用户名: 密码: 验证码:
基于基因表达谱的肝纤维化治疗药物筛选及相关实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化(hepatic/liver fibrosis,HF)是一种常见的病症,是指由各种致病因素引起的肝脏损伤和炎症,在修复过程中导致肝脏细胞外基质异常增多和过度沉积的病理过程。引起肝纤维化的因素很多,如病毒感染、乙醇、寄生虫、化学毒物等,有的也可能是多种致病因素共同作用的结果。肝纤维化具有地区差异性,在欧美国家以酒精性肝纤维化为主,在我国主要与病毒性肝炎有关,其中乙型肝炎病毒感染与肝纤维化有着非常密切的关系。肝纤维化治疗效果差,重则演变为肝硬化和肝癌,预后极不良。
     目前,治疗肝纤维化的药物种类很多,主要是通过作用于肝纤维化发生的不同环节,达到抗肝纤维化的目的,包括针对肝星状细胞(hepatic stellate cell,HSC)的药物、针对细胞因子的药物、影响胶原合成及代谢的药物、保护和阻止肝损伤的药物以及抗肝纤维化的中医药等,其中中医药治疗肝纤维化有很多的优势。肝纤维化和肝硬化在中医理论中属正虚血瘀症的范畴,治疗以活血化瘀、益气养阴为主,兼以养血柔肝和滋补肝肾;中药治疗肝纤维化的作用是多环节和多靶点的:减轻肝细胞炎症坏死、改善肝脏血液循环、促进肝细胞再生、直接抑制HSC活化和增殖、减少胶原分泌、促进胶原降解和再吸收等。近年来,国内外大量实验和临床研究发现,中药特别是复方中药治疗肝纤维化的作用为多环节、多靶点的,与化学合成药往往仅作用在单一环节或靶点相比,有独特的优势,值得深入研究。
     基因芯片是20世纪生命科学领域发展起来的一项重要技术平台,具有高通量和快速测量等优点。随着基因芯片技术的广泛应用以及生物信息学的飞速发展,肝纤维化发生和发展的许多分子事件得到更全面的揭示。实验研究及临床试验证实,针对单一靶基因的药物治疗疗效有限,而针对多种靶基因或靶蛋白的药物治疗可能会更有效。
     本研究将利用基于基因表达谱的药物发现模式,通过Toppgene等生物信息学分析方法筛选肝纤维化治疗候选化合物或药物,并进行相关实验验证,为肝纤维化的综合治疗及提高疗效提供理论及实验依据,同时也为加速肝纤维化中药治疗药物发现进程、为中药“老药新用”及中药现代化提供依据。
     本研究内容主要分为三个部分:
     第一部分基于基因表达谱的肝纤维化生物信息学分析
     目的:本研究利用基因芯片数据分析软件BRB-ArrayTools 3.7.1,对来自基因芯片公共数据库(Gene Expression Omnibus, GEO)的肝纤维化基因表达谱芯片数据进行挖掘,并进行生物信息学分析,探讨基于基因表达谱的途径筛选和发现新的肝纤维化治疗药物。
     方法与结果:
     1.从GEO获取肝纤维化基因表达谱数据集
     从NCBI的GEO数据库获得肝纤维化基因表达谱数据集,即GSE11536。该数据集来源于法国ROUEN医药系,采用GPL5215芯片平台,共48个样本,包括8个轻度肝纤维化样本和8个重度肝纤维化样本,每个样本三个重复。
     2.肝纤维化差异表达基因分析
     为了获得肝纤维化差异基因表达谱,我们采用BRB软件对GSE11536数据集进行差异表达基因分析,获得差异表达基因297个,其中上调基因115个,下调基因182个(Fold change> 1.5)。
     3.文献挖掘获得已知肝纤维化疾病基因
     采用Genecards和FABLE在线工具分析,共获得已知肝纤维化相关基因663个。
     4. Toppgene筛选肝纤维化相关基因
     首先建立已知肝纤维化相关基因集文件,然后通过toppgene在线分析工具进行肝纤维化候选基因筛选,结果得到7个肝纤维化候选新基因,分别是:SERPING1、ETS2、TSG101、CDH2、LMO2、PAWR、MST1。
     5.肝纤维化信号通路富集分析
     为从生物学意义水平上发现一些与肝纤维化密切相关的信号通路,采用Toppgene对所获取的差异基因表达谱进行基因集富集分析,共富集到44条通路(P<0.05)。对44条富集通路进行分析,结果显示,28条富集通路与凝血有关,3条与血小板生成有关,4条与心肌梗塞有关,6条与脂代谢有关,2条涉及MAPK途径。
     6.肝纤维化差异基因富集相关疾病分析
     为了解与肝纤维化相关联的疾病,采用Toppgene对所获取的肝纤维化差异基因进行富集相关疾病分析,共富集到4种疾病(P<0.05),分别是肝炎、先天性纤维蛋白原缺乏血症、后天纤维蛋白原缺乏血症和高密度脂蛋白胆固醇血症,这提示肝纤维化可能与凝血障碍和血脂代谢异常有关。
     7.肝纤维化候选药物分析
     Toppgene还建立了疾病、基因与药物之间的联系,为了获得一些可以逆转或是改善肝纤维化基因表达谱的治疗药物,进行Toppgene分析,结果得到69种药物(P<0.001)。结合文献,对69种药物进行分析,结果显示,17种药物是性激素类药物,12种是凝血相关药物,11种是降血脂药,6种是降血糖药,9种是消炎止痛药,这提示性激素类、凝血相关药物和降血脂药物可能可以成为肝纤维化治疗药物或辅助治疗药物。
     结论:基于基因表达谱的途径筛选和发现肝纤维化治疗相关药物是可行的,并筛选到一些激素类药物、凝血相关药物和降血脂药物可能可以成为肝纤维化候选治疗药物或辅助治疗药物。
     第二部分肝纤维化的治疗药物Dioscorea panthaica筛选
     目的:黄山药(Dioscorea panthaica Prain et Burkill)是一种十分重要的食药两用植物资源,中医常用于治疗炭疽、胃痛、风湿性心脏病和风湿性关节炎;黄山药水提取物还可以用于治疗鼠高胆固醇血症。以黄山药根茎提取物为主要原料制成的地奥心血康,是国家二类新药,年销售收入达六亿元,临床主要用于心血管疾病、降血脂、降血糖,其主要化学成分是薯蓣皂甙元,还可作为性激素等多种药物的原料药等。结合第一部分结果:激素类药物、凝血相关药物和降血脂药物可能可以成为肝纤维化候选治疗药物或辅助治疗药物,因此本部分采用生物信息学方法寻找Dioscorea panthaica抗肝纤维化的可能作用靶点,并进行深入分析确认Dioscorea panthaica具有抑制肝纤维化的作用,为下一步进行相关实验验证提供依据。
     方法与结果:
     1.文献挖掘Dioscorea panthaica相关靶基因
     采用FABLE在线工具,结合FACTA文献分析,共获得Dioscorea panthaica相关靶基因1142个。
     2. Dioscorea panthaica抗肝纤维化的可能作用靶点
     采用venny分析工具,分析已知肝纤维化相关基因和Dioscorea panthaica相关靶基因的共同表达基因,结果表明,在663个已知肝纤维化相关基因中,存在Dioscorea panthaica的可能作用靶基因322个(占48.6%),这进一步提示Dioscorea panthaica有抑制肝纤维化的作用。
     3.获得共同表达基因
     为了解Dioscorea panthaica抑制肝纤维化的可能作用机制,结合肝纤维化差异基因集,采用venny分析工具进行分析,获得肝纤维化差异基因、已知肝纤维化相关基因和Dioscorea panthaica相关靶基因的共同表达基因14个,分别是:APOA1、APOB、F2、GC、NR3Cl、TF、VTN、C3、C5、KNG1、NCF1、PAH、STAT3、TGFBR1。
     4.共同表达基因集通路富集分析
     将14个共同表达基因进行通路富集分析,结果显示有11条生物信号通路可能参与Dioscorea panthaica抑制肝纤维化的分子机制(P<0.05),这些信号通路主要涉及局部急性炎症应答反应、补体凝血过程、活性肽诱导通路.FOXA2/FOXA3转录因子调控网络、脂蛋白代谢等信号通路。
     结论:通过生物信息学分析预测,进一步提示Dioscorea panthaica有抑制肝纤维化的作用。
     第三部分Dioscorea panthaica抑制肝纤维化的相关实验验证
     目的:为验证前两部分的分析结果,本部分采用CCl4法造大鼠肝纤维化模型,探讨Dioscorea panthaica提取物抑制肝纤维化的效果。
     方法与结果:
     1.CCl4诱导大鼠肝纤维化模型的建立、分组及给药方法
     健康雄性SD大鼠,36只,随机分为6组,每组6只:①正常对照组(n=6),给予橄榄油1mL/kg体重(2次/周)腹腔内注射,共8周;②模型诱导对照CCl4组(n=6),给予CCl4(CCl4橄榄油=4:6)3mL/kg体重,每周两次,共8周;③阳性对照秋水仙碱组(n=6),按0.1 mg/kg体重腹腔注射秋水仙碱,每天1次,同时给予CCl4(CCl4橄榄油=4:6)3mL/kg体重,每周两次,共8周;④DPE-50mg/kg组(n=6),按50 mg/kg体重灌胃Dioscorea panthaica提取物(DPE),每天1次,同时给予CCl4(CCl4橄榄油=4:6)3mL/kg体重,每周两次,共8周;⑤DPE-100mg/kg组(n=6),按100mg/kg体重灌胃DPE,每天1次,同时给予CCl4(CCl4橄榄油=4:6)3mL/kg体重,每周两次,共8周;⑥DPE-200mg/kg组(n=6),按200mg/kg体重灌胃DPE,每天1次,同时给予CCl4(CCl4橄榄油=4:6)3mL/kg体重,每周两次,共8次。各组大鼠均于8周后处死,处死前禁食24h。处死时,大鼠用水合氯醛麻醉,迅速从心脏穿刺取血,分离血清,-80℃保存。平卧状态下剖腹,去除肝脏筋膜,取右叶相同的部分置于冰生理盐水中充分洗涤后,一部分用10%中性甲醛固定,3天内石蜡包埋,切片,以备组织病理检测;其余肝组织迅速置于液氮中保存。
     2.DPE对血清ALT、AST含量的影响
     血清AST和ALT是评价肝脏损伤常用的生化指标。取大鼠血液约3mL,置干燥玻璃管内,37℃温浴30min,4℃冰箱静置2h,3000g离心10min,取血清,-80℃保存。通过全自动生化分析仪测定各组大鼠血清ALT、AST含量。与正常对照组相比,肝纤维化模型对照组的血清ALT含量(P=0.000)和AST含量(P=0.000)显著提高,DPE处理组的血清ALT、AST含量呈剂量依赖性下降。
     3.肝组织病理学改变及检测肝组织中羟脯氨酸水平
     运用HE染色和Masson'染色对各组大鼠肝组织纤维化程度进行分析,结果显示,正常对照组大鼠的肝组织肝索结构清晰,肝细胞以中央静脉为中心呈放射状,肝组织内无脂肪空泡,仅汇管区和中央静脉有少许胶原纤维存在。模型对照组肝小叶结构破坏,纤维组织增生明显,将肝小叶分隔成大小不等的肝细胞团,肝细胞广泛变性坏死,汇管区扩大、胶原大量沉积。与模型对照组相比,治疗组肝细胞的变性坏死程度及肝小叶结构破坏程度降低,肝脏胶原纤维增生亦明显减轻。
     在检测肝脏组织病理学改变的同时,通过检测肝组织中羟脯氨酸水平,对肝损伤纤维化程度进行定量分析。与正常对照组相比,模型对照组的羟脯氨酸含量显著提高,差异有统计学意义(P=0.000),DPE处理组的羟脯氨酸含量呈剂量依赖性下降。
     4.DPE对肝组织抗氧化能力的影响
     通过检测大鼠肝组织匀浆中的GSH和TBARS浓度,探讨DPE治疗对肝组织氧化状态的影响。GSH构成了拮抗自由基的第一道防线。与正常对照组GSH含量相比,肝纤维化模型对照组GSH含量显著降低(P=0.000);与肝纤维化模型对照组GSH含量相比,阳性对照秋水仙碱组(P=0.000)和DPE处理组(P=0.000)肝组织GSH含量差异均有统计学意义。为检测肝组织氧化性能,结果显示,与正常对照组比较,肝纤维化模型对照组TBARS含量增加约3.2倍;DPE (200mg/Kg)处理组肝脏TBARS含量降至1.03±0.12μmol/g,表明肝组织抗氧化能力增强。
     结论:经动物实验证实,Dioscorea panthaica提取物能显著降低CCl4诱导的大鼠肝纤维化。
Liver fibrosis (hepatic fibrosis, HF) is a disease of reversible deposition of extracellular matrix(ECM) induced by chronic liver injuried. Many things could cause liver fibrosis, such as viral infection, ethanol, parasites, chemical poisons, and so on. Some fibrosis patients may be the result from a variety of pathogenic factors. Liver fibrosis is regional differences. Alcoholic liver fibrosis is common in Europe and America, while liver fibrosis with hepatitis B virus infection is common in China. With a high incidence of liver diseases, Chinese government takes heavy burden in the treatment of liver fibrosis and cirrhosis. Liver fibrosis can eventually lead to hepatic cirrhosis or liver cancer with poor prognosis.
