用户名: 密码: 验证码:
cdma2000 1xEV-DO系统中的服务质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
cdma2000 1xEV-DO是已经实现大规模商用的后三代移动通信系统,作为互联网的无线延伸,它的核心网络呈现出与IP技术紧密结合并逐步向全IP网络演进的发展趋势,它具有广域大范围覆盖的优势,不仅能够提供高速数据传输服务,而且,网络中运营的多媒体服务的种类也在逐渐增多,随之而来的服务质量问题自然成为人们研究的热点。围绕在cdma2000 1xEV-DO系统中提供服务质量保证这个中心议题,论文分别就cdma2000系统内的QoS模型与实现架构、1xEV-DO系统前向的分组发送调度、分组的缓存管理、呼叫的接纳控制以及业务的端到端性能分析五个方面进行了深入分析和讨论。
     针对数据业务上下行流量的不对称和对实时性要求不高的特征,1xEV-DO系统对前向进行了全新的设计,采用了共享业务信道的时分复用方式,在每个时隙以最大的发射功率向选定的单个用户传输数据,并通过“机会主义”调度算法实现了系统吞吐量的提高。然而,信道的共享带来了与传统CDMA网络截然不同的前向调度、用户分组的缓存和接入控制等研究课题,论文针对这些问题展开了研究。
     依据国际移动通信标准化组织定义的四个业务类别:会话级、流级、交互级和背景级,为实现多种类型分组的统一调度,先后提出了支持多类别业务统一调度的算法(MCSS)和分层的混合调度策略(LHS)。MCSS采用模糊决策中的综合评判处理方法,对不同业务类别就多个QoS指标的要求进行量化,将其转换为加权向量,再就各分组数据流在调度过程中满足各个QoS指标要求的程度分别进行量化,然后,依据数据流所属的业务类别,对数据流的传输满足各个QoS指标要求的量化结果进行加权求和并排序,最后根据排序结果做出调度决策。
     LHS先将传输时隙按预定比例分配给各个数据类,而每个类的业务分组都有相近的传输需求,以此方法实现了为各类业务分配约定比例的传输资源,同时也简化了各类业务内部的分组发送调度;在LHS的第二层,每个类依据所承载的业务的传输特性分别选用合适的调度算法,完成时隙的按用户分配。
     对于用户分组的缓存管理问题,讨论了系统前向缓存设置的方式和大小,以及缓存分组的丢弃,重点说明了为缓解系统前向的拥塞,而要实施的分组丢弃的方式以及无线网络中分组丢弃的特殊性。然后,利用丢弃不同用户的分组对缓解无线网络拥塞的作用不相等的这个特性,提出了一种无线共享信道下的区分拥塞程度的自适应分组丢弃策略(ACWPDS)。ACWPDS将无线网络的拥塞程度分为:轻微、中等、严重三个阶段,相应地采取不同的处理机制来决定用户分组的丢弃。
     1xEV-DO系统前向是数据容量受限的,系统拥塞与否及拥塞的程度对呼叫接入有着很大的影响,基于对这一特性的分析,提出了一种基于带宽分配的多业务接纳控制策略(TMSAC)。当系统发生严重拥塞时,TMSAC拒绝接入所有的呼叫;而在系统发生中等程度的拥塞时,如果新呼叫所隶属的业务类型的数据流在系统中的传输性能已经恶化,TMSAC就拒绝接入此类呼叫:而对于未发生拥塞和轻微程度的拥塞这两种情况,TMSAC根据系统当前的容量限制和预定的带宽分配比例来决定是否接入新的呼叫。
     最后,从评价网络中业务的性能的研究角度出发,提出了一种用于流媒体业务性能评价的端到端QoS分析方法。该方法按照协议栈实现过程中的自底向上的顺序,逐层地分析业务数据从物理层到应用层的、在传输性能上的累积恶化,能够方便地分析影响应用端业务性能的三个QoS指标:差错率、传输速率和时延,结合计算机仿真就能够半定量化地说明不同协议层在QoS保证方面存在的差异。
Cdma2000 1xEV-DO has been successfully put into commercial use in a large scale as a Beyond 3G technology, and its core network is evolving to all IP infrastructure gradually as a means of wireless access to the Internet. With the advantage of wide deployment, it not only provides high speed data transmission service, but also the number of the multimedia services run in its network is increasing. Consequently, the incidental challenges in Quality of Service (QoS) become the hotspots of research. This paper deeply analyzes and discusses the five issues in providing the QoS guarantees in the cdma2000 1xEV-DO system, which are the model and infrastructure of providing QoS, the packet scheduling, queue management, call admission control in the forward shared link and the end-to-end performance evaluation of a certain service in the system.
