用户名: 密码: 验证码:
线性系统状态空间模结构与可控性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在线性系统理论的研究领域中,随着所采用的数学工具和所采用的系统描述的不同,已经形成了四个平行的分支。这些分支是:状态空间法、几何方法、代数理论以及多变量频域方法。本文将线性系统研究的状态空间方法和代数理论(模理论)结合起来,研究了线性系统状态空间的模论方法,将状态空间作为多项式环上的有限生成模处理,利用状态空间模结构理论,研究了状态空间的分解、可控的充要条件、可控规范型及状态反馈极点配置等问题。主要结果如下:
     (1)给出了定常多变量线性系统状态空间的模结构分析方法。
     讨论了状态空间(向量空间)的模结构分解,特别讨论了复数域和实数域上向量空间的分解情形,引入了变换(或矩阵)的特征值对应的生成根向量的定义,得到了循环模的生成元与变换的生成根向量之间的关系。运用实数域上向量空间的模结构分解,得到了实数域上矩阵的几种相似标准形并应用于线性系统的模态结构分解;利用主理想环上有限生成模的性质给出了状态空间的一种直和分解方法,并得到了系统矩阵准对角化方法,应用此方法可以研究可控子空间的分解,为系统矩阵的化简提供了完善的理论方法。
     (2)讨论了线性系统的可控性问题,得到了一类新的块对角规范型。
     利用系统传递函数(矩阵)推广了一类多输入线性定常系统完全可控的多项式判据;讨论了定常线性系统的可控性矩阵秩的性质,指出对输入矩阵施行列初等变换后不改变系统的可控性,提出了判断定常线性多输入系统可控性的一种快速迭代算法及其改进算法,得到了判断其可控性的最多迭代步数,而当迭代矩阵的秩没有增加时便可断定其不可控;提出了一种新的改进型求解线性定常系统能控规范型的迭代算法;利用主理想环上有限生成模的性质讨论了该模及其子模的零化子的性质,并应用于定常线性系统的可控性研究,得到了定常线性系统完全可控的充要条件并得到了基于向量空间的模结构分解和矩阵的有理标准形的一类新的块对角可控规范型。
     (3)利用线性系统的可控性研究了某些特殊矩阵。
     将Hankel矩阵和r-循环矩阵视为某单输入线性系统的可控性矩阵,通过可控性分析得到了Hankel矩阵和r-循环矩阵的可逆条件及求逆的方法;讨论了两个多项式矩阵右互质时其广义Sylvester矩阵的性质,指出了广义Sylvester矩阵与R-循环分块矩阵的联系,得到了R-循环分块矩阵可逆时的充要条件,为这一类分块矩阵及其相关矩阵的研究提供了一种新的方法。
     (4)研究了定常线性系统的状态反馈极点配置问题。
     提出了几种状态反馈极点配置问题的新算法,有基于第一能控规范型的状态反馈极点配置问题算法;基于广义Wonham可控规范型的状态反馈极点配置问题算法;基于循环矩阵的状态反馈极点配置问题的改进算法;这些算法的优点是不需要计算系统的特征多项式;并将利用主理想环上有限生成模的性质得到的一类新的块对角可控规范型应用于研究定常多输入线性系统的极点配置问题,此方法将多输入线性系统极点配置问题转化为个数为系统矩阵循环指数的单输入系统的极点配置问题,进而推导出确定一个反馈增益矩阵的最少元素个数即为系统的阶数。和通常的方法相比较,这些算法减小了计算量,并得到了反馈增益矩阵的一个含有任意参数的一般表达式。
There are four major branches for studying linear system theory according to being used mathematic methods and being described system. They are state space method, geometry method, algebra theory and multi-variable frequency-domain method. This dissertation combines state space method with algebra method, presents a module structure in state space for linear system. The state space can be associated with a module over the polynomial ring. By means of the properties of finitely generated module over a principal ideal domain, the decomposition in state space, the necessary and sufficient condition for controllability, controllability canonical forms and pole placement problem for state feedback are discussed. The main results are following.