     The gene-chip (bio-chip) is major technique in bioscience field in the 21 century, which has the outstanding of high-throughput and rapid detecting, etc. The analysis of expression profiling chip is useful for the reveal of the mechanism of liver fibrosis, the diagnosis and therapy of liver fibrosis. Bioinformatics is a newly rising subject which elucidates and reveals the biological meaning hided in much data set. Bioinformatics provids a new approach for the analysis of DNA microarray data,also become a new tool for the discovery of the drug and speed up the process of drug discovery.In the study, based on the mode of gene expression profiles-based drug discovery approach, we set out to discover agents for liver fibrosis with computational and system biology tool "Toppgene",which provided the theory and experiment proof for the combined therapy of liver fibrosis, and also accelerate the discovery of drugs for liver fibrosis.
     The study includes the following three parts:
     Part I gene expression profiling based approach identifies candidate therapeutic compounds for liver fibrosis
     Objective:Bioinformatics provids a new approach for the analysis of DNA microarray data, also become a new tool for the discovery of the drug and speed up the process of drug discovery. In the study, we explore gene expression profiles-based approach for the screening candidate therapeutic compounds against liver fibrosis, and screen the candidate compounds for liver fibrosis.
     Methods and Results:
     1. Acquisition liver fibrosis public microarray data from GEO databank
     Raw data (.Cel files) of a published microarray data (GSE11536) used in the study was obtained from Gene Expression Omnibus(GEO) website, Amonge gene datasets GSE 11536, containing 48 samples, from Faculty of Medicine and Pharmacy, France. The dataset were based on GPL5215 platform.
     2. BRB analysis of liver fibrosis
     The aim of this study is to compare mild and advanced liver fibrosis gene expression profiling and to identify novel markers of fibrosis progression. By transcriptome analysis with a cDNA array virtually covering every transcript in liver, we compared transcript levels in mild (F1 Metavir score) and advanced (F4 Metavir score) fibrosis. A stringent selection identified a list of 16 transcripts which completely separated the 2 groups of patients (8 F1 and 8 F4). Mild fibrosis (F1) vs advanced fibrosis (F4) were alone performed with the software packages BRB Array Tools. Finally, we obtained 297 differentially expression genes, amonge 115 up-regulated genes and 182 down-regulated genes (Fold change> 1.5)
     3. Data mining of known gene expression profile in liver fibrosis
     We obtained 663 known genes correlated with liver fibrosis by data mining tools genecards and FABLE.
     4. The screen of candidate genes for liver fibrosis with Toppgene
     The 297 differential expression genes were defined as"test gene set", and 663 genes correlated with liver fibrosis were regarded as"train gene set".7 candidate genes were screened out by Toppgene, such as SERPING1、ETS2、TSG101、CDH2、LMO2、PAWR、MST1, which had nearly no report in liver fibrosis.
     5. The pathway enrichment analysis of liver fibrosis with Toppgene
     The pathway enrichment analysis showed that there were 44 biological pathways related with liver fibrosis(P<0.05). We found out that blood coagulation signal pathway(28), platelet signal pathway(3), myocardial infarction pathway(4), lipid metabolic pathway(6), MAPK signal pathway(2) were very significance in the progression of liver fibrosis.
     6. The related deseases enrichment analysis of liver fibrosis
     The related deseases enrichment analysis showed that there were 4 deseases related with liver fibrosis (P<0.05), such as hepatitis, afibrinogenemia congenital, afibrinogenemia, HDL cholesterol.
     7. The candidate therapeutic drugs enrichment analysis of liver fibrosis
     Finally,69 candidate therapeutic compounds for liver fibrosis were screened by Toppgene analysis (P<0.001). We found out some candidate therapeutic compounds, such as sexual hormone drugs (17), blood clotting drugs(12), descendens blood fat drugs(11), hypoglycemic agent(6), acesodyne (9),which were very significance in treatment of liver fibrosis.
     Conclusion:Our results demonstrated that gene expression profiles-based approach is perspective for screening the candidate therapeutic compounds for liver fibrosis, which accelerates the introduction of compounds into the clinic.
     Part II Dioscorea panthaica were identified as candidate therapeutic compounds for liver fibrosis
     Objective:Dioscorea panthaica is a herb commonly used in traditional Chinese medicine to treat anthrax, gastropathy, rheumatic heart disease, and rheumarthritis. The anti-hypercholesterolemia activity of an aqueous extract of saponins from Dioscorea panthaica was also demonstrated in rats. It is well known that the chemical composition of herbal medicines is very complex, and detailed information on the bioactive compounds of Dioscorea panthaica remains largely incomplete despite several phytochemical studies on this medicinal plant. Currently, the effects of DPE on liver fibrosis have not been reported. In the study, the target genes which involved Dioscorea panthaica inhibits liver fibrosis were screened out by data mining tools, that further prompted Dioscorea panthaica could inhibit liver fibrosis.
