用户名: 密码: 验证码:
水解酸化—两级厌氧工艺处理甲醇废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着厌氧工艺的处理效果不断提高、运行稳定性增加、抗冲击负荷能力增强、控制方式更趋于自动化,其适用范围也不断扩大,尤其是在高浓度有机废水处理领域的优势越来越明显。但与此同时,现有厌氧工艺存在的一些弊端也逐渐显露出来,如在处理水质变化剧烈的高浓度有机废水时,单相厌氧反应器易出现“酸化”现象,进而降低反应器的处理效能,甚至导致系统出现运行异常。本课题以自主研发的外循环厌氧反应器为处理单体;以两相厌氧原理和SMPA理论为基础,研发水解酸化-两级厌氧工艺,对其处理效能和运行稳定性进行深入研究;对影响工艺运行的生态因子进行探讨,并通过控制主要生态因子来实现反应器运行的优化;以实验室研究结果为指导,建立处理高浓度甲醇废水的中试工程,在实践中不断优化设计和运行参数,为该类废水的处理提供良好的技术支持。
     实验室研究阶段,采用在水解酸化反应器中接种厌氧颗粒污泥和控制启动容积负荷、负荷提高幅度、pH值等生态因子,对反应器乙醇型发酵的形成情况进行考察,结果表明反应器在34d内完成快速启动,并形成稳定的乙醇型发酵。乙醇+乙酸质量浓度之和占液相末端产物总量的75.9%以上。
     在两级厌氧反应器中接种厌氧颗粒污泥,并对其处理效能进行研究。试验结果表明,1#反应器在VLR=46.78kgCOD/m3·d、HRT=5.62h条件下,COD去除率达到93.2%;2#反应器COD去除率达到85.2%,两级厌氧反应器总去除率高达98.9%。同时,两级厌氧反应器表现出了良好的VFA去除能力,出水VFA保持在10mg/L以下。
     试验对水解酸化反应器内所接中的厌氧颗粒污泥的物理特性及微生物群落组成的变化情况进行研究。同时,对酸化颗粒污泥的形成途径进行初步阐述。试验结果证明通过控制启动容积负荷及其提高方式和较低的pH值条件可实现由厌氧颗粒污泥向酸化颗粒污泥的转型。酸化颗粒污泥表观呈土黄色、淡黄色、乳白色和青灰色,颗粒污泥的粒径大小适中,沉降性能良好,有利于水解酸化反应器内保持足够的微生物量。
     对工艺中各反应器颗粒污泥上的微生物相进行观察发现,水解酸化反应器酸化颗粒污泥中以短杆菌和芽孢菌为主;1#反应器颗粒污泥中以巴氏甲烷八叠球菌为优势菌属;2#反应器颗粒污泥中以索氏甲烷丝菌为优势菌,其他种属的产甲烷菌也有出现,但数量较少。
     对影响工艺稳定运行的主要生态因子如温度、水力停留时间、pH值、容积负荷等进行研究,确定工艺高效稳定运行的最佳参数范围。同时初步建立水解酸化-两级厌氧工艺中各反应器的动力学模型,并分别推导出其动力学参数。
     以实验室研究结果为指导,建立水解酸化-两级厌氧工艺处理高浓度甲醇废水的中试工程,全面考察工艺的启动情况和处理效能。结果表明,以颗粒污泥作为两级厌氧反应器的接种污泥,在50d内完成快速启动。水解酸化反应器的发酵类型为混合型发酵,液相末端产物的顺序为:乙酸>丙酸>丁酸>戊酸;出水VFA最高值为14.6mmol/L,较低的水解出水VFA浓度与甲醇废水的水质特点和厌氧分级处理有关。
     两级厌氧反应器的有机物去除能力随容积负荷的提高而增加,启动结束时,ECA反应器COD去除率可稳定在85%左右;ECB反应器COD去除率可稳定在80%左右,两级厌氧反应器总的COD去除率可达到95.3~98.1%。当水解酸化-两级厌氧工艺的进水COD在7000~11000mg/L时,出水COD浓度可降低到300mg/L以下。
     水质骤然升高所导致的冲击负荷并没有对水解酸化-两级厌氧工艺的稳定运行造成大的影响,系统出水COD始终低于450mg/L,出水水质较为稳定,工艺表现出了良好的抗冲击负荷的能力。
With the development of treatment effect, running stability, ability of resisting shock loading and automatic control mode, the application scope of anaerobic process expands continuously and shows obviously advantage in high-strength industrial wastewater treatment. However, there are some defects of single phase anaerobic reactor when treating high-strength organic wastewater with rapid changes of water quality, such as“acidification”risk. In this study, Hydrolytic Acidification & Two-Stage Anaerobic process (HATS) was developed which based on Two-phase anaerobic and SMPA theory and used External Circulation anaerobic reactor as treating unit.