     (1) Module structure analysis for state space of linear time-invariant system is presented. A non-zero finite dimensional vector space over a field F can be associated with a module over the ring of polynomials with coefficients in F. Those over the fields of complex numbers and real numbers are especially studied. The definition of the generated generalized eigenvectors of a linear transformation is introduced. The relations between the generators of the cycle modules and the generated generalized eigenvectors are obtained. The decomposition theorems of a non-zero vector space on module structure can be used to discuss the matrices over the field of real numbers and some canonical forms are obtained, which are used to modal structure analysis of multivariable. By means of the properties of finitely generated module over a principal ideal domain, a method of direct decomposition of space is presented. The quasi-diagonal algorithm on system matrix is deduced. A perfect theory and method to predigest system matrix is provided.
     (2) Controllability problem of linear system is studied and new block diagonal controllability canonical forms are obtained. By use of the transform function (or transform function matrix), the polynomial criterion on the controllability of a kind of time-invariant linear systems is discussed. The properties of the rank of the controllability matrix in time-invariant linear system is discussed and it is inferred that the controllability is not changed when perform elementary column operation on the input-matrix. A fast algorithm and its improvement for judging the controllability in the system are deduced by using the elementary column transformation on the controllability matrix. The most iteration steps judging the controllability is proved and the system is not controllable when the rank of the iteration matrix is not added. A new modified algorithm for getting controllable canonical forms of the multi-input system has been put forward. The annihilator of a vector space is discussed and applied to study the controllability in constant linear systems. A sufficient and necessary condition judging the controllability is easily obtained. Based on the decomposition theorem for vector space with module structure and rational canonical form of matrix, a kind of new block diagonal controllability canonical forms are inferred when the time-invariant linear multivariable system is completely controllable.
     (3) Some special matrices are studied by using controllability. A kind of circulant matrices, example of Hankel matrices and r-circulant matrices, are viewed as controllability matrices on linear system. The invertible condition and the algorithms for finding inverse matrices are obtained. The properties of the generalized Sylvester matrix are discussed when two polynomial matrices are right coprime. The relations between an R-block circulant matrix and a suitable generalized Sylvester matrix are presented. The necessary and sufficient condition for R-block circulant matrix invertible is obtained. A new method to study the kind of circulant matrices is presented.
     (4) Some New methods of pole placement are proposed. There are based on No.1 controllability canonical form, the generalized Wonham controllability canonical form, and circulant matrix. The advantage of this algorithm is no need to compute the characteristic polynomical of the system. A special new method of pole placement based on the new block diagonal controllability canonical forms in multi-input system is proposed. This method changes the problem of multi-input system to several problems of single-input. The number is the cycle index of system matrix. Compare with some known results, this method put forward that the least number of unknown entries of the feedback gain matrix is the order of the system matrix. The general expression containing arbitrary parameter is obtained for the feedback gain matrix.
引文
[1]郑大钟.线性系统理论.(第二版).北京:清华大学出版社,2002.
    [2]段广仁.线性系统理论.哈尔滨:哈尔滨工业大学出版社,1996.
    [3]陈翰馥,郭雷.现代控制理论的若干进展及展望.科学通报,1998,(1).
    [4]陈翰馥.控制理论的现状及对它的期望.信息与控制,1994,(1).
    [5]刘伟.控制理论的发展及未来.工业仪表与自动化装置,2003,(1):10-12.
    [6]卢立磊,刘春静.现代控制理论的发展简况.青岛建筑工程学院学报,1999,20(4):96-100.
    [7]王传波,刘旸.现代控制理论与经典控制理论的对比研究.机械管理开发,2006,3期.
    [8]李晓东.多变量线性控制系统的研究方法.宁夏工学院学报,1997,9(2): 77-81.
    [9]仝茂达.线性系统理论和设计.合肥:中国科学技术大学出版社,1998.
    [10]王孝武.现代控制理论基础.北京:机械工业出版社,1998.
    [11]张汉全,肖建,汪晓宁.自动控制理论新编教程.成都:西南交通大学出版社,2000.
    [12]陈树中,韩正之,胡启迪.线性系统控制理论.上海:华东师范大学出版社,2000.
    [13]涂奉生,齐寅峰.多变量线性系统分析与设计.北京:化学工业出版社,1989.
    [14]蔡尚峰.自动控制理论.北京:机械工业出版社,1980.
    [15]徐和生,陈锦娣.线性多变量系统的分析和设计.北京:国防工业出版社,1989.
    [16]张志方,孙常胜.线性控制系统教程.北京:科学出版社,1993.
    [17]陈启宗.线性系统理论与设计.北京:科学出版社,1988.