     Many data services are not sensitive to transmission delay, and their throughputs of the uplink and the downlink are unequal. So the traffic channel in the newly designed forward link of the cdma2000 1xEV-DO is time-multiplexed by all users in the system, and the traffic channel is transmitted to a targeted user with the maximum power of base station at any timeslot. Though it achieves great improvement of data throughput via opportunistic scheduling algorithms, being distinct from the traditional CDMA mobile networks, the shared using of traffic channel brings several problems, which include forward packet scheduling, queue management and call admissions control.
     This paper is addressed itself to the above issues, and proposes two schemes to simultaneously schedule data packets of the multi-class services. The two schemes are the Multi-Class Simultaneous Scheduling (MCSS) and the Layered Hybrid Scheduling (LHS), and they are all built on the base of the analysis of QoS requirements of the four service classes defined by the international mobile communications standard groups, which are the conversional, the streaming, the interactive and the background. MCSS firstly figures out the relative weight vectors for each of the four service classes via the integration evaluation of fuzzy decision mathematics, and it adopts different approaches to quantify the users' degrees of meeting their individual requirements on QoS attributes in the process of packet transmission. It subsequently gets the weighted sums of the quantified results for every user in the system, and finally makes scheduling decision according to the ranking of the weighted sums.
     In the LHS's first layer, it allots time slots in the prescribed ratios corresponding to the different traffic classes, because every traffic class has approximate transmission demand, LHS simplifies the packet scheduling belonging to the same traffic class. Then LHS chooses an appropriate scheduling algorithm for every class according to their individual QoS demands in its second layer, the selected algorithms are used to fulfill the allocations of timeslots among users belonging to the same traffic class.
     As of queue management, this paper analyzes the mode and size of queue in the forward link, along with packet discarding, then mainly explains the manner and the distinctions of packet discarding in order to mitigate the congestion in the forward link. Since discarding different users'packet achieves unequal gains of alleviating congestion, this paper proposes an Adaptive Congestion sensitive Wireless Packet Discarding Scheme (ACWPDS). ACWPDS divides the wireless congestion into three different grades, which are the slight, the middle and the severe, then adopts the corresponding mechanisms to decide how to discard users' packet.
     Data throughput is limited in the forward link of the 1xEV-DO system, and the degree of the congestion in its forward link exerts great influence on the call admission. Using the above property this paper proposes a Throughput allocation based Multi-class Services Admission Control scheme (TMSAC). TMSAC rejects all new arriving call when severe congestion occurs; when middle congestion happens, TMSAC rejects the new call if the data transmission of the corresponding service class deteriorates; if no congestion exits, or the congestion is slight, TMSAC decides the call admission based on the limit of the overall throughput and throughput allocation ratios.
     To evaluate the performance of a service in the networks, this paper lastly proposes an end-to-end QoS analytic method for the streaming media using a bottom-up approach, which is applicable to analyze the cumulative performance degradation along the service architecture from the physical layer to the application layer. By means of both mathematic analysis and computer simulations, three QoS attributes affecting the performance of the service are evaluated, which are the delay, throughput and loss rate, and the diversities in providing QoS among different protocol layers can be revealed.
引文
[1]罗兴国主编.唐晓梅等编著.CDMA2000高速分组数据传输技术[M].北京:国防工业出版社,2007:5.
    [2]3GPP2 CS0024 v4.0. cdma2000 high rate packet data air interface specifcation[S]. October 2002.
    [3]Q. Wu, E. Esteves. The cdma2000 high rate packet data system[R]. QUALCOMM, March 2002.
    [4]3GPP2 CS0024-A v2.0. cdma2000 high rate packet data air interface specifcation [S]. July 2005.