     Early work was finished in laboratory with purpose of ehancing the process treating efficiency, running stability such as the optimizing the ecological factors. Based on these results, the pilot-test project of high-strength methanol wastewater was established. The design and operation parameter was optimized steadily which provided technological support to methanol wastewater treatment.
     In laboratory studies, the ethanol-type fermentation formation of hydrolytic acidification reactor was studied with seeded with anaerobic granular sludge, controlling volume loading rate, loading rate raising range, pH, etc. Test showed that reactor was quick start-up in 34d and formed the ethanol-type fermentation with controlling volume loading rate, loading rate raising type, pH, etc. The mass concentration of ethanol + acetic acid was 75.9 percent of liquid terminal products.
     The treatment efficiency of Two-Stage ananerobic reactor was studied with seeded with anaerobic granular sludge. Test showed that 1# reactor COD removal rate reached to 93.2% under VLR=46.78kgCOD/m3·d, HRT=5.62h. 2# reactor COD removal rate reached to 85.2%. The total COD removal rate reached to 98.9%. The Two-stage anaerobic system also presented well VFA removing ability with effluent VFA below 10mg/L.
     The physical properties and microbial community composition of anaerobic granule sludge seeded in hydrolytic acidification reactor was studied. And the forming way of acidizing granule sludge was also primarily explained in this paper. In hydrolytic acidification reactor, the anaerobic granular sludge transformed to acidizing granule sludge with controlling proper volume loading rate, loading rate raising type, low pH. The color of granular sludge turned from black to yellowish brown, faint yellow, cream white or caesious with preferable particle size and well settling performance which was helpful to hydrolytic acidification reactor retaining enough microbial biomass.
     The dominant microflora of hydrolytic acidification reactor was Brevibacterium and Spore bacteria. The dominant microflora of 1# reactor was Methanosarcina barkeri. Methanothrix soehngenii was the dominant microflora of 2# reactor. Other Methanogens also appeared, but less.
     The ecological factors which had effects on HATS treating efficiency was studied in this paper, such as temperature, pH values, VLR, HRT, etc. And the Optimal parameter set was determined. The kinetic model of each reactor in HATS was established and the kinetic parameter was deduced.
     Based on experitmental results, the pilot-test project of high-strength methanol wastewater was established and the start- up and treatment efficiency of HATS was studied. Test showed that toke granule sludge as the inoculation sludge of Two-Stage reactor, HATS accomplished the quick start-up within 50 days. The fermentation type of hydrolytic acidification reactor was mixed-fermentation. The sequence of liquid terminal products was acetic acid > propanoic acid > butanoic acid > pentoic acid. Maximum effluent VFA of hydrolytic acidification reactor was 14.6mmol/L. The low VFA concentration was related to the water quality characteristics of methanol wastewater and anaerobic stage treatment.
     COD removal ability of Two-stage anaerobic system increased with the enhancement of VLR. At the end of start-up period, COD removal rate of ECA reactor was about 85% and that of ECB reactor was about 80%. The total COD removal rate of Two-stage anaerobic system could arrive to 95.3~98.1%. When the influent COD of HATS was between 7000~11000mg/L, effluent COD was lower than 300mg/L.
     Shock loading caused by strong fluctuation of water quality did not influence the stable running of HATS. Effluent COD was always below 450mg/L, and effluent water quality was stable. The HATS presented well ability of resisting shock loading.