     Methods and Results:
     1. Data minining of Dioscorea panthaica correlated genes
     We obtained 1142 known genes correlated with Dioscorea panthaica by data mining tools genecards and FABLE.
     2. Data mining of the target genes which involved Dioscorea panthaica inhibits liver fibrosis
     The target genes which involved Dioscorea panthaica inhibits liver fibrosis were screened out by data mining tools. Among the 663 known liver fibrosis related genes, there were 322 potential target genes (48.6%) of Dioscorea panthaica, which further prompted Dioscorea panthaica could inhibit liver fibrosis.
     3. co-expression genes of three gene sets were screened out by data mining tools venny
     The 14 co-expression genes of three gene sets, differentially expression genes(297) of liver fibrosis, the known genes(663) correlated with liver fibrosis and Dioscorea panthaica correlated genes(1142), were screened out by data mining tools venny, which are APOAl、APOB、F2、GC、NR3Cl、TF、VTN、C3、C5、KNG1、NCF1、PAH、STAT3、TGFBR1。
     4. The pathway enrichment analysis of co-expression genes
     The pathway enrichment analysis showed that there were 11 biological pathways involved Dioscorea panthaica inhibits liver fibrosis(P<0.05), such as local acute inflammatory response, complement and coagulation cascades, lipoprotein metabolic pathway, and so on.
     Conclusion:Dioscorea panthaica were identified as candidate therapeutic compounds for liver fibrosis by bioinformatics analysis.
     PartⅢDioscorea panthaica inhibits CCl4-induced liver fibrosis in rats
     Objective:Through bioinformatics analysis, Dioscorea panthaica were identified as candidate therapeutic compounds for liver fibrosis, which can be further validated throuth experiment. Therefore, the present study was undertaken to evaluate the protective effects of Dioscorea panthaica extract(DPE) on CCl4-induced liver fibrosis in rat model.
     Materials and methods:
     1. Liver fibrosis was established by hypodermics injection of CCl4
     The male SD rats (190±10 g) were housed in conventional cages (21±1℃,12h light dark cycle) with free access to water and rodent chow. All animal experiments were performed under approved protocols of the institutional animal use and care committee of Sun Yat-Sen University. Rats were randomly divided into six groups. Groups 1 (normal control) and 2 (induction control) received water for eight weeks. Group 3 received colchicine (0.1 mg/kg, p.o. daily) for 8 weeks. Groups 4-6 received DPE (50,100,200 mg/kg per day, respectively) for 8 weeks. All animals except Group 1 were administrated with CCl4 (3 ml/kg body weight,4:6 in olive oil, twice a week). At 24 h after the final injection of CCl4, a laparotomy was performed and the blood was drawn from the abdominal aorta under ether anesthesia. The serum was stored at-80℃after separation until assayed as described below. Liver samples were collected and frozen in liquid nitrogen.
     2. Measurement of serum aminotransferase levels
     Since the serum levels of AST and ALT are regarded as biochemical markers for the liver injury, as the first step to evaluate the effects of DPE on liver injury we examined AST and ATL levels. A 3ml sample of blood was treated and centrifuged at 3000×g for 10 min at 4℃to obtain plasma, which was then stored at-80℃until assayed. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were determined. Compared to the normal control group, the serum AST and ALT levels were significantly increased in the liver fibrosis groups. However, in DPE-treated groups DPE treatment led to the decreases of AST and ALT levels in a dose-dependent manner
     3. Pathological examination and determination of hepatic hydroxyproline concentration
     After formalin fixation, tissue samples were sliced, embedded in a standard manner. Liver fibrosis of the rats was evaluated by two histological methods, H&E staining and Masson's trichrome staining, and both methods showed similar results. The histological analysis of the livers from normal control rats indicated normal architecture. In contrast, both qualitative and quantitative histopathological examinations demonstrated that CCl4-induced liver fibrosis was evidenced by the disruption of tissue architecture, extension of fibers, large fibrous septa formation, pseudolobe separation, and collagen accumulation. These alterations were remarkably reduced in the liver sections of the rats that received both DPE and CCl4 treatment for 8 weeks. It was verified that the scoring of the DPE-treated group had obviously been improved compared to the liver fibrosis group.
     In parallel to the observed improvement of liver histology, liver fibrosis was also quantified by measurement of hepatic hydroxyproline level. There was a significant increase in hepatic hydroxyproline level in rats with CCl4-induced liver fibrosis compared to normal controls and the administration of DPE prevented the increase in hepatic hydroxyproline content in CCl4-treated rats.
     4. Measurement of hepatic glutathione and thiobarbituric acid-reactive substances
     Glutathione (GSH) constitutes the first line of defense against free radicals. A significant reduction in the GSH content (p<0.05) was observed in the liver of the CCl4-treated group rats, compared to that of the normal controls. The treatment of DPE at the dosage of 100 mg/kg significantly recovered the GSH depletion caused by CCl4 (p<0.01).
     Compared with the normal controls, the concentration of TBARS was higher in the chronic liver injury group. DPE treatment at the dosage of 100 mg/kg was able to alleviate oxidative damage of lipids significantly, and continual DPE administration decreased the hepatic level of TBARS in a dose-dependent manner
     conclusion:Oral administration of DPE significantly reduces CCl4-induced liver fibrosis in rats.
引文
[1]Sophie Lotersztajn, Boris Julien, Fatima Teixeira-Clerc, et al. hepatic fibrosis: Molecular Mechanisms and Drug Targets[J]. Annu. Rev. Pharmacol. Toxicol. 2005,45:605-28
    [2]Gluud C.Mortality from cirrhosis:lack of progress over the last 35 years[J].Gut, 2005,54(11):1523-1526.
    [3]E. Albanis, S. L. Friedman. Antifibrotic Agents for Liver Disease[J]. American Journal of Transplantation.2006,6:12-19
    [4]Jonathan A. Fallowfield, Timothy J. Kendall, John P. Iredale. Reversal of Fibrosis: No Longer a Pipe Dream? [J]. Clin Liver Dis.2006 (10):481-497
    [5]Yury Popov, Detlef Schuppan. Targeting liver fibrosis:strategies for development and validation of antifibrotic therapies[J]. HEPATOLOGY.2009,50:1294-1306
    [6]Sean D, Meltzer P S. GEOquery:a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics.2007,23(14):1846-1847.
    [7]Barrett T, Edgar R. Mining microarray data at NCBI's Gene Expression Omnibus (GEO)[J]. Methods Mol Biol.2006,338:175-190.
    [8]Barrett T, Edgar R. Gene expression omnibus:microarray data storage, submission, retrieval, and analysis [J]. Methods Enzymol.2006,411:352-369.
    [9]Edgar R, Domrachev M, Lash A E. Gene Expression Omnibus:NCBI gene expression and hybridization array data repository [J]. Nucleic Acids Res.2002, 30(1):207-210.
    [10]Simon R, Lam A, Li M C, et al. Analysis of Gene Expression Data Using BRB-Array Tools[J]. Cancer Inform.2007,3:11-17.
    [11]Zhong S, Li C, Wong W H. ChipInfo:Software for extracting gene annotation and gene ontology information for microarray analysis[J]. Nucleic Acids Res. 2003,31(13):3483-3486.
    [12]Virginia Goss Tusher, Robert Tibshirani, Gilbert Chu. Significance analysis of microarrays applied to the ionizing radiation response[J]. PNAS.2001, 98(9)5116-5121
    [13]Jezequel P, Campone M, Roche H, et al. A 38-gene expression signature to predict metastasis risk in node-positive breast cancer after systemic adjuvant chemotherapy:a genomic substudy of PACS01 clinical trial[J]. Breast Cancer Res Treat.2009,116(3):509-520.
    [14]Chanrion M, Negre V, Fontaine H, et al. A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer[J]. Clin Cancer Res.2008,14(6):1744-1752.
    [15]Jing Chen, Huan Xu, Bruce J Aronow, et al. Improved human disease candidate gene prioritization using mouse phenotype[J]. BMC Bioinformatics.2007,8: 392.
    [16]Jing Chen, Bruce J Aronow, Anil G Jegga. Disease candidate gene identification and prioritization using protein interaction networks[J]. BMC Bioinformatics. 2009.10:73.
    [17]Kaimal V, Bardes EE, Tabar SC, et al. ToppCluster:a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems[J]. Nucleic Acids Res.2010,38(Web Server issue):W96-102.
    [18]Jing Chen, Eric E. Bardes, Bruce J. Aronow, et al. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization[J]. Nucleic Acids Res. 2009,37(Web Server issue):W305-W311.
    [19]F. Stickel a, D. Schuppan b. Herbal medicine in the treatment of liver diseases[J]. Digestive and Liver Disease.2007. (39):293-304
    [20]Friedman, S.L., Roll, FJ., Boyles, J, et al. Hepatic lipocytes:the principal collagen-producing cells of normal rat liver[J]. Proc. Natl. Acad. Sci.1985,82:8681-5.