    [5]P. Bender, et al. CDMA/HDR:A bandwidth-efficient high-speed wireless data service for nomadic users[J]. IEEE Communication Magazine,2000,38(5):12-16.
    [6]N. Bhushan, et al. cdma2000 1xEV-DO revision A:a physical layer and MAC layer overview[J]. IEEE Communication Magazine, February 2006,75-86.
    [7]M. Yavuz, et al. VoIP over cdma2000 1xEV-DO revision A[J]. IEEE Communications Magazine,2006,44(2):88-95.
    [8]3GPP2 S.R0079-A v1.0. Support for end-to-end QoS stage 1 requirements[S]. June 2006.
    [9]RFC 3726. Requirements for Signaling Protocols[S]. April 2004.
    [10]3GPP2 P.S0001-B v2.0. cdma2000 Wireless IP Networks Standard[S]. September 2004.
    [11]3GPP2 X.S0011-004-D v1.0. cdma2000 Wireless IP Network Standard:Quality of Service and Header Reduction[S]. August 2003.
    [12]3GPP2 P.R0001 v1.0. Wireless IP architecture based on IETF protocols[S]. July 2000.
    [13]3GPP2 C.S0017-0 v5.0. Data Service Options for Spread Spectrum Systems[S]. February 2003.
    [14]M. C. chuah, K. Medeplli, S. Park. Qualtiy of Service in third-generation IP-based radio access networks[J]. Bell Labs Technical Journal,2002,7(2):67-89.
    [15]3GPP2 SR0035 v1.0. Quality of Service Stage 1 Requirements[J]. October 2001.
    [16]W. Y. Yeo, D. H. Cho. An Analytical model for reverse link rate control in cdma2000 1xEV-DO systems[J]. IEEE Communication Letters,2005,9(3):270-272.
    [17]X. Gelabert, J. Romero, O. Sallent. Congestion control strategies in multi-access networks[A]. In Proceedings of the 3rd International Symposium on Wireless Communication System[C]. Valencia, Spain.2006,580-584.
    [18]80-313921-1 Rev B. CDMA2000 1xEV-DO Release0[R]. Qualcomm cdma university, 2003.
    [19]J. Soldatos, E. Vayias, G. Kormentzas. On the building blocks of quality of service in heterogeneous IP networks[J]. IEEE Communication Surveys & Turorials,2005,7(1): 70-89.
    [20]Y. Tian, K. Xu, N. Ansari. TCP in wireless environments Problems and solutions[J]. IEEE Radio Communications,2005, (43)3:27-32.
    [21]J. Cao, D. Zhang. An overview of network-aware applications for mobile multimedia delivery[A]. In Proceedings of the 37th Hawaii International Conference on System Sciences[C]. Big Island, Hawaii, USA.2004,902-90b.
    [22]F. Y. Li. Quality of service traffic conditioning and resource management in UMTS[D]. Norway:Norwegian Unversity of Science and Technology.2003.
    [23]F. Y. Li, N. Stol. QoS Provisioning using traffic shaping and policing in 3rd-generation wireless networks [A]. In Proceedings of the IEEE Wireless Communications and Networking Confercence[C]. Orlando, Florida, USA.2002,139-143.
    [24]T. H. Lee. Correlated token bucket shapers for multiple traffic classes[A]. In Proceedings of the IEEE 60th Vehicular Technology Conference[C]. Los Angeles,USA. 2004,4672-4676.
    [25]80-W0470-2 Rev C. CDMA2000 1xEV-DO Rev A overview[R]. Qualcomm cdma university,2005.
    [26]F. D. Angelis, I. Habib, F. Davide. Multimedia content delivery using adaptive filtering in time-varying WCDMA networks[A]. In Proceedings of the IEEE 48th Global Communications Conference[C]. St. Louis, Montana, USA.2005,24(1):1322-1326.
    [27]R. M. Rao, C. Comaniciu, T. V. Lakshman, et al. Call admission control in wireless multimedia networks[J]. IEEE Signal Processing Magazine, September 2004,51-59.
    [28]Z. Liu, M. E. Zarki. SIR-based call admission control for DS-CDMA cellular systems[J]. IEEE Journal on Selected Areas in Communications,1994,12(4):638-644.