引文
1 R.E.斯皮思.工业废水的厌氧生物技术.中国建筑北京工业出版社,2001:26~27
    2马溪平.厌氧微生物学于污水处理.北京:化学工业出版社,2005:4~5
    3 McCarty P. L. Anaerobic Digestion. Elsevier Biomedical Press, B. V. 1982:3-22
    4 Bryant M. P. J. Animal Science. 1979,1(48): 193-201
    5 Zeikus J. G. Anaerobic Digestion. Applied Science Publisher Ltd. 1980:61-87
    6吕炳南,陈志强.污水生物处理新技术.哈尔滨工业大学出版社,2005:129~143
    7贺延龄.废水厌氧生物处理.化学工业出版社,1998:56~71
    8单丽伟,冯贵颖,范三红.产甲烷菌的研究进展.微生物学.2003,23(6):422~461
    9马放,任南琪.污染控制微生物学实验.哈尔滨工业大学出版社,2005.214~227
    10 Garcia J. L., Patel K. C, Olivier B. Taxonomic, Phylogenetic and Ecological Diversity of Methanogenic.Arch. Anaerobe. 2005,3(6):205~226
    11 Lange M., Ahring B. K. A Comprehensive Study into the Molecular Methodology and Molecular Biology of Methanogenic. Archaea. FEMS Microbiol Rev. 2006,5(12):553~571
    12 Hungate R. E. A Roll Tube Method for Cultivation of Strict Anaerobes Norris J R. Methods in Microbiolgy. 2007,3(14):27~46
    13 Deppenmeier U., Johann A. The genome of Methanosarcinamazei: Evidence for Lateral Gene Transfer between Bacteria and Arcbaea. J. Mol Mierobiol Biotechnol. 2004,4(4):453~461
    14 Galagal J., Nusbaum C. The genome of M. Acetivorans Reveals Extensive Metabolic and Physiological Diversity. Genome Res. 2002,12(4):532~542
    15 Slesarev A. I, Meshevaya K. V. The Complete Genome of Hyperthermophile Methanopyrus Kantleri AV19 and Monophyly of Arcbaeal Methanogens. Proc Nail Acad. Sci. USA. 2007,99(7):4644~4649
    16 Mahlert F., Bauer C. The Nickel Enzyme Methyl-coenzyme M.reductase from Methanogenic Archaea: In Vitro Induction of The Nickel-based MCR-ox EPR Signals from MCR~red2. J. Biol Inorg Chem. 2002,7(4):500-513
    17 Deppenmeier U. The Unique Biochemistry of Methanogenesis. Prog Nucleic Acid Res. Mol Biol. 2004,7(9):223~283
    18 Graham D. E., Wbite R. H. Elucidation of Methanogenic Coenzyme Biosyntheses: from Spectroscopy to Genomics. Nat. Prod. Rep. 2004,19(2): 133-47
    19董春娟,李亚新,吕炳南.微量金属元素对甲烷菌的激活作用.太原理工大学学报.2002,33(5):495~497
    20 Takashima M., Speece R. E. Mineral Nutrient Requirements for High-rate Methane Fementation of Acetate at Low SRT. Res. J. WPCF. 2000,7(61):1646~1650
    21李亚新,董春娟,徐明德.厌氧消化过程中Fe,Co,Ni对NH4+-N的拮抗作用.城市环境与城市生态.2000(4):11~12
    22 Streicher C. Improvement of the Anaerobic Digestion of Diluted Whey in a Fluidized Bed by Nutrient Addition. Envir. Tech. 1999,9(12):333~341
    23 Murray W. D., Vanden B. L. Effect of Nickel, Nobalt and Molrbdenum on Performance of Methanogenic Fixed-film Reactors. Appl. Envir. Microbiol. 2003,4(2):502~505
    24 Karhadkar P., Audic J. M. Sulfide and Sulfate Inhibition of Methanogenesis. Water Res., 2007,21(3): 1061-1066
    25 Parkin G. F., Speece R. E., Yang C. H., et al. Response of Methane Fermentation Systems to Industrial Toxicants. J. WPCF. 1999,55:44-53
    26 Isa Z., Grusenmeyer S., Verstraete W. Sulfate Reduction Relative to Methane Production in High-ate Anaerobic Digesiton; Microbio-logical Aspects. Appl. Environ. Microbiol. 2004,5(l):572~579