    [21]Ramon Bataller, David A Brenner. Liver fibrosis[J]. J Clin Invest.2005,115(2): 209-218.
    [22]Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells[J]. Semin. Liver Dis.2001.21:373-84
    [23]Iredale J, Benyon R, Pickering J, et al.1998. Mechanisms of spontaneous resolution of rat liver fibrosis apoptosis and reduced hepatic expression of metalloproteinase inhibitors [J]. J. Clin.Invest.102:538-49
    [24]Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis[J]. Semin Liver Dis.2001,21(3):437-51.
    [25]Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis [J]. J Gastroenterol Hepatol.2007,22 Suppl 1:S73-8.
    [26]Afdhal, N.H., and Nunes, D. Evaluation of liver fibrosis:a concise review. Am. J. Gastroenterol.2004,99:1160-1174.
    [27]Thampanitchawong P., Piratvisuth T. Liver biopsy:complications and risk factors[J]. World J. Gastroenterol.1999,5:301-304.
    [28]Regev, A., et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection[J]. Am. J. Gastroenterol.2002, 97:2614-2618.
    [29]Imbert-Bismut. F, et al.2001. Biochemical markers of liver fibrosis in patients with hepatitis C virus infection:a prospective study[J]. Lancet.357:1069-1075.
    [30]吴丽,魏伟.肝纤维化的动物模型及治疗药物研究[J].中国药理学通报.2004,20(5):481-485
    [31]Podolsky DK, Isselbacher KJ, Chaput JC. Predictive risk factors for progression to cirrhosis in early stage alcoholic liver disease[J]. Gastroenterol Clin Biol. 1998,22(12):997-1002
    [32]Jiang Z, You DY, Chen XC,et al.Monitoring of serum markers of fibrosis during CCl4-induced liver damage-effects of antifibrotic agents[J]. J Hepatol.1992, 16(3):282-9
    [33]Bhunchet E, Fujieda K. Capillarization and venularization of hepatic sinusoids in porcine serum-induced rat liver fibrosis:A mechanism to maintain liver blood flow[J].Hepatology.1993; 18(6):1450-8
    [34]胡志峰,李忻,何燕.DMN诱导的肝纤维化模型伴肾损害的实验观察[J].中国中医基础医学杂志.2010,16(4):291-294
    [35]王晓昆,唐瑛.肝纤维化动物模型研究进展[J].动物医学进展.2007,28(3):95-98
    [36]刘秀英,胡怡秀,胡余明,等.四氯化碳和猪血清肝纤维化模型组织病理比较[J].世界华人消化杂志.2004,12(8):1875-1879.
    [37]Askari F, Dick R, Mao M, et al. Tetrathiomolybdate therapy protects against concanavalin A and carbon tetrachloride hepatic damage in mice[J]. Exp Biol Med.2004,229(8):857-863.
    [38]Sakaida I, Jinhua S, Uchida K, et al. Leptin receptor-deficient Zucker rat retards the development of pig serum-induced liver fibrosis with Kupffer cell dysfunction [J]. Life Sci.2003,73:2491-2501.
    [39]林红,吕淼,张义侠,等.酒精性肝病大鼠模型的建立[J].世界华人消化杂志.2001,9(1):24-8
    [40]周宁,厉有名,张宇,等.大鼠酒精性肝纤维化模型的构建[J].东南大学学报(医学版).2003,22(2):93-97.
    [41]Guangfu X, Pengtao L, Xinyue W, et al. Dynamic changes in the expression of matrix metalloproteinases and their inhibitors, TIMPs, during hepatic fibrosis induced by alcohol in rats[J]. World J Gastroenterol.2004,10(24):3621-3627
    [42]邝满元,刘映霞,李映菊.肝纤维化动物模型造模方法的研究进展[J].现代生物医学进展.2008,8(9):1768-1770
    [43]严珊珊,王宝恩,等.胆管阻塞性肝纤维化模型的建立与改进[J].中华肝脏病杂志.2002,10(5):385-38
    [44]Tsukamoto, Matsuoka M, French SW. Experimental Models of Hepatic Fibrosis: An Review[J].Semin Liver Dis.1990,10(1):56-65
    [45]Chen F,Cai W,Chen Z, et al. Dynamic changes in the collagen metabolism of liver fibrosis at the transcription level in rabbits with Schistosomiasis japonica[J]. Chin M ed J,2002,115(11):1637-1640
    [46]王少明,阮君山,林少兵.肝纤维化动物模型制作研究进展[J].药学服务与研究.2007,7(6):461-464
    [47]刘平,高云华.肝纤维化动物模型的建立[J].世界华人消化杂志.2002;10(6):693-5
    [48]E. Albanis, S. L. Friedman. Antifibrotic Agents for Liver Disease[J]. American Journal of Transplantation.2006,6:12-19
    [49]Zhang L, Mi J, Yu Y,et al. IFN-gamma gene therapy by in trasplentic hepatocyte trasplantation:A novel strategy for reversing hepatic fibrosis in schistosama japanicum-infected mice[J].Par Immunol.2001,23(1):11-7
    [50]Imai K, Sato M, Kojima N,et al. Storage of lipid droplets in and production of extracellular matrix by hepatic stellate cells (vitaminA-storing cells) in Long-Evans cinnamon-like colored (LEC) rats[J].Anat Rec.2000,258(4): 338-48
    [51]Iwamoto H, Sakai H, Nawata H. Inhibition of integrin signaling with Arg-Gly-Asp motifs in rat hepatic stellate cells[J].J Hepatol.1998,29(5):752-9
    [52]Kato R, Ishikawa T, Kamiya S,et al.A new type of antimetastatic peptide derived from fibronectin[J].Clin Cancer Res.2002,8(7):2455-62
    [53]Powell EE, Edwards-Smith CJ, Hay JL,et al.Host genetic factors in fluence disease progression in chronic hepatitis[J].Hepatology.2000,31(4):828-33
    [54]Bataller R, Gines P, Nicolas JM, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells[J].Gastroenterology.2000,118(6):1149-56
    [55]张晶,宗春华,李国定,等.肝星状细胞存在局部肾素-血管紧张素-醛固酮系统[J].中华消化杂志.2003,23(1):38-40
    [56]张艺军,杨希山,吴平生,等.血管紧张素Ⅱ和洛沙坦对肝星状细胞生长、增殖的影响[J].第一军医大学学报.2003,23(3):219-21
    [57]Shimizu I, Mizobuchi Y, Yasuda M, et al.Inhibitory effect of oestradiol on activation of rat hepatic stellate cellsin vivoandin vitro [J]. Gut.1999, 44(1):127-36
    [58]Evans MJ, Eckert A, Lai K,et al. Reciprocal antagonism between estrogen receptor and NF-kappaB activityin vivo[J]. Circ Res.2001,89(9):823-30
    [59]Schupan D, Strobel D, Hahn EG.. Hepatic fibrosis-therapeutic strategies[J]. Degestion.1998,59(4):385-90
    [60]Qi Z, Atsuchi N, Ooshima A, et al. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat[J]. Proc Natl Acad Sci,1999,96(5):2345-49
    [61]Ueno H, Sakamoto T, Nakamura T. A soluble transforming growth factor-βreceptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats[J].Human Gene Ther.2000,11(1):33-42
    [62]Abou-Shady M, FriessH, Zimmermann A,et al. Connective tissue growth factor inhuman liv er cirrhosis[J].Liver.2000,20(4):296-302
    [63]沈敏,邱德凯,陈颖,等.重组肝细胞再生增强因子丹参与苦参对大鼠纤维细胞的作用[J].世界华人消化杂志.2001,9(6):1129-33
    [64]F. Stickel a, D. Schuppan b. Herbal medicine in the treatment of liver diseases[J]. Digestive and Liver Disease.2007,39:293-304
    [65]张冰,张英凯,张敏.丹红注射液抗肝纤维化的临床观察[J].现代中西医结合杂志.2010,19(3):297-298
    [66]施旭光,黄兆胜,吕健,等.虎金颗粒对免疫性肝纤维化大鼠肝功能和肝纤指标的影响[J].浙江中医药大学学报.2010,34(1):62-63
    [67]程君,杨云霞.黄芩苷对四氯化碳致亚急性肝纤维化小鼠的保护作用[J].华西药学杂志.2010,25(1):032-033
    [68]Ueki T, Okamoto E, Takeuchi M,et al. Persectives on postgenome medicine: Gene therapy for liver cirrhosis[J].Nippon Rinsho.2001,59(1):152-6
    [69]Li R, Zhou Y, Wu Z, Ding L. ESI-QqTOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica[J]. J Mass Spectrom.2006,41:1-22.
    [70]Jing W, Zhang Q, Liu A. Determination of pseudoprodioscin in Dioscorea panthaica by HPLC[J]. Zhongguo Zhong Yao Za Zhi.2009,20:2616-8.