    [18] J.E.Rubio. The Theory of Linear Systems. New York: Academic Press, 1971.
    [19] P.K.Sinha. Multivariable Control: An Introduction. New York: M.Dekker, 1984.
    [20] C.T.Chen. Linear System Theory and Design. New York: Holt, Rinehart and Winston, 1984.
    [21] T.E. Fortman, K.L.Hitz. An Introduction to Linear Control Systems. New York: Dekker, 1977.
    [22] J. J. Dazzo, C. H. Houpis. Linear Control System Analysis and Design. (Fourth Edition). New York: McGraw-Hill, Inc, 1995.
    [23] W.L.Brogan. Modern Control Theory. (Third Edition). Englewood Cliffs, NewJersey: Prentice-Hall, 1991.
    [24] H.F.Vanlandingham. Introduction to Digital Control Systems. New York: Macmillan, 1985.
    [25] J.E.Rubio. The Theory of Linear Systems. New York: Academic Press, 1971.
    [26] J.M. Maciejowwski. Multivariable Feedback Design. Wokinghan England: Addison-Wesley Publishing Company, 1989.
    [27] H.H.Rosenbrock. State Space and Multivariable Theory. London: Nelson, 1970.
    [28] K.N.Callier, C.A.Desoer. Multivariable Feedback Systems. NewYork: Springer- Verlag, 1982.
    [29] W.A. Wolovick. Linear Multivariable Systerms. New York: Springer, 1974.
    [30] T. Kailath. Linear Systems. (Information and System Sciences Series). New Jersey: Prentice-Hall, 1980.
    [31] J.Casti, Linear dynamical systems. New York: Academic Press, 1987.
    [32] W.M.Wonham. Linear Multivariable Control: a Geometric Approach. New York: Springer-Verlag, 1979.
    [33]旺纳姆.线性多变量控制:一种几何方法.姚景伊,王恩平译.北京:科学出版社,1984.
    [34]韩正之.线性系统的( A, B )特征子空间与大系统分散控制.北京:科学出版社,1993.
    [35]韩正之,冯天虬,张钟俊. ( A, B )不变子空间的结构研究及应用.上海交学学报,1991,25(3):56-66.
    [36]韩正之,张钟俊. ( A, B )不变子空间的分解.高校应用数学学报:A辑,1991,6(2):159-168.
    [37]黄琳,于年才.最小多项式矩阵与线性多变量系统(I).应用数学和力学, 1985,6(7):605-6l7.
    [38]黄琳,于年才.最小多项式矩阵与线性多变量系统(II).应用数学和力学, 1985,6(10):905-922.
    [39]梁治安,叶庆凯.多项式矩阵代数性质讨论.应用数学和力学,1998, 19(10):879-884.
    [40]黄琳.系统与控制理论中的线性代数.北京:科学出版社,1984.
    [41]韩京清,何关钰,许可康.线性系统理论代数基础.沈阳:辽宁科学技术出版社,1985,224-234.
    [42]须田信英等.自动控制中的矩阵理论.曹长修译.北京:科学出版社,1979.
    [43] Brewer, W.James. Linear Systems over Commutative Rings. New York: Marcel Dekker, Inc., 1986.
    [44] Vakhtang Lomadze. Linear System Theory: An Algebraist’s Point of View. Systems & Control Letters, 29(1996):73-19.
    [45] L. Padulo, A.Michael. System Theory. London: W. B. Saunders Company, 1974.
    [46]李铁钧.交换环上线性系统的多项式模理论.数学物理学报,1985,5(3):267-275.
    [47]李铁钧.交换环上线性系统的实现问题.控制理论与应用,1985,2(2):112-116.
    [48]韩京清.线性空间上的控制系统.控制理论与应用,1985,2(1):21-85.
    [49]陈文德.准域上动态系统的能达能观性与实现理论.系统科学与数学, 1986,6(2):81-89.
    [50]陈文德.准域上系统理论的数学基础.系统科学与数学,1986,6(1):1-9.
    [51] R.E.Kalman. Topics in Mathematical System Theory. New York: McGraw-Hill Book Company, 1969.
    [52] R.E.Kalman. Mathematical Description of Linear Dynamical systems. SIAM J. Control, Vol.1, 1963.
    [53] P.A.Fuhrmann. Linear Feedback via Polynomial Models. Int. J. Control, 30, 1979, 453-377.