    [29]D. Kim. On upper bounds of SIR-based call admission threshold in power-controlled DS-CDMA mobile systems[J]. IEEE Communications Letters,2002,6(1):13-15.
    [30]M. H. Ahmed, H. Yanikomeroglu. SINR threshold lower bound for SIR-based call admission control in CDMA networks with imperfect power control[J]. IEEE Communication Letters,2005,9(4):331-333.
    [31]S. Redana, A. Capone. Received power based call admission control techniques for UMTS uplink[A]. In Proceedings of the IEEE 56th Vehicular Technology Conference[C]. Vancouver, BC, Canada.2002,2206-2210.
    [32]W. Li, D. P. Agrawal. A reverse call admission control scheme based on total received power for CDMA systems supporting integrated voice/data services[A]. In Proceedings of the IEEE 47th Global Communications Conference[C]. Dallas, Texas, USA.2004, 3295-3299.
    [33]J. S. Evans, D. Everitt. Effective bandwidth-bssed admission control for multiservice CDMA cellular networks[J]. IEEE Transactions on Vehicular Technology,1999,48(1): 36-46.
    [34]L. Zhuge, O. K. Li. Interference estimaiton for admission control in multi-service DS-CDMA cellular systems[A]. In Proceedings of the IEEE 43rd Global Communications Conference[C]. San Francisco, California, USA.2000,1509-1514.
    [35]王宇,李少谦,李乐民,等.多业务蜂窝CDMA系统中的呼叫接纳控制策略[J].通 信学报.2003,25(2):145-151.
    [36]张丹丹,方旭明,朱龙杰.一种新的对称CDMA系统中非对称业务下的呼叫允许控制策略[J].电子学报.2006,34(10):1745-1751.
    [37]K. S. Gilhousen, I. M. Jacobs, R. Padovani, et al. On the capacity of a cellular CDMA system[J]. IEEE Journal on Selected Areas in Communications.1991,40(2):303-312.
    [38]S.I. Maniatis, E. G. Nikolouzou, L. S. Venieris. End-to-end QoS specification issues in the converged all-IP wired and wireless environment[J]. IEEE Communications Magazine,2004,42(6):80-86.
    [39]R. B. Ali, S. Piere, Y. Lemieux. UMTS-to-IP QoS mapping for voice and video telephony services[J]. IEEE Network,2005,19(2):26-32.
    [40]S. I. Maniatis, E. Nikolouzou, L. Venieris, et al. QoS issues in the converged 3G wireless an wired networks[J]. IEEE Communication Magazine,2003,40(8):44-53.
    [41]3GPP2 X.S0013-004-A V1.0. All-IP core network multimedia domain IP multimedia call control protocol based on SIP and SDP stage 3[S]. November 2005.
    [42]G. Araniti, A. Iera, S. Pulitano. Managing IP traffic in radio access networks of next-generation mobile systems[J]. IEEE Wireless Communications,2003,10(4): 36-43.
    [43]A. Talukdar, B. Badrinathm, A. Acharya. MRSVP:a resource reservation protocol for an integrated services network with mobile hosts[J]. IEEE Wireless Networks,2001, 7:11-22.
    [44]J. Hillebrand, C. Prehofer, R. Bless, et al. Quality of service siganlling for next generation IP-based mobile networks[J]. IEEE Communication Magazine,2004,42(6): 72-79.
    [45]A. J. Goldsmith, P. P. Varaiya. Capacity of fading channels with channel side information[J]. IEEE Transactions on Information Theory,1997,43(6):1986-1992.
    [46]V. Tsibonis, L. Georgiadis. Optimal downlink scheduling policies for slotted wireless time-varying channels[J]. IEEE Transactions on Wireless Communications,2005,4(4): 1808-1817.
    [47]M. Andrews, L. Qian, A. Stolyar. Optimal utility based multi-user throughput allocation subject to throughput constraints[A]. In Proceedings of the IEEE 24th International Conference on Computer Communicaitons [C]. Miami, Florida, USA.2005,2415-2424.
    [48]A L Stolyar, K Ramanan. Largest weighted delay first scheduling:large deviations and optimality[J]. Annals of Applied Probability,2001,11(1):1-48.