    [71]钟惠民,袁瑾,辛宝玲,等.黄山药中氨基酸及营养成分[J].氨基酸和生物资源.2002,24(4):15-16
    [72]董梅,陈泉,吴立军,等.黄山药化学成分的研究[JJ.中草药,2001,32(8):685--686
    [73]董梅,王本祥,吴立军.黄山药化学成分的研究(Ⅱ)[J].中草药,2000,31(10):732-733
    [74]董梅,吴立军,陈泉等.黄山药中甾体皂苷的分离与鉴定[J].药学学报.2001,36(1):42-45
    [75]黄大弼.黄山药治疗无症状心肌缺血远期疗效观察[J].实用医学杂志.1995.11(10):682-683
    [76]赵云茜,康毅,高卫真,等.薯蓣皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].中国心血管杂志.2008,13(6):434-437.
    [77]倪岚,许澎,伍旭升,等.薯蓣皂苷对缺氧/复氧心肌细胞损伤的抗氧化作 用研究[J].上海中医药杂志,2007,41(11):76-77.
    [78]刘遂心,孙明,李彤.缺氧对心肌细胞内游离钙离子浓度和SERcA2表达的影响及薯蓣皂甙的干预作用[J].中华心血管病杂志.2004,32(9):841-843.
    [79]马海英,周秋丽,王本祥,等.黄山药总皂苷和薯蓣皂苷元抗高血脂血症集体外抗血小板聚集的比较[J].中国医院药学杂志.2002,22:323-325
    [80]马海英,赵志涛,王丽娟,等.薯蓣皂苷元和黄山药总皂苷抗高脂血症作用比较[J].中国中药杂志.2002,27:528-530
    [81]张伟锋,刘宝山.薯蓣皂苷的药理作用研究进展[J].世界中西医结合杂志.2010,5(6):543-545
    [82]王丽娟,王岩,陈声武,等.薯蓣皂苷元体内、外的抗肿瘤作用[J].中国中药杂志.2002,27(10):777-779.
    [83]宋宇,梁长青,何忠梅,等.薯蓣皂苷元体外抗肿瘤作用的研究[J].中国肿瘤.2004,13(10):651-653.
    [84]高志捷,陈信义,刘江涛,等.薯蓣皂苷体外抑制白血病细胞增殖研究[J].中国中医基础医学杂志.2003,9(8):17-19.
    [85]洪振强,林建华,张俐.薯蓣皂苷元对人骨肉瘤U-20S细胞周期调控蛋白表达的影响[J].福建中医药.2009,40(5):46-48.
    [86]王济兴,张风英,宋鸿儒,等.穿山龙总皂苷对大鼠T淋巴细胞功能影响的血清药理学研究[J].时珍国医国药.2006,17(9):1653-1654.
    [87]Friedman, S.L. Liver fibrosis-from bench to bedside[J]. J. Hepatol.2003, 38(Suppl.1):S38-S53.
    [88]Grasela T H, Fiedler-Kelly J, Walawander C A, et al. Challenges in the transition to model-based development[J]. AAPS J.2005,7(2):E488-E495.
    [89]Zheng C, Han L, Yap C W, et al. Progress and problems in the exploration of therapeutic targets[J]. Drug Discov Today.2006,11(9-10):412-420.
    [90]Zheng C J, Han L Y, Yap C W, et al. Trends in exploration of therapeutic targets[J]. Drug News Perspect.2005,18(2):109-127.
    [91]Palfreyman M G. Human tissue in target identification and drug discovery[J]. Drug Discov Today.2002,7(7):407-409.
    [92]Yang J, Zhan C Y, Dong X C, et al. Interaction of human fibrinogen receptor (GPⅡb-Ⅲa) with decorsin[J]. Acta Pharmacol Sin.2004,25(8):1096-1104.
    [93]Chanrion M, Negre V, Fontaine H, et al. A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer [J]. Clin Cancer Res.2008,14(6):1744-1752.
    [94]Jezequel P, Campone M, Roche H, et al. A 38-gene expression signature to predict metastasis risk in node-positive breast cancer after systemic adjuvant chemotherapy:a genomic substudy of PACS01 clinical trial[J]. Breast Cancer Res Treat.2009,116(3):509-520.
    [95]Lamb J, Crawford E D, Peck D, et al. The Connectivity Map:using gene-expression signatures to connect small molecules, genes, and disease[J]. Science.2006,313(5795):1929-1935.
    [96]Fielden M R, Eynon B P, Natsoulis G, et al. A gene expression signature that predicts the future onset of drug-induced renal tubular toxicity[J]. Toxicol Pathol.2005,33(6):675-683.
    [1]王桂平,叶云,郑文岭等Toppgene筛选肺腺癌候选疾病基因[J].中国肺癌杂志.2010,13(4):282-286.
    [2]Turner FS,Clu erbuck DR,Semple CA.POCUS:mining genomic sequence annotation to predict disease genes[J].Genome Biol.2003,4(11):R75.
    [3]Oti M,Snel B,Huynen MA,et al.Predicting disease genes using protein-protein interactions[J].J Med Genet.2006,43(8):691-698.
    [4]Kann MGProtein interactions and disease:computational approaches to uncover the etiology of diseases[J].Brief Bioinform.2007,8(5):333-346.
    [5]Adie EA,Adams RR,Evans KL,et al. Speeding disease gene discovery by sequence based candidate prioritization[J].BMC Bioinformatics.2005,6:55.
    [6]Berg J,Lassig M,Wagner A. Structure and evolution of protein interaction networks:a statistical model for link dynamics and gene duplications[J].BMC Evol Biol.2004,4(1):51.
    [7]Adie EA,Adams RR,Evans KL,et al. SUSPECTS enabling fast and e ective prioritization of positional candidates[J].Bioinformatics.2006,22(6):773-774.
    [8]Chen J,Aronow B,Jegga A. Disease candidate gene identification and prioritization using protein interaction networks[J]. BMC Bioinformatics. 2009,10:73.
    [9]Li C.Automating dChip:toward reproducible sharing of microarray data analysis[J].BMC Bioinformatics.2008,9:231.
    [10]Rebhan M,Chalifa-Caspi V,Prilusky J,et al.GeneCards:a novel functional genomics compendium with automated data mining and query reformulation support[J].Bioinformatics.1998,14(8):656-664.
    [11]Chen J,Bardes EE,Aronow BJ,et al.ToppGene Suite for gene list enrich-ment analysis and candidate gene prioritization[J].Nucl Acids Res.2009,37 (webserverissue):W305-W311.
    [12]Li Y,Su MQ,Yun QH, et al. Establishment and application of DD3 gene detection with real-time uorescence quanti ed reverse transcription polymer ase chain reaction in patients with prostate cancer[J].J Fourth Mil Med Univer. 2009,30(17):1623-1626.
    [13]Hu JX,Li JY,Zhao JD, et al. Expression and signi cance of Snai2 in gastric cancer by cDNA microarray[J].Chin J Mod Med.2009,19(15):2286-2293
    [14]Kohler S,Bauer S,Horn D, et al.Walking the interactome for prioritization of candidate disease genes[J].Am J Hum Genet.2008,82(4):949-958.
    [15]Han S, Lan Q, Park AK, et al. Polymorphisms in innate immunity genes and risk of childhood leukemia[J]. Hum Immunol.2010,71(7):727-30
    [16]Moore JH. Bioinformatics[J]. J Cell Physiol.2007,213(2):365-369.
    [17]孙啸,陆祖宏,谢建明,编著.生物信息学基础[M].北京:清华大学出版社,2005:18-23.
    [18]Kanehisa M, Bork P. Bioinformatics in the post-sequence era[J]. Nat Genet. 2003,33 Suppl:305-310.
    [19]Hanauer DA, Rhodes DR, Sinha-Kumar C, et al. Bioinformatics approaches in the study of cancer[J]. Curr Mol Med.2007,7(1):133-141.
    [20]Wei L, Yu J. Bioinformatics in China:a personal perspective [J]. PLoS Comput Biol.2008,4(4):e1000020.
    [21]Zaki MJ, Karypis G, Yang J. Data Mining in Bioinformatics (BIOKDD) [J].Algorithms Mol Biol.2007,2:4.
    [22]Munera J, Cecena G, Jedlicka P, et al. Ets2 regulates colonic stem cells and sensitivity to tumorigenesis. Stem Cells[J].2011,29(3):430-9.
    [23]Dreyfus F, Picard F, Gisselbrecht S, et al. ets-1 and ets-2 proto-oncogene expression in human leukemia cells and cell lines[J]. Nouv Rev Fr Hematol. 1989,31(3):217-21.
    [24]Dwyer J, Li H, Xu D, et al. Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family [J]. Ann N Y Acad Sci. 2007,1114:36-47.
    [25]Xu D, Dwyer J, Li H, et al. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc[J]. J Biol Chem.2008, 283(35):23567-80.
    [26]Dwyer JM, Liu JP. Ets2 transcription factor, telomerase activity and breast cancer[J]. Clin Exp Pharmacol Physiol.2010,37(1):83-7.
    [27]Li L, Cohen SN. Tsg101:a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells[J]. Cell. 1996,85(3):319-29.