    27施华均,钱泽澎,闵航.硫酸盐对厌氧消化产甲烷的影响.浙江大学学报.1995,21(1):27~32
    28公维佳,李文哲,刘建禹.厌氧消化中的产甲烷菌研究进展.东北农业大学学报.2006,37(6):838~841
    29 Ahn Y. T., Kang S. T. Simultaneous High-Strength Organic and Nitrogen Removal with Combined Anaerobic Upflow Bed Filter and AerobicMembrane Bioreactor. Desalination. 2007,202(3):114~121
    30 Wang Z., Banks C. J. Treatment of a High-strength Sulphate-rich Alkaline Leachate using an anaerobic filter. Waste Management. 2007,27(3):359~366
    31 Francisco O., Juan M. G, Belen A., et al. Anaerobic Filter Reactor Performance for the Treatment of Complex Dairy Wastewater at Industrial Scale. Wat. Research. 2003,17(37):4099~4108
    32 Stronach. Anaerobic digestion process. Industrial Wastewater Treatment. 1999,6(14):23~35
    33 Iza. Anaerobic Fluidized Bed Reactors (AFBR) Performance and Hydraulic Behavior. Anaerobic Digestion. 1999,2(4): 155-163
    34 Saravanan V. and Sreekrishnan T. R. Modeling Anaerobic Biofilm Reactors—A Review. Journal of Environmental Management. 2006,81(l):l~18
    35 Martinez S., Cuervo-Lopez F. M., Gomez J. Toluene Mineralization by Denitrification in an Up Flow Anaerobic Sludge Blanket (UASB) Reactor. Bioresource Technology. 2007,98(9): 1717-1723
    36 Akila G, Chandra T. S. Performance of an UASB Reactor Treating Synthetic Wastewater at Low-temperature Using Cold-adapted Seed Slurry. Process Biochemistry. 2007,2(3):466~471
    37 Tarek A. E., Ralf O. Anaerobic Biodegradability and Treatment of Grey Water in Up-flow Anaerobic Sludge Blanket (UASB) Reactor. Water Research. 2007,41(6):1379~1387
    38 Alper T. A., Orhan I. Evaluation of Performance, Acetoclastic Methanogenic Activity and Archaeal Composition of Full-scale UASB Reactors Treating Alcohol Distillery Wastewaters. Process Biochemistry. 2006,41(l):28~35
    39 Chavez P. C, Castillo R. L. Poultry Slaughter Wastewater Treatment with an Up-flow Anaerobic Sludge Blanket Reactor. Bioresource Technology. 2005,96(15):1730~1736
    40 Nadais H. I., Capela L. A., Duarte A. Optimum Cycle Time for Intermittent UASB Reactors Treating Dairy Wastewater. Wat. Res. 2005,39(8):1511~1518
    41 Kato M. T., Field J. A., Kerebezerm R., et al. Treatment Low Strength Soluble Wastewater in UASB Reactors. Journal of Fermentation andBioengineering. 1999,77(6):679~685
    42 Haruhiko S., Masanobu T. Feasibility Study of a Pilot-scale Sewage Treatment System Combining an Up-flow Anaerobic Sludge Blanket (UASB) and an Aerated Fixed Bed (AFB) Reactor at Ambient Temperature. Bioresource Technology. 2007,98(1): 177-182
    43韩洪军.UASB+AF工艺在龙涤集团废水处理中的应用.环境科学与技术.1999,84(4):34~36
    44 Han Hong-jun, Cheng Xiu-rong, Xu Chun-yan. A Test Study on Treatment of High Strength Polyester Wastewater with Anaerobic Reactor. Journal of Harbin Institute of Technology. 2007,9(3):288~291
    45张旭.厌氧消化体系的多相化学平衡.哈尔滨建筑大学博士学位论文.1996:10~12
    46张希衡.废水厌氧生物处理工程.中国环境科学出版社,1996:383~397
    47 Lettinga G. Fundamentals of Anaerobic Digestion 21st Int. Course on Anaerobic and Low Cost of Treatment of Wastes and Wastewaters. The Netherlands: IAC and WAU. 1998:123-134