    [49]赵新胜,鞠涛,尤肖虎.一种适用于B3G移动通信系统下行共享信道的调试算法[J].电子学报,2005,33(7):1173-1176.
    [50]A. Jalali, R. Padovani, R. Pankaj. Data throughput of CDMA-HDR a high efficiency high data rate personal communication wireless system[A]. In Proceedings of the IEEE 51st Vehicular Technology Conference[C]. Tokyo, Japan.2000,3:1854-1858.
    [51]F. Kelly. Charging and rate control for elastic traffic[J]. European Transactions on Telecommunications,1997,8:27-33.
    [52]R. Agrawal, V. Subranmanian. Instability of the proportional fair scheduling algorithm for HDR[J]. IEEE Transactions on Wireless Communications,2004,3(5):1422-1426.
    [53]J. M. Holtzman. Asymptotic analysis of proportional fair algorithm[A]. In Proceedings of the IEEE 12nd International Symposium on Personal Indoor and Mobile Radio Communications[C]. San Diego, California, USA.2001,2:F33-F37.
    [54]H. J. Kushner, P. A. Whiting. Convergence of proportional-fair sharing algorithms under general conditions[J]. IEEE Transactions on Wireless Communications,2004,3(4): 1250-1259.
    [55]A Yamaguchi, Y Takeuchi. Forward link packet scheduler for high speed packet data system[A]. In Proceedings of the IEEE 12nd International Symposium on Personal Indoor and Mobile Radio Communications[C]. San Diego, California, USA.2001,2: F21-F24.
    [56]Y Choi, Y Han, A channel-based scheduling algorithm for cdma2000 lxEV-DO system[A]. In Proceedings of the IEEE 13rd International Symposium on Personal Indoor and Mobile Radio Communications[C]. Lisboa, Portugal.2002,2259-2263.
    [57]F Akgul, M Sunay. Efficient resource allocation for statistic QoS assurances in HDR based wireless packet data[A]. In Proceedings of the IEEE 15th International Symposium on Personal Indoor and Mobile Radio Communications[C]. Barcelona, Spain.2004,2(2):1389-1393.
    [58]C Y Huang, H Y Su, S. Vitebsky, P C Chen. Scheduling for 1xEV-DO:third generation wireless high-speed data systems[A]. In Proceedings of the IEEE 58th Vehicular Technology Conference[C]. Orlando, Florida, USA.2003,3:1710-1714.
    [59]S Hahm, H Lee, J Lee. A minimum-bandwidth guaranteed scheduling algorithm for data service in CDMA/HDR system[A]. In Proceedings of the Human. Society@Internet Conference[C]. Seoul, Korea.2003,757-763.
    [60]S Shakkottai, A L Stolyar. Scheduling algorithms for a mixture of real-time and non-real-time data in HDR[A]. In Proceedings of the 17th International Telectaffic Congress[C]. Salvador da Bahia, Brazil.2001,793-804.
    [61]M Andrews, K Kumaran, K Ramanan, et al. Scheduling in a queueing system with asynchronously varying service rates[R]. Bell Labs Technical Memorandum,2000.
    [62]M Andrews, K Kumaran, K Ramanan, et al. CDMA data QoS scheduling on the forward link with variable channel conditions[R]. Bell Labs Technical Memorandum,2000.
    [63]S Shakkottai, A L Stolyar. Scheduling for multiple flows sharing a time-varying channel: the exponential rule[J]. American Mathematical Society Translations,2002,207: 329-334.
    [64]P Liu, R Berry, M L Honig. Delay-sensitive packet scheduling in wireless networks[A]. In Proceedings of the IEEE Wireless Communications and Networking Conference[C]. New Orleans, Louisiana, USA.2003,3:329-334.
    [65]Y J Choi, S Bahk. Scheduling for VoIP service in cdma2000 1xEV-DO[A]. In Proceedings of the IEEE International Conference on Communications[C]. Paris, France.2004,3:1495-1499.
    [66]T Ozcelebi, F D Vito, O Sunay, et-al. Optimal cross-layer scheduling for video streaming over 1xEV-DO[A]. In Proceedings of the International Workshop VLBV[C]. Sardinia, Italy.2005,76-83.