    [28]Koonin EV, Abagyan RA. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators [J]. Nat Genet.1997,16(4):330-1.
    [29]Li L, Li X, Francke U, et al. The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer [J]. Cell. 1997,10;88(1):143-54.
    [30]Trink B, Pai SI, Spunt SL, et al. Absence of TSG101 transcript abnormalities in human cancers[J]. Oncogene.1998,16(21):2815-8.
    [31]Liu F, Yu Y, Jin Y, et al. TSG101, identified by screening a cancer cDNA library and soft agar assay, promotes cell proliferation in human lung cancer [J]. Mol Biol Rep.2010,37(6):2829-38.
    [32]Broniarczyk J, Olejnik-Schmidt AK, Luczak MW, et al. Analysis of expression and structure of the TSG101 gene in cervical cancer cells[J]. Int J Mol Med. 2010,25(5):777-83.
    [33]Zhang Y, Song M, Cui ZS, et al. Down-regulation of TSG101 by small interfering RNA inhibits the proliferation of breast cancer cells through the MAPK/ERK signal pathway[J]. Histol Histopathol.2011,26(1):87-94.
    [34]Jiao J, Sun K, Walker WP, et al. Abnormal regulation of TSG101 in mice with spongiform neurodegeneration[J]. Biochim Biophys Acta.2009, 1792(10):1027-35.
    [35]Chen H, Liu X, Li Z, et al. TSG101:a novel anti-HIV-1 drug target[J].Curr Med Chem.2010;17(8):750-8.
    [36]Diaz L, Mao H, Zhou Y, et al. TSG101 exposure on the surface of HIV-1 infected cells:implications for monoclonal antibody therapy for HIV/AIDS[J]. Am J Transl Res.2010,20;2(4):368-80.
    [37]Lee AY, Kulkarni M, Fang AM, et al. The effect of genetic variants in SERPING1 on the risk of neovascular age-related macular degeneration[J]. Br J Ophthalmol.2010,94(7):915-7.
    [38]Klaver CC, Bergen AA. The SERPING1 gene and age-related macular degeneration [J]. Lancet.2008,372(9652):1788-9
    [39]Davis AE 3rd, Bissler JJ, Cicardi M. Mutations in the C1 inhibitor gene that result in hereditary angioneurotic edema [J]. Behring Inst Mitt.1993, (93):313-20.
    [40]Gosswein T, Kocot A, Emmert G, et al. Mutational spectrum of the C1INH (SERPING1) gene in patients with hereditary angioedema[J]. Cytogenet Genome Res.2008,121(3-4):181-8.
    [41]Meng Li, Feng Wen, Chengguo Zuo, et al. SERPING1 polymorphisms in polypoidal choroidal vasculopathy [J]. Molecular Vision.2010,16:231-239
    [42]Kerstetter AE, Azodi E, Marrs JA, et al. Cadherin-2 function in the cranial ganglia and lateral line system of developing zebrafish[J]. Dev Dyn.2004, 230(1):137-43.
    [43]Kadowaki M, Nakamura S, Machon O, et al. N-cadherin mediates cortical organization in the mouse brain [J]. Dev Biol.2007,304(1):22-33.
    [44]Akins MR, Benson DL, Greer CA. Cadherin expression in the developing mouse olfactory system [J]. J Comp Neurol.2007,501(4):483-97.
    [45]Nakazora S, Matsumine A, Iino T, et al. The cleavage of N-cadherin is essential for chondrocyte differentiation[J]. Biochem Biophys Res Commun.2010, 400(4):493-9.
    [46]Birchmeier W. E-cadherin as a tumor (invasion) suppressor gene [J]. Bioessays. 1995,17(2):97-9.
    [47]Nagi C, Guttman M, Jaffer S, et al. N-cadherin expression in breast cancer: correlation with an aggressive histologic variant--invasive micropapillary carcinoma [J]. Breast Cancer Res Treat.2005,94(3):225-35.
    [48]Curtis DJ, McCormack MP.The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia[J].Clin Cancer Res.2010,16(23):5618-23
    [49]Younes SF, Beck AH, Lossos IS, et al. Immunoarchitectural patterns in follicular lymphoma:efficacy of HGAL and LMO2 in the detection of the interfollicular and diffuse components [J]. Am J Surg Pathol.2010,34(9):1266-76.
    [50]Sonmez M, Akagun T, Cobanoglu U, et al. Effect of LMO2 protein expression on survival in chronic myeloid leukemia patients treated with imatinib mesylate[J]. Hematology.2009,14(4):220-3.
    [51]Acharya M, Lingenfelter DJ, Huang L, et al. Human PRKC apoptosis WT1 regulator is a novel PITX2-interacting protein that regulates PITX2 transcriptional activity in ocular cells[J]. J Biol Chem.2009,284(50):34829-38.
    [52]Johnstone RW, Tommerup N, Hansen C, et al. Mapping of the human PAWR (par-4) gene to chromosome 12q21[J]. Genomics.1998,15;53(2):241-3.
    [53]Nagai MA, Gerhard R, Salaorni S, et al. Down-regulation of the candidate tumor suppressor gene PAR-4 is associated with poor prognosis in breast cancer[J]. Int J Oncol.2010,37(1):41-9.
    [54]Liou YJ, Chen TJ, Tsai SJ, et al. Evidence of involvement of the human Par-4 (PAWR) gene in major depressive disorder[J]. World J Biol Psychiatry.2010 Aug 24.
    [55]Liou YJ, Chen ML, Wang YC, et al. Analysis of genetic variations in the human Par-4 (PAWR) gene and tardive dyskinesia in schizophrenia[J]. Am J Med Genet B Neuropsychiatr Genet.2009,150B(3):439-40.
    [56]Wang LH, Chen JY, Liou YJ, et al. Association of missense variants of the PRKC, apoptosis, WT1, regulator (PAWR) gene with schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry.2008,32(3):870-5.
    [57]Pape LK, Koerner TJ, Tzagoloff A. Characterization of a yeast nuclear gene (MST1) coding for the mitochondrial threonyl-tRNA1 synthetase[J]. J Biol Chem.1985,260(28):15362-70.
    [58]Creasy CL, Chernoff J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases[J]. Gene.1995,167(1-2):303-6.
    [59]Yoshimura T, Yuhki N, Wang MH, et al. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3[J]. J Biol Chem.1993,268(21):15461-8.
    [60]Yuan F, Xie Q, Wu J, et al. MST1 promotes apoptosis through regulating Sirtl-dependent p53 deacetylation[J]. J Biol Chem.2011,286(9):6940-5.
    [61]Wen W, Zhu F, Zhang J, et al. MST1 promotes apoptosis through phosphorylation of histone H2AX[J]. J Biol Chem.2010,285(50):39108-16
    [62]Song H, Mak KK, Topol L, et al. Mammalian Mstl and Mst2 kinases play essential roles in organ size control and tumor suppression[J]. Proc Natl Acad Sci U S A.2010,107(4):1431-6.
    [63]Seidel C, Schagdarsurengin U, Bliimke K, et al. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma[J]. Mol Carcinog.2007,46(10):865-71.
    [64]Lee SJ, Lee MH, Kim DW, et al. Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma[J]. PLoS One. 2011,6(1):e16180.
    [65]Babel I, Barderas R, Diaz-Uriarte R, et al. Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays[J]. Mol Cell Proteomics.2011,10(3):M110.001784.
    [66]Katagiri K, Katakai T, Ebisuno Y, et al. Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes[J]. EMBO J.2009,28(9):1319-31.
    [67]Ono H, Ichiki T, Ohtsubo H, et al. Critical role of Mstl in vascular remodeling after injury[J]. Arterioscler Thromb Vasc Biol.2005,25(9):1871-6.
    [68]P McCormick, H Ooi, and O Crosbie.Tranexamic acid for severe bleeding gastric antral vascular ectasia in cirrhosis[J].Gut.1998,42(5):750-752. PMCID:PMC 1727106
    [69]Ickx BE, van der Linden PJ, Melot C, et al. Comparison of the effects of aprotinin and tranexamic acid on blood loss and red blood cell transfusion requirements during the late stages of liver transplantation[J]. Transfusion.2006, 46(4):595-605.
    [70]Lee JH, Lee H, Joung YK, et al. The use of low molecular weight heparin-pluronic nanogels to impede liver fibrosis by inhibition the TGF-β/Smad signaling pathway [J]. Biomaterials.2011,32(5):1438-45
    [71]Abe W, Ikejima K, Lang T, et al. Low molecular weight heparin prevents hepatic fibrogenesis caused by carbon tetrachloride in the rat[J]. J Hepatol.2007, 46(2):286-94.
    [72]Abdel-Salam OM, Baiuomy AR, Ameen A, et al. A study of unfractionated and low molecular weight heparins in a model of cholestatic liver injury in the rat[J]. Pharmacol Res.2005,51(1):59-67.