    48 Rourke J. T. Kinetics of Anaerobic Treatment at Reduced Temperatures. Dissertation of Stanford University. Dept. of Civil Engineering. 1989:5-11
    49 Gradv C.P.L.,Lim J.C.H.废水生物处理理论与应用.中国建筑工业出版社,1989:12~14
    50 Stronach S.M.,RlJdd T.,Laester J.N.工业废水的厌氧消化过程.中国环境科学出版社,1989:16~19
    51李亚东,杨建刚.微量金属元素对产甲烷菌激活作用的动力学研究.中国沼气.2000,18(2):8~11
    52杨春平,钟袁元,谢更新.废水生物处理系统对脉冲负荷的动态相应分析.环境科学学报.1999,19(5):23~27
    53任南琪,刘艳玲,刘敏等.两相厌氧系统处理磺胺废水的试验研究.中国给水排水.2005,17(2):8~11
    54 Han-qing Yu, Guo-wei Gu. Biomethanation of Brewery Wastewater Using an Anaerobic Up-flow Blanket Filter. Journal of Cleaner Production. 2005,4(34):219~223
    55 Ahn Y. T., Kang S. T., Chae S. R. Simultaneous High-strength Organic and Nitrogen Removal with Combined Anaerobic Up-flow Bed Filter andAerobic Membrane Bioreactor. Desalination. 2007,202(13): 114-121
    56 Pohland F. G, Ghosh S. Developments in Anaerobic Stabilization of Organic Wastes: The Two-phase Concept. Environ. Technol. 2007,l(2):255~266
    57张仁江,张振家,谷成等.糖蜜酒精废水两相UASB处理有机物去除特征.城市环境与城市生态.2000,3(4):23~25
    58李建政,任南琪等.中药废水高效生物处理技术的研究.中国给水排水.2000,16(6):5~8
    59周律.厌氧生物反应器的启动及其影响因素.工业水处理.1996,16(3):1~3
    60 Jules B., Lier V. Anaerobic Treatment of Partly Acidified Wastewater in EGSB System at 8°C. Proc. 8th International Conf. On Anaerobic Digestion. 1997,5(2):86~93
    61严月根.啤酒废水常温一相/两相厌氧颗粒污泥床处理的对照研究.中国环境科学.1990,2(8):304~308
    62王健,沈耀良.废水厌氧反应器工艺的未来发展方向.污染防治技术.2002,15(2):13~15
    63 Azbar N., Ursillo P. Effect of Process Configuration and Substrate Complexity on the Performance of Anaerobic Processes. Wat. Res. 2006,35(3):817~829
    64 Jeyaseelan S., Matsu o T. Effects of Phase Separation in Anaerobic Digestion on Different Substrates. Wat. Sci. Tech. 2007,31(9):153~162
    65叶芬霞,李颖.有机废物两相厌氧消化的基质特异性及其应用.中国沼气.2002 20(3);812~817
    66 Ghosh S., Poland F. G. Kinetics of Substrate Assimilation and Product Formation in Anaerobic Digestion. Water Poll. Control Fed. 1994,(46):748~759
    67 Ghosh S., Conrad J. R., Ktass D. L. Anaerobic Acidogenesis of Wastewater Sludge. Water Poll. Control Fed. 1995,4(47):30~45
    68 McCarty P. L. Anaerobic Waste Treatment Fundamentals: Environmental Requirements and Control. Public Works. 2007,(16): 113-121
    69洗萍,潘正现,钟莉莹.两相UASB反应器处理木薯淀粉废水的启动运行特性研究.上海环境科学.2005,24(4):156~159
    70樊国锋,赵颖,王萍.两相UASB反应器相分离.华侨大学学报(自然科学版).2001,22(4):432~436
    71 Guerrero L., Omil F, Mendez R., et al. Anaerobic Hydrolysis and Acidogenesis of Wastewaters from Food Industries with High Content of Organic Solids and Protein. Water Research. 1999,33(15):3281~3290
    72管运涛,蒋展鹏,祝万鹏等.两相厌氧膜生物系统处理有机废水的研究.环境科学.1998,19(6):56~59
    73 Ghosh S., Klass D. L. Two-Phase Anaerobic Digestion. Process Biochemistry. 1998,7(4):15~24
    74 Arsov R., Ribarova I, Nikolov N., et al. Two-phase Anaerobic Technology for Domestic Wastewater Treatment at Ambient Temperature. Water Science Technology. 1999,39(8): 115-122
    75 Leighton I. R, Forster C. F. The Adsorption of Heavy Metals in Anacidogenic Thermophilic Anaerobic Reactor. Water Research. 1997,31(12):2969~2972