    [54] P.A. Fuhrmann. Algebraic System Theory: An Annalyst’s Point of View. J. Frankin Inst., 301, 1976.
    [55] Mauro Bisiacco, Marla Elena Valcher. Autonomous Behaviours Decomposition and Modal Analysis. Int. J. Control, 2001, 74(17): 1690-1705.
    [56] Reiko Tanaka, Kazuo Murota. Quantitative Analysis for Controllability of Symmetric Control Systems. Int. J. Control, 2000, 73(3): 254-264.
    [57] Fliess, Michel, Sira-Ramirez, et al. Module Theoretic Approach to Sliding Mode Control in Linear Systems. Proceedings of the IEEE Conference on Decision and Control, 3(1993): 2465-2470.
    [58] E.I. Mrabet, Yamina, Bourles, et al. Algebraic theory of Linear Periodic Discrete-time Systems in their Polynomial Matrix and Module Descriptions. Proceedings of the IEEE Conference on Decision and Control, Vol4, 1996, p4132-4137.
    [59] Yamamoto, Yutaka. Module Structure of Constant Linear Systems and its Applications to Controllability. Journal of Mathematical Analysis and Applications, 1981, 83(2): 411-437.
    [60] Zerz, E. Extension Modules in Behavioral Linear Systems Theory. Multi- dimensional Systems and Signal Processing, 2001, 12(3-4): 309-327.
    [61] Jeffrey Wood. Modules and Behaviours in nD Systems Theory. Multi- dimensional Systems and Signal Processing. 2000, 11(1-2):0923-6082.
    [62] Jim Brewer, Wiland Schmale. (A,B)-cyclic Submodule. Linear Algebra and its Applications, 301(1999):63-80.
    [63] Carriegos, Miguel V.. On the Local-global Decomposition of Linear Control Systems. Communications in Nonlinear Science & Numerical Simulation; 2004, 9(2): 149-156.
    [64]涂奉生.线性系统的统一描述形式.数学物理学报,1989,9(2):139-146.
    [65]涂奉生.多项式模与线性系统.应用数学学报,1987,10(3):370-379.
    [66]涂奉生.多项式模与线性系统(Ⅱ):状态反馈与结构形式.应用数学学报,1994,17(3):393-400.
    [67]陈文德.线性系统的完全不变量,标准形实现与编码.系统科学与数学,1984,4(1):15-26.
    [68]贝塔朗菲.一般系统论(基础·发展·应用).秋同,袁嘉新译.北京:清华大学出版社,1987.
    [69] M. D. Mesarovic, Y. Takahara. General Systems Theory: A Mathematical Foundation. Boston: Academic Press, 1974.
    [70] Y. Lin. A Model General Systems. Math. Modeling, 1987, 23(7): 95-104.
    [71] Y. Ma. On Multi-Relation General Systems: A Mathematical Foundation. General Systems Studies and Applications (A Monograph). Wuhan: HUST Press, 1997: 38-45.
    [72] G. J. Klir. Multidimensional Information Theory and General Systems Methodology. Cybernetics and Systems’88. USA: Kluwer Academic Publishers, 1988.
    [73] Y. Lin. Multi-level Systems. International Journal of Systems Science, 1989, 22(5):1875-1889.
    [74] Y. Lin. Order structure of Families of General Systems. Cybernetics and Systems, 1989, 20(9): 51-56.
    [75] Y. Ma, Y. Lin. Continuous Mapping between General Systems. Int. J. Sys. Sci,1990,14(7): 58-63.
    [76] Y. Ma, Y. Lin. About the Concept of Continuity between General Systems. Systems Research, 1994, 11(1): 45-55.
    [77] Y. Ma. Reproducibilities of I/O Systems with Linear Multivalued Evaluation Space Systems Research, 1994, 11(2): 3-16.
    [78] Y. Lin, Y. Ma. Remarks on the Controllability. Int. J. General Systems, 1990, 17(4):317-327.
    [79] Y. Takahara. Act DSS-Principle and Implementation. General Systems Studies and Applications (A Monograph). Wuhan: HUST Press, 1997: 66-77.
    [80] Y. Takahara, N. Shiba, Y Liu. ExtProlog for a Problem Solving EUD Methodology.Advances in Systems Science and Applications, 2001, 1(l): 1-8.