    [73]Amitrano L, Guardascione MA, Menchise A, et al. Safety and efficacy of anticoagulation therapy with low molecular weight heparin for portal vein thrombosis in patients with liver cirrhosis[J]. J Clin Gastroenterol. 2010,44(6):448-51.
    [74]Shi J, Hao JH, Ren WH, et al. Effects of heparin on liver fibrosis in patients with chronic hepatitis B[J]. World J Gastroenterol.2003,9(7):1611-4.
    [75]Chavez E, Castro-Sanchez L, Shibayama M, et al. Effects of acetyl salycilic acid and ibuprofen in chronic liver damage induced by CCl4[J]. J Appl Toxicol.2011 Feb 24. doi:10.1002/jat.1638. [Epub ahead of print]
    [76]Trebicka J, Hennenberg M, Odenthal M, et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells[J].J Hepatol.2010,53(4):702-12.
    [77]Foster T, Budoff MJ, Saab S, et al. Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease:the St Francis Heart Study randomized clinical trial[J]. Am J Gastroenterol.2011,106(1):71-7.
    [78]Trebicka J, Hennenberg M, Laleman W, et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase[J]. Hepatology.2007,46(1):242-53.
    [79]Anstee QM, Goldin RD, Wright M, et al. Coagulation status modulates murine hepatic fibrogenesis:implications for the development of novel therapies[J]. J Thromb Haemost.2008,6(8):1336-43
    [1]Li R, Zhou Y, Wu Z, Ding L. ESI-QqTOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica[J]. J Mass Spectrom.2006,41:1-22.
    [2]Jing W, Zhang Q, Liu A. Determination of pseudoprodioscin in Dioscorea panthaica by HPLC[J]. Zhongguo Zhong Yao Za Zhi.2009,20:2616-8.
    [3]钟惠民,袁瑾,辛宝玲,等.黄山药中氨基酸及营养成分[J].氨基酸和生物资源.2002,24(4):15-16
    [4]董梅,陈泉,吴立军,等.黄山药化学成分的研究[J].中草药.2001,32(8):685-686
    [5]董梅,王本祥,吴立军.黄山药化学成分的研究(n)[J].中草药.2000,31(10):732-733
    [6]董梅,吴立军,陈泉等.黄山药中甾体皂苷的分离与鉴定[J].药学学报. 2001,36(1):42-45
    [7]黄大弼.黄山药治疗无症状心肌缺血远期疗效观察[J].实用医学杂志.1995,11(10):682-683
    [8]赵云茜,康毅,高卫真,等.薯蓣皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].中国心血管杂志.2008,13(6):434-437.
    [9]倪岚,许澎,伍旭升,等.薯蓣皂苷对缺氧/复氧心肌细胞损伤的抗氧化作用研究[J].上海中医药杂志.2007,41(11):76-77.
    [10]刘遂心,孙明,李彤.缺氧对心肌细胞内游离钙离子浓度和SERcA2表达的影响及薯蓣皂甙的干预作用[J].中华心血管病杂志.2004,32(9):841-843.
    [11]马海英,周秋丽,王本祥,等.黄山药总皂苷和薯蓣皂苷元抗高血脂血症集体外抗血小板聚集的比较[J].中国医院药学杂志.v2002,22:323-325
    [12]马海英,赵志涛,王丽娟,等.薯蓣皂苷元和黄山药总皂苷抗高脂血症作用比较[J].中国中药杂志.2002,27:528-530
    [13]张伟锋,刘宝山.薯蓣皂苷的药理作用研究进展[J].世界中西医结合杂志.2010,5(6):543-545
    [14]Ho AS, Cheng CC, Lee SC, et al. Novel biomarkers predict liver fibrosis in hepatitis C patients:alpha 2 macroglobulin, vitamin D binding protein and apolipoprotein AI[J].J Biomed Sci.2010,15;17:58.
    [15]Tsai MH, Peng YS, Chen YC, et al. Low serum concentration of apolipoprotein A-I is an indicator of poor prognosis in cirrhotic patients with severe sepsis[J]. J Hepatol.2009,50(5):906-15.
    [16]Yang F, Yin Y, Wang F, et al. An altered pattern of liver apolipoprotein A-I isoforms is implicated in male chronic hepatitis B progression[J].J Proteome Res. 2010,9(1):134-43.
    [17]Wang H, Lafdil F, Kong X, et al. Signal transducer and activator of transcription 3 in liver diseases:a novel therapeutic target[J]. Int J Biol Sci.2011,7(5):536-50.
    [18]Shigekawa M, Takehara T, Kodama T, et al. Involvement of STAT3-regulated hepatic soluble factors in attenuation of stellate cell activity and liver fibrogenesis in mice[J]. Biochem Biophys Res Commun.2011,406(4):614-20.
    [19]Plum W, Tschaharganeh DF, Kroy DC, et al. Lack of glycoprotein 130/signal transducer and activator of transcription 3-mediated signaling in hepatocytes enhances chronic liver injury and fibrosis progression in a model of sclerosing cholangitis[J].Am J Pathol.2010,176(5):2236-46.
    [20]Hosui A, Kimura A, Yamaji D, et al. Loss of STAT5 causes liver fibrosis and cancer development through increased TGF-{beta} and STAT3 activation[J]. J Exp Med.2009,206(4):819-31.
    [21]Gangadharan B, Antrobus R, Chittenden D, et al. New approaches for biomarker discovery:the search for liver fibrosis markers in hepatitis C patients[J].J Proteome Res.2011,10(5):2643-50.
    [22]Ali OS, Abo-Shadi MA, Hammad LN. The biological significance of serum complements C3 and C4 in HCV-related chronic liver diseases and hepatocellular carcinoma[J]. Egypt J Immunol.2005,12(2):91-9.
    [23]Gangadharan B, Antrobus R, Dwek RA, et al. Novel serum biomarker candidates for liver fibrosis in hepatitis C patients[J].Clin Chem.2007,53(10):1792-9.
    [24]Baumann M, Witzke O, Canbay A, et al. Serum C3 complement concentrations correlate with liver function in patients with liver cirrhosis[J].Hepatogastroenterology.2004,51(59):1451-3.
    [1]Lee T Y, Wang G J, Chiu J H, et al. Long-term administra-tion of Salvia miltiorrhiza ameliorates carbon tetrachloride-in-duced hepatic fibrosis in rats[J]. J Pharm Pharmacol.2003,55:1561-1568
    [2]Muriel P,Martinez F E, Alvarez P V, et al. Thalidomide a-meliorates carbon tetrachloride induced cirrhosis in the rat[J].Eur J Gastroenterol Hepatol.2003,25: 951-957
    [3]宋仕玲,龚作炯,张全荣.实验性大鼠肝纤维化TGF-beta1及其受体mRNA与Smad3,7的表达[J].世界华人消化杂志.2004,12(3):676-679.
    [4]王晓昆,唐瑛.肝纤维化动物模型研究进展[J].动物医学进展.2007,28(3):95-98
    [5]Ryhanen L, Stenback F, Ala-Kokko L, et al. The effect of malotilate on type III and type IV collagen, laminin and fibronectin metabolism indimethylnitrosamine—induced liver fibrosis in the rat[J]. J Hepatology.1996,24(2):238-45.
    [6]Chevallier M, Guerret S, Chossegros P, et al. A histological semiquantitative scoring system for evaluation of hepatic fibrosis in needleliver biopsy specimens:comparison with morphometric studies [J]. Hepatology.1994,20(2): 349-55.
    [7]Zhen MC, Wang Q, Huang XH, et al.Green tea polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride -induced hepatic fibrosis[J]. J Nutr Biochem. 2007,18:795-805.
    [8]Dong M, Feng XZ, Wang BX, et al. Steroidal saponins from Dioscorea panthaica and their cytotoxic activity[J]. Pharmazie.2004,4:294-6.
    [9]Fraga CG, Leibovitz BE, Tappel AL. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices:characterization and comparison with homogenates and microsomes[J]. Free Radic Biol Med.1988, 3:155-61.
    [10]Francis G, Kerem Z, Makkar HP, et al. The biological action of saponins in animal systems:a review[J].Br J Nutr.2002,6:587-605.
    [11]Gandhi CR, Sproat LA, Subbotin VM. Increased hepatic endothelin-1 levels and endothelin receptor density in cirrhotic rats[J]. Life Sci.1996,1:55-62.
    [12]Svegliati Baroni G, D'Ambrosio L, Ferretti G, et al. Fibrogenic effect of oxidative stress on rat hepatic stellate cells[J]. Hepatology.1998,3:720-6.
    [13]Hsieh CC, Fang HL, Lina WC. Inhibitory effect of Solanum nigrum on thioacetamide-induced liver fibrosis in mice[J]. J Ethnopharmacol. 2008,1:117-21.
    [14]Jing W, Zhang Q, Liu A. Determination of pseudoprodioscin in Dioscorea panthaica by HPLC[J]. Zhongguo Zhong Yao Za Zhi.2009,20:2616-8.
    [15]Kishimoto T, Matsuoka T, Imamura S, et al. A novel colorimetric assay for the determination of lysophosphatidic acid in plasma using an enzymatic cycling method[J]. Clin Chim Acta.2003,333:59-67.