    76 Leighton I. R., Forster C. F. The effect of Heavy Metals on a Thermophilic Methanogenic Up-flow Sludge Blanket Reactor. Bioresource Technology. 1998,63(2):131~137
    77 Beccari M., Majone M., Torrisi L. Two-reactor System with Partial Phase Separation for Anaerobic Treatment of Olive Oil Mill Effluents. Wat. Sci. Tech. 2006,38(45):53~60
    78郭养浩,孟春,石贤爱等.高浓度有机废水二相厌氧消化过程特性研究.中国环境科学.1997,17(5):469~475
    79杨小奕,蒋展鹏.单相厌氧与两相厌氧处理丁法睛纶废水的研究.工业用水与废水.2002,33(2):21~24
    80买文宁,周荣敏.两相厌氧系统处理乙酞螺旋霉素废水.郑州大学学报.2002,23(3):25~28
    81 Shin H. S., Han S. K., Song Y. C, et al. Performance of UASB Reactor Treating Leachate from Acidogenic Fermenter in the Two-Phase Anaerobic Digestion of Food Waste. Wat. Res. 2001,2(35):3441~3447
    82 Yeoh B. G Two-Phase Anaerobic Treatment of Cane-Molasses Alcohol Stillage. Wat. Sci. Tech. 2004,2(36):441~448
    83 Ince O. Performance of a Two-Phase Anaerobic Digestion System When Treating Dairy Wastewater. Wat. Res. 1998,2(32):2707~2713
    84于宏兵,吴睿,段宁等.固定化酶酸化/UASB两相厌氧有机酸代谢特征.环境科学.2006,27(3):483~487
    85黄继国,黄国鑫.中温UBF与UASB两相厌氧系统处理垃圾渗滤液的实验研究.吉林大学学报.2007,37(1):144~147
    86孙剑辉,倪利晓.UBF与UASB两相厌氧系统处理zn5-ASA医药废水的研究.环境科学研究.2001,14(2):30~32
    87张学洪,王敦球.两相厌氧/好氧工艺处理屠宰废水的工程应用.重庆大学学报.2003,26(8):123~126
    88李宇庆,陈玲,赵建夫.两相厌氧-SBR工艺在浆粕废水处理工程中的应用.环境工程.2004,22(6):17~19
    89王绍斌,刘云奎.亚麻生产废水两相厌氧处理的研究.工业用水与废水.2004,35(1):39~41
    90 Borja R., Martin A., Sanchez E., et al. Kinetic Modeling of the Hydrolysis, Acidogenic and Methanogenic Steps in the Anaerobic Digestion of Two-phase Olive Pomace(TPOP). Process Biochemistry. 2005,40(6):1841~1847
    91 Blumensaat F., Keller J. Modeling of Two-stage Anaerobic Digestion Using the IWAAnaerobic Digestion Model No.l. Wat. Res. 2005,39(1): 171-183
    92 Solera R., Romero L. I, Sales D. Determination of the Microbial Population in Thermophilic Anaerobic Reactor: Comparative Analysis by Different Counting Methods. Anaerobe. 2004,7(2):79~86
    93 Peter A. W., Hans J. B. Modern Scientific Methods and Their Potential in Wastewater Science and Technology. Water Research. 2006,(36):370~393
    94 Ince B. K., Ince O. Changes to Bacterial Community Make-up in a Two-phase Anaerobic Digestion System. Journal of Chemical Technology and Biotechnology. 2004,12(75):500~508
    95胡梅芬,李小明,曾光明等.基于阶段式多相厌氧消化系统的厌氧反应器的新发展.中国沼气.2004,22(4):56~61
    96 Lettinga G. Advanced Anaerobic Wastewater Treatment in The Near Future. Wat. Sci. Technol. 1997,35(10):5~12
    97 Van L. J. B, Vander Z. F. P., Tan N. C. G, et al. Advances in High-rate Anaerobic Treatment: staging of reactor systems. Wat. Sci. Technol. 2001,44(8):15-25
    98王建农,韩英健,钱易.折流式厌氧反应器ABR的研究进展.应用与环境生物学报.2000,6(5):490~498
    99 Skiadas I. V, Gavala H. N., Schmidt J. E. Anaerobic Granular Sludge andBiofilm Reactors. Advances in Bio-chemical Engineering/ Biotechnology.2003,2(82):35~67