    [67]J. Hwang, M. T. Refaei, H. Choi, et al. Policy-based QoS-aware packet scheduling for 1xEV-DO[A]. In Proceedings of the IEEE International Conference on Communications[C]. Istanbul, Turkey.2006,4592-4597.
    [68]R. C. Elliott, W. A. Krzymien, B. Darian, et al. Comparative forward link traffic channel performance evaluation of HDR and 1xTREME systems[A]. In Proceedings of the IEEE 55th Vehicular Technology Conference[C]. Birmingham, Alabama.2002,1: 160-164.
    [69]Recommendation ITU-R M.1225. Guidelines for evaluation of radio transmission technologies for IMT-2000[R].1997.
    [70]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2006:146.
    [71]F. Fitzek, A. Koepsel, A. Wolisz, et al. Providing application-level QoS in 3G/4G wirless systems:a comprehensive framework based on multi-rate CDMA[J]. IEEE Wireless Communications,2002,9(2):42-47.
    [72]Q. Bi, P. Chen, Y. Yang, et al. An analysis of VoIP service using 1xEV-DO revision A system[J]. IEEE Journal on Selected Areas in Communications,2006,24(1):36-44.
    [73]S. V. Hanly. Congestion measures in DS-CDMA networks[J]. IEEE Transactions on Communications,1999,47(3):426-437.
    [74]C. Yang, S. Reddy. A taxonomy for congeston control algorithms in packet switching networks[J]. IEEE Network,1995,9(4):34-45.
    [75]J. Muckenheim, U. Bernhard. A framework for load control in 3rd generation CDMA networks[A]. In Proceedings of the IEEE 44th Global Communications Conference [C]. San Antonia, Texas, USA.2001,3738-3742.
    [76]W. Liao, C. J. Kao, C. H. Chien. Improving TCP performance in mobile networks[J]. IEEE Transactions on Communications,2005,53(4):569-571.
    [77]K. Xu, Y. Tian, N. Ansari. TCP-Jersey for wirelesss IP communications[J]. IEEE Journal on Selected Areas in Communications,2004,22(4):747-756.
    [78]J. Rendon, F. Casadevall, D. Serarols. SNOOP TCP performance over GPRS[A]. In Proceedings of the IEEE 54th Vehicular Technology Conference[C]. Atlantic, USA. 2001,2103-2107.
    [79]M. Assaad, D. Zeghlache. Cross-layer design in HSDPA system to reduce the TCP effect[J]. IEEE Journal on Selected Areas in Communications,2006,24(3):614-625.
    [80]V. Paliwal, P. Larijani, I. Lambadaris, et al. Congestion due to Rate Variations in cdma2000 Data Networks[J]. Wireless Personal Communications,2006,38(4): 391-412.
    [81]H. Lin, S. Kas. Performance study of link layer and mac layer protocals to support TCP in 3G cdma systems[J]. IEEE Transactions on Mobile Computing,2005,4(5):489-501.
    [82]江俊锋,曹志刚.CDMA2000中连接建立的分组延时分析[J].电子学报,2007,35(4):272-731.
    [83]王伟,高月红,杨大成.CDMA系统的自适应拥塞控制算法研究[J].北京邮电大学学报,2006,29(4):69-72.
    [84]R. Yim,O. Shin, V. Tarokh. Reverse-link rate control algorithms with fairness guarantees for CDMA systems[J]. IEEE Transactions on Wireless Communications, 2007,6(4):1386-1397.
    [85]C. Lott, N. Bhushan, R. Attar, et al. System and method for fluid power control of a reverse link communication[P]. United States Patent:US 2005/0014524 AI, 2005-01-20.
    [86]H. N. Nguyen, et al. Downlink queuing model and packet scheduling for providing lossless handoff and QoS in 4G mobile networks[J]. IEEE Transactions on Mobile Computing,2006,5(5):452-462.
    [87]陈远,李乐民.一种兼顾信道条件和公平性的无线分组丢弃算法[J].通信学报,2005,26(6):11-17.
    [88]M.Sagfors, R.Ludwig. Queue management for TCP traffic over 3G links[A]. In Proceedings of the IEEE Wireless Communications and Networking Conference[C]. New Orleans, Louisiana, USA.2003.1663-1668.