    [16]Knight B, Lim R, Yeoh GC, et al. Interferon-γ exacerbates liverd amage, the hepatic progenit or cell response and brosis in a mouse model of chronic liver injury[J]. J Hepatol.2007,47:826-33.
    [17]Li R, Zhou Y, Wu Z, et al. ESI-QqTOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica[J]. J Mass Spectrom.2006,41:1-22.
    [18]Ma HY, Zhao ZT, Wang LJ, et al. Comparative study on anti-hypercholesterolemia activity of diosgenin and total saponin of Dioscorea panthaica[J].Zhongguo Zhong Yao Za Zhi.2002,27:528-31.
    [19]Macey M, Azam U, McCarthy D, et al. Evaluation of the anticoagulants EDTA and citrate, theophylline, adenosine, and dipyridamole (CTAD) for assessing platelet activation on the AD VIA 120 hematology system[J]. Clin Chem. 2002,48:891-9.
    [20]Meister A, Anderson ME. Glutathione. Annual review of biochemistry[J]. 1983,52:711-760.
    [21]Muriel P. Nitric Oxide Protection of Rat Liver from Lipid Peroxidation, Collagen Accumulation, and Liver Damage Induced by Carbon Tetrachloride[J]. Biochem pharmacol.1998,56:773-9.
    [22]Ookhtens M, Kaplowitz N. Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine[J]. Semin Liver Dis.1998,18:313-29.
    [23]Pietrangelo A. Iron, oxidative stress and liver fibrogenesis[J]. J Hepatol. 1998,28:8-13.
    [24]Sakaida I, Matsumura Y, Kubota M, et al. The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by cholined eficient L-amino acid-defined diet[J]. Hepatology.1996,23:755-63.
    [25]Umezu-Goto M, Kishi Y, Taira A, et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production[J]. J cell biol.2002,158:227-33.
    [26]Watanabe N, Ikeda H, Nakamura K, et al. Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity[J]. Life Sci.2007,81:1009-15.
    [27]Zhen MC, Wang Q, Huang XH, et al. Green tea polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride-induced hepatic fibrosis [J]. J Nutr Biochem. 2007,18:795-805.
    [1]中国中西医结合学会肝病专业委员会.肝纤维化中西医结合诊疗指南[J].中西医结合学报.2006,4(6):551-554
    [2]王文兵,戴立里,郑元义.三七总皂甙对大鼠肝纤维化防治机制[J].世界华人消化病杂志.2004,12(8):1939-1942
    [3]武凡,张树三,康格非.三七皂甙对肝纤维化大鼠分泌型磷脂酶A2和肿瘤坏死因子表达的影响[J].中华肝脏病杂志.2003,11(1):51-52
    [4]郭景珍,万方,李忻,等.柴胡皂甙d对二甲基亚硝胺所致肝纤维化大鼠炎症相关因子的影响[J].中华中医药杂志.2008,23(11):970-972
    [5]KangHC,Nan JX, Park PH, et al Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro[J].Pharm Pharmacol.2002,54(1):119
    [6]何雅军,舒建昌,吕霞,等.姜黄素预防肝纤维化作用与肝星状细胞的关系[J].中 华肝脏病杂志.2006,14(5):337
    [7]刘永刚,陈厚昌,赵进军,等.姜黄素对四氯化碳损伤原代培养大鼠肝细胞的影响[J].中成药.2003,25(3):222
    [8]王红,陈在忠.川芎嗪对大鼠肝纤维化脂质过氧化的影响[J].中华肝脏病杂志.2000,8(2):98
    [9]姬成伟,刘晋敏,李亮成,等.川芎嗪阻抑大鼠肝纤维化作用实验研究[J].山西医科大学学报.2003,34(4):293
    [10]韩志启.凯西莱联合川芎嗪抗肝纤维化的疗效观察[J].中西医结合肝病杂志.2004,14(3):174
    [11]范列英,孔宪涛,高峰,等.汉防己甲素对大鼠肝细胞、贮脂细胞DNA及胶原合成的影响[J].中华消化杂志.1994,14(5):281
    [12]ZhaoYZ, Km JY, Park EJ, et al Tetrandrine induces apoptosis in epatic stellate cells[J]. PhytotherRes.2004,18(4):306-309
    [13]陈颖伟,卫新革,展玉涛,等.大黄与粉防己碱抗实验性肝纤维化的对照研究[J].中华消化杂志.2003,23(8):476-9
    [14]刘琛,尤大钰,姜 藻,等.维生素E和汉防己甲素防治肝纤维化的实验研究[J].南京铁道医学院学报.1997,16(4):234
    [15]王志荣,陈锡美,李定国,等·粉防己碱抑制肝纤维化大鼠肝组织c-fos和c-jun mRNA表达[J]·上海医学.2003,26(5):332-4
    [16]陈源文,李定国,吴建新,等.氧化苦参碱对转化生长因子-β1促肝星状细胞活化及跨膜信号转导影响[J].胃肠病学和肝病学杂志.2005,14(1):512-516
    [17]宋维芳,许瑞龄,王登妮等.水飞蓟宾对大鼠实验性肝纤维化发生发展作用机制的研究[J].山西医科大学学报.2009,40(5):423-426,480
    [18]刘诗权,于皆平,冉宗学.银杏叶提取物对大鼠慢性肝损伤的保护作用[J].中国药科大学学报.2003,34(1):61-64
    [19]王莉,蔡克银,黄尚珍,等.银杏叶提取物对实验性肝纤维化形成中MMP-2表 达的影响[J].山东医药.2004,44(1):27-29
    [20]罗燕军,于皆平,罗和生.银杏叶提取物对四氯化碳诱发大鼠肝纤维化的预防作用[J].中华消化杂志.2004,24(5):307-308
    [21]胡伟,时昭红,马庭芳,等.银杏叶提取物抗大鼠肝纤维化的作用[J].世界华人消化病杂志.2004,12(4):886-89
    [23]Lee SJ, Kim YQ Kang KW, et al Effects of colchicine on liver functions of cirrhotic rats:beneficial effects result from stellate cell inactivation and inhibition of TGF betal expression[J]. Chem Biol Interact.2004,147(1):9
    [24]郭绍举,刘禹翔,谢伟,等.中医药抗肝纤维化的近况[J].中西医结合肝病杂志.2002,12(1):62
    [25]胡咏武,王胜春,李哲,等.丹参酮Ⅱ A对LPS等诱导的肝细胞损伤及枯否细胞释放细胞因子的作用[J].中国药理学通报.2005,21(12):1482-1486.
    [26]刘成海,刘平,胡义扬,等.丹酚酸B盐对转化生长因子-β1刺激肝星状细胞活化与胞内信号转导的作用[J].中华医学杂志.2002,82(18):1267-1272.
    [27]薛冬英,洪嘉禾,徐列明,等.丹参酚酸B对转化生长因子-β1和血小板衍生生长因子-BB在肝星状细胞内信号传导的影响[J].中国中西医结合杂志.2006,26(5):439-442.
    [28]宋少刚,杨雁,陈敏珠.黄芪总提物对大鼠肝星状细胞增殖及产生胶原的影响[J].中国临床药理学与治疗学.2001,6(2):111-113.
    [29]陆江,李辰蕊.黄芪注射液对早期肝硬化患者生化及肝纤维化指标的影响[JJ].山东中医杂志.2003,22(12):714-715.
    [30]程鹏,刘素侠,孙晋浩,等.黄芪抗肝纤维化的作用与转化生长因子-β1及干扰素γ的关系[J].临床军医杂志.2000,28(3):22-23.
    [31]李孝波,李东良,门九章.中药两头尖提取物抗慢性乙型肝炎肝纤维化67例临床观察[J].世界中西医结合杂志.2010,5(3):219-221
    [32]刘殿武,彭彦辉,张丽梅等.活血化瘀中药治疗肝纤维化作用靶点和机制研究 [J].医学研究杂志.2007,36(3):54-55
    [33]王丽春,赵连三,唐红,等.温阳中药复方肝之福逆转肝纤维化的实验研究[J].中国中西医结合杂志.2006,26(1):63-67
    [34]陈廷玉,王景涛,张波.小柴胡汤抗肝纤维化的形态学和血清学实验研究[J].黑龙江医药科学.2003,26(4):48-49.
    [35]邓子德,肖杰生,俞洪林.改良小柴胡汤对慢性肝病患者肝纤维化标志物的作用[J].中国中西医结合脾胃杂志.1996,4(4):205-208.
    [36]周光德,李文淑,赵景民,等.复方鳖甲软肝片抗肝纤维化机制的临床病理研究[J].解放军医学杂志,2004,29(7):563.
    [37]王先开,赵春,娄国强.γ-干扰素合复方鳖甲软肝片抗肝纤维化疗效观察[J].浙江中西医结合杂志.2005,15(8):491.
    [38]王海燕,朱跃科,申凤俊等.复方861对DMN损伤性大鼠肝纤维化肝脏中MMP-2表达的影响[J].肿瘤学.2007,9(4):31-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700