    100 Cohen, A., Breure, A. M., Van A. J. G. Influence of Phase Separation on theAnaerobic Digestion of Glucose: Maximum COD-turnover Rate Duringcontinuous operation. Wat. Res. 2005,8(14): 1439-1448 l01 Lettinga G., Hulshoff P. L. W. Up-flow Sludge Blanket Processes.Proceedings of the International Symposium Anaerobic Digestion. Boston,Massachusetts. 1993:139-158
    102 Tang N. H., Speece R. E. Treatment of Low Strength Domestic Wastewater by UASB Process. Purdue Ind. Waste conf. 1995,7(45)136-147
    103 Blonskaja V., Menert A., Vilu R. Use of Two-stage Anaerobic Treatment for Distillery Wastes. Adv. Environ. Res. 2003,7(3):671~678
    104Bachmann A., Beard V. L., MeCarty P. L. Performance Characteristies of the Anaerobic Baffled Reactor. Wat. Res. 1985,19(l):99~106
    105 Nachaiyasit S., Dvaid C. S. The Effect of Shock Loads on the Performance of an Anaerobic Baffled Reactor (ABR):1. Step Changes in Feed Concentration at Constant Retention-time. Wat. Res. 1997,31(11):2737~2746
    106 Nachaiyasit S., Dvaid C. S. The Effect of Shock Loads on the Performance of an Anaerobic Baffled Reactor (ABR):2. Step and Transient Hydraulic Shocks at Constant Feed Strength. Wat. Res. 1997,31(11):2747~2754
    107 Van L. J. B, Boersma F, Debets M. High Rate Themophilic Anaerobic Wastewater Treatment in Compartmentalized Upflow Reactors. IAWQ, Anaerobic Digestion. RSALitho (Pty) Ltd, Goodwood. 1994:117-129
    108肖利平,唐受印,戴友芝.新型反应器-USSB处理有机废水的试验研究.环境科学与技术.2003,26(3):8~10
    109张珂.两系统处理高浓度焦化废水.环境污染治理技术与设备.2004,5(6):68~70
    110刘锋,冯俊强.2500m~3多级内循(MIC)厌氧反应器在柠檬酸废水处理工程中的应用.江苏环境科技.2006,19(6):27~29
    111郭静,林贯洲.低负荷条件下两级厌氧法处理马铃薯加工废水研究.中国给水排水.1994,20(5):8~11
    112叶笑风,迟莉娜.两级常温厌氧—好氧—固定化微生物组合工艺处理酿酒废水.环境污染与防治.2006,28(11):827~830
    113王艳茹,杨景亮,罗晓等.两级厌氧工艺处理茶多酚废水的工业化研究.河北科技大学学报.2001,22(2):74~77
    114陈振民.三柱式厌氧反应器处理城市污水及水动力特性研究.河海大学博士论文.2005:87~93
    115李善评,王兆祥.二级厌氧生物滤池处理大豆加工废水.工业水处理.2006,26(7):68~71
    116王敦球.二级厌氧/SBR工艺处理酱油生产废水.重庆大学学报.2002,25(9):69~71
    117胡松涛.甲醇工业污水深度处理及回用的研究.黑龙江大学硕士论文.2006:15~19
    118李伟光.低浓度甲醇废水处理与回用技术研究.哈尔滨建筑大学博士论文.2000:21~23
    119 Letinga G, Geest V. D., Hobma S., et al. Anerobic Treatment of MethanolicWastes. Wat. Res. 1995,13(8):725~737
    120 Lettinga G, Zeeuw, W. J. D., Ouberg E. Anaerobic Treatment of WastewaterContaining Methanol and Higher Alcohols. Wat. Res. 1998,15(2): 171-173
    121 Satoshi F., Naomichi N. Methanogenic Fermentation and Growth of GranularMethanogenic Sludge on a Methanol-propionate Mixture. Journal ofFermentation and Bioengineering. 1997,84(4):384~385
    122孟卓,贺延龄,杨树成.UASB反应器处理甲醇废水的研究.中国给水排水.2006,22(7):42~48
    123 Lourdinha F., Pavel J., Jim A. F., et al. Effect of Cobalt on the Anaerobic Degradation of Methanol. J Ferment Bioeng. 2007,75(5):368~374
    124赵洪波.上流式厌氧污泥床工艺处理甲醇废水.化工环保.1999,9(1): 6~13
    125赵洪波.上流式厌氧污泥床反应器装置处理甲醇废水设计之我见.化工给排水设计.1998,4:15~17
    126王诚信,臧炳琪,曹翰虎.厌氧组合反应器处理甲醇回收废水.金山油化纤.1994,2:31~32
    127周雪飞,任南琪.高浓度甲醇废水厌氧处理中颗粒污泥和产甲烷细菌的耐酸性.环境科学学报.2004,24(7):633~636
    128周雪飞,任南琪,陈漫漫等.含甲醇废水的生物处理实例.中国给水排水.2001,17(4):50~52
    129邵享文.厌氧序批式反应器处理高浓度甲醇废水的研究.西安建筑科技大学硕士论文.2004:56~59
    130毕玉燕.厌氧—好氧活性污泥法处理高浓度甲醇废水.安全与环境工程.2004,11(3):55~57
