.) Landraces[J]. Agricultural Sciences in China. 2007,6(5): 559-566
    [169] Yuan M, Tie B.Q, Tang M.Z, Isao A. Accumulation and uptake of manganese in a hyperaccumulator, Phytolacca Americana[J]. Minerals Engineering, 2006, 6:1-3
    [170] Zu YQ, Li Y, Chen JJ,et al, Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan,China ,Environment International,2005,31:755-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700