    [89]M. C. Chan, R. Ramjee. TCP/IP performance over 3G wireless links with rate and delay variation[A]. In Proceedings of the 8th Annual International Conference on Mobil Computing and Networking[C]. Atlanta, Georgia, USA.2002,71-82.
    [90]S. Landsatrom, L. Larzon. Buffer management for TCP over HS-DSCH[R]. Lulea University of Technology,2005.
    [91]J. Alcaraz, F. Cerdan, J. Garcia, et al. Optimizing TCP and RLC interaction in the UMTS radio access networks[J]. IEEE Network,2006,20(2):56-64.
    [92]K. Mattar, A. Sridharan, H. Zang, et al. On the interaction between TCP and the wireless channel in cdma2000 networks[R]. Sprint Technical Report, RR06-ATL-005266.2006.
    [93]M.Ghaderi, R. Boutaba. Call admission control in mobile cellular networks:a comprehensive svrvey[J]. Wireless Communications and Mobile Computing,2005,6(1): 69-93.
    [94]B. Li, L. Li, B. Li, et al. Call admission control for voice/data intergrated cellular networks:performance analysis and comparative study[J]. IEEE Journal on Selected Areas in Communications,2004,22(4):706-718.
    [95]S. Singh, V. Krishnamurthy, H. V. Poor. Integrated voice/data call admission control for wireless DS-CDMA systems[J]. IEEE Transactions on Signal Processsing,2002,50(6): 1483-1485.
    [96]W. S. Jeon, D. G. Jeong. Call admission control for CDMA mobile communications systems supporting multimedia services[J]. IEEE Transactions on Wireless Communications,2002,1(4):649-659.
    [97]W. S. Jeon, D. G. Jeong. Call admission control for mobile multimedia communications with traffic asymmetry between uplink and downlink[J]. IEEE Transactions on Vehicular Technology,2001,50(1):59-66.
    [98]朱立东,吴诗其.多媒体码分多址系统的呼叫接纳控制[J].电子科技大学学报,2002,31(2):115-119.
    [99]廖丹,李乐民.一种蜂窝CDMA系统中的双门限接纳控制算法[J].电子科技大学学报,2004,33(6):759-762.
    [100]E. S. Angelou, N. T. Koutsokeras, A.G. Kanatas, et al. SIR-based uplink terrestrial call admission control scheme with handoff for mixed traffic WCDMA networks[A]. In Proceedings of the 4th International Workshop Mobile and Wireless Communicaitons[C]. Stockholm, Sweden.2002,83-87.
    [101]F. Chiti, R. Fantacci, G. Mennuti, et al. Dynamic SIR based admission control algorithm for 3G wireless networks[A]. In Proceedings of the IEEE International Conference on Communications[C]. Anchorage, Alaska, USA.2003,3:1907-1911.
    [102]S. Ariyavisitakul, L. F. Chang. Signal and interference statistics of a CDMA system with feedback power control[J]. IEEE Transactions on Communications,1993,41: 1626-1634.
    [103]M. Kim, B. C. Shin, D. J. Lee. SIR-based call admission control by intercell interference prediction for DS-CDMA[J]. IEEE Communications Letters,2000,4(1): 29-31.
    [104]Y. Wang, W. W, J. Zhang, et al. Admission control for multimedia traffic in CDMA wireless networks[A]. In Proceedings of the International Conference on Communication Technology[C]. Beijing, China.2003,799-782.
    [105]J. Choi, Y. Choi, S. Bshk. Power-based admission control for multiclass calls in QoS-sensitive CDMA networks[J]. IEEE Transactions on Wireless Communications, 2007,6(2):468-472.
    [106]K. Kim, Y. Han. A call admission control with thresholds for multi-rate traffic in CDMA systems[A]. In Proceedings of the IEEE 51st Vehicular Technology Conference[C]. Tokyo, Japan.2000,830-834.
    [107]J. Kuri, P. Mermelstein. Call admission on the uplink of a CDMA system based on total received power[A]. In Proceedings of the IEEE International Conference on Communications[C]. Vancouver, Canada.1999,1431-1436.
    [108]S. Aissa, J. Kuri, P. Mermelstein. Call admission on the uplink and downlink of a CDMA system based on total received and transmitted powers[J]. IEEE Transactions on Wireless Communications,2004,3(6):2407-2406.