    131马洁.用生化法处理含甲醇废水的研究和应用.石油化工应用.2006,25 (1):32~33
    132邱艳华.常温条件下UASB+SBR工艺处理甲胺、甲醇废水的试验研究.长安大学硕士论文.2005:82~87
    133 Jules B. Anaerobic Treatment of Partly Acidified Wastewater in a Two-stage Expanded Granular Sludge Bed (EGSB) System at 8°C. Wat. Sci. Tech. 1997,36(6):317-324
    134王妍春,左剑恶,肖晶华.EGSB反应器内厌氧颗粒污泥性质的研究.中国沼气.2002,20(4):37~40
    135何辰庆.微生物生理学.辽宁大学出版社.1994:54~67
    136康宇红.产酸相反应器的快速启动与运行控制.哈尔滨工业大学硕士论文.2003:30~31
    137任南琪,王宝贞,马放.厌氧活性污泥工艺生物发酵产氢能力研究.中国环境科学.1995,15(6):401~406
    138李建政.有机废水发酵法生物制氢技术研究.哈尔滨建筑大学博士论文.1999.87~96
    139 Kisaalita W. S., Pinder K. L. Acidogenic Fermentation of Lactose. Biotech &Bioeng. 1997,30(l):88~95
    140 Cohen A., Gernert J. M., Zoeremeyer R. J. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewater. Proc. Biochem. 1984,19(6):228~232
    141 Zoetemeyer R. J., Heuvel J. C, Cohen A. PH Influence on Acidogenic Dissimilation of Glucose in an Anaerobic Digestor. Wat. Res. 1982,16(3):303~311
    142 H.W.多伊尔.细菌的新陈代谢.科学出版社,1983:97~98
    143 Doanyos M., Kosova B., Zadbranska J., et al. Production and Utilization of Volatile Fatty Acids in Various Types of Anaeorbic Reactors. Wat. Sci. Tech. 1995,17(2):191~205
    144 Breure A. M., Andel J. G Hydrolysis and Acidogenic Fermentation of aProtein, Gelatin in an Anaeorbic Continuous Culture. Appl. Micorbiol.Biotechnol. 1994,2(20):40~45
    145 Dinopoulou G, Rudd T., Lester J. Anaeorbic Acidogenesis of ComplexWastewater: The Influence of Operaitonal Parameters on ReactorPerformance.Biotech. & Bioeng. 1998,(31):958~968
    146 Gijzen H. J., Zwart K. B., Verhagen F. J. M., et al. High-rate Two-phaseProcess for the Anaerobic Degradation of Cellulose, Employing RumenMicroorganisms for an Efficient Acidogenesis. Biotech. & Bioeng.1998,31(5):418~425
    147刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士论文.2001:58~98
    148李建政.连续流两相厌氧生物处理系统的生理生态学研究.哈尔滨建筑大学硕士论文.1988:53~55
    149李建政,任南琪,秦智等.厌氧发酵产氢系统的启动与乙醇型发酵优势菌群的建立.高技术通讯.2004,9(1):90~94
    150秦智,任南琪,李建政等.产酸相反应器的过酸状态及其控制.哈尔滨工业大学学报.2003,35(9):105~108
    151赵丹,任南琪,王爱杰等.产酸相稳定发酵类型微生物生态学研究.环境科学技术.2003,26(6):37~66
    152李东伟.二相厌氧-好氧处理中药生产废水技术研究.重庆大学博士学位论文.2004:24~25
    153李东伟,王克浩,李斗等.两相厌氧消化的研究现状及展望.水处理技术.2007,33(12):1~5
    154 Campbell P. G. C. Interactions between Trace Metals and Aquatic Organisms: A Critique of the Free-ion Activity Model. In: Turner, A., D. R. (Eds.), Metal Speciation and Bioavailability in Aquatic Systems. Wiley. Chichester. 2005,(12):45~102
    155 George B., Riziand L., Frankin C. Anaerobic Treatment of Chemical and Brewery Wastewater with a New Type of Anaerobic Reactor. The Bio-bed EGSB Reactor. Wat. Sci. Tech. 1996,34(5):375~381
    156方战强.外循环UASB的结构与设计方法.工业水处理.2003,23(4):72~75
    157方骁.厌氧颗粒污泥性质与颗粒化研究新进展.江苏环境科技.2005,18(4):44~46
    158 Jeison D., Chamy R. Comparison of the Behaviour of Expended Granular Sludge Bed and Up-flow Anaerobic Sludge Blanket Reactor Indilute and Concentrated Wastewater Treatment. Wat. Sci. Tech. 2005,40(8):91~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700