    [109]3GPP2 CS.0011-A. Recommended minimum performance standards for cdma2000 spread spectrum mobile stations[S]. March 2001.
    [110]A. I. Elwalid, D. Mitra. Effective bandwidth of general Markovian traffic sources and admission control of high speed networks[J]. IEEE/ACM Transactions on Networking, 1993,1:329-343.
    [111]L. Wang,W.Zhuang. A call admission control scheme for packet data in CDMA cellular communications[J]. IEEE Transactions on Wireless Communications,2006,5(2): 406-416.
    [112]王宇.多业务CDMA蜂窝通信系统容量性能和无线资源管理算法研究[D].成都:电子科技大学.2002.
    [113]柯雅珠,曾玲玲.一种高速下行共享信道的接纳控制方法[P].中国:WO2006.094429 A1.2006-09-14.
    [114]O. Yu, E. Saric, A. Li. Fairly adjusted multimode dynamic guard bandwidth admission control over CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 2006,24(3):579-582.
    [115]S. E. Elayoubi, T. Chahed, G. Hetuterne. Admission control in UMTS in the presence of shared channels[J]. Computer Communications 2004,27(11):1115-1126.
    [116]H. Montes, G. Gomez, J. F. Paris. An End-to-end QoS framework for multimedia streaming services in 3G networks[A]. In Proceedings of the IEEE 56th Vehicular Technology Conference[C]. Lisbon, Portugal,2002.1904-1908.
    [117]Q. Zhang, W. Zhu, Y. Q. Zhang. End-to-end QoS for video delivery over wireless Internet[J]. Proceedings of the IEEE,2005,93(1):123-134.
    [118]T. Stockhammer, H. Jenkac, G. Kuhn. Streaming video over variable bit-rate wireless channels[J]. IEEE Transactions on Multimedia,2004,6(2):268-277.
    [119]W. Kumwilaisak, Y. T. Hou, Q. Zhang. A cross-layer quality-of-service mapping architecture for video delivery in wireless networks[J]. IEEE Journal on Selected Areas in Communications.2003,21(10):1685-1698.
    [120]K. Guo, S. Rangarajan, M. A. Siddiqui, et al. Providing end-to-end QoS for multimedia applications in 3G wireless networks[A]. In Proceedings of the SPIE IT-COM[C]. Orlando, Florida, USA.2003,1272-1276.
    [121]H. Wang, D. Prasad, O. Teyeb, et al. Performance enhancements of UMTS networks using end-to-end QoS provisioning[A]. In Proceedings of the 8th International Symposium on Wireless Personal Multimedia Communications[C]. Aalborg, Denmark, 2005,1231-1235.
    [122]M. Naghshineh, M.W. Lemair. End-to-end QoS provisioning in multimedia wireless/mobile networks using an adaptive framework[J]. IEEE Communication Magazine,1997,35(11):72-81.
    [123]A. Basso, B. Kim, J. Z. Jiang. Performance evaluation of MPEG-4 video over realistic EDGE wireless networks[A]. In Proceedings of the 5th International Symposium on Wireless Personal Multimedia Communications[C]. Honolulu, Hawaii,USA,2002. 1118-1122.
    [124]M. Claypool, R. Kinicki, W. Lee, et al. Characterization by measurement of cdma 1xEV-DO network[A]. In Proceedings of the 2nd Annual International Workshop on Wireless Internet[C]. Boston, Massachusetts, USA.2006,134-139.
    [125]Q. Bi, P. C. Chen, Y. Yang, et al. An analysis of VoIP service using 1xEV-DO revision A system[J]. IEEE Journal on Selected Areas in Communications.2006,24(1):36-44.
    [126]D. Pesch, M. I. Pous, G. Foster. Performance evaluation of SIP-based multimedia services in UMTS[J]. Computer Networks,2005,49:385-403.
    [127]A. J. Goldsmith. Wireless Communications[M]. Cambridge University Press,2005.
    [128]H. M. Ahmed, M. Elsayes. Accurate upper bound of SINR-based call admission threshold in cdma systems with imperfect power control[J]. IEEE Communications Letters,2007,11(3):258-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700