    [81] Julong Deng. Control Problems of Grey Systems. Systems & Control Leters, 1982, 1(5): 288-294.
    [82] Chen Mianyun. Grey Dynamic Modeling and Prediction Control of Macro- economic Systems. Proceedings of the IFAC Workshop on Modeling Decision and Game with Application to Social Phenomena. Beijing: Chinese Association of Automation for IFAC, 1986: 77-86.
    [83] Chen Mianyun. System Cloud and its Grey Model. Proceedings of the 4th Japanese Sino Sapporo International Conference on Computer Applications. Sapporo, Japan: Hokkaido University, 1990: 38-41.
    [84] Chen Mianyun. Uncertainty Analysis and Grey Modeling. in: Uncertainty Modeling and Analysis. USA: IEEE Computer Society Press, 1990: 469-473.
    [85]陈绵云.趋势关联度及其在灰色建模中的应用.华中理工大学学报,1994, 22(8):66-68.
    [86] Chen Mianyun. Principle of Grey Dynamic Modeling. SAMS, 1996, 26:69-79.
    [87] Chen Mianyun. General Systems Studies and Grey Dynamic Modeling. General Systems and Applications (A Monograph). Wuhan: HUST Press, 1997:1-9.
    [88] Chen Mianyun. Trend Relational Analysis and Grey Dynamic Modeling. Cybernetics and Systems’94. Austria: IEEE Computer Society Press, 1994: 19-24.
    [89] Chen Mianyun. Fuzzy Control System with Trend Relational Predictor. The Journal of Fuzzy Mathematics, 1994, 2(4): 367-374.
    [90]郑应平.一般系统的数学描述.系统工程理论与实践,1989,9(1):45-51.
    [91]林福永,吴健中.一般系统结构理论及其应用.系统工程学报,1997,12(3): 1-10.
    [92]林福永.一般系统结构模型的数学分析及其结果—若干一般系统原理与规律.系统工程理论与实践,1998,18(12):1-7,19.
    [93] Guo Zhongwei, Jin Yihui, Cui Daiguang. Controllability Study of Complex Systems with Composite Information Space (CIS). Proceedings of SCI’94. Wuhan: HUST Press, 1994: 466-470.
    [94] Guo Zhongwei, Qi Yinging, Wang Yongxian et al. General Systems Theory and Composite Information Space Approach. General Systems Studies and Applications (A Monograph). Wuhan: HUST Press, 1997:10-19.
    [95] Guangfu Shu. Overall Reconstruction Optimum Design Method and Applications. Int. J.General Systems, 2000, 29(3): 411-418.
    [96]高为炳.非线性控制系统导论.北京:科学出版社,1988.
    [97] Chang Zhou, M. Y. Chen, D. S. Zhu. A Generalization of Linear Systems. Advances in Systems Science and Applications, 2001, 1(2): 159-163.
    [98] Chang Zhou, D. S. Zhu, M. Y. Chen, et al. General Linear Systems with Module Structure, Advances in Systems Science and Applications, 2002, 2(2): 147-151.
    [99]胡冠章.应用近世代数.北京:清华大学出版社,1993.
    [100]高绪钰.近世代数.沈阳:辽宁人民出版社,1985.
    [101]冯克勤.交换代数基础.北京:高等教育出版社,1986.
    [102]刘华洋.主理想环上的有限生成模及其应用.吉安师专学报,1989,(5):19- 26.
    [103]万哲先.代数导引.北京:科学出版社,2004.
    [104]贺昌亭,张同军.模论讲义.长春:东北师范大学出版社,1987.
    [105] Steven Roman. Advanced Linear Algebra. New York: Springer-Verlag , 1992.
    [106] T.S.Blyth. Module Theory: an Approach to Linear Algebra. Oxford: Oxford University Press, 1977.
    [107]周畅.一般系统可控性与模糊逼近性研究:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2003.
    [108]宋业新.模糊系统优化决策与一般系统可控性研究:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2002.
    [109]同小军.泛算子结构及级差格式研究:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2002.
    [110]张曙红.灰色动态建模与控制研究:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2002.
    [111]陈德军.决策支持系统的一般模型及其灰色决策分析:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2003.
    [112]李小霞.知识表达系统的简化理论方法研究:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2003.
    [113]姜波.灰色系统与神经网络分析方法及其应用研究:[华中科技大学博士学位论文].保存地点:华中科技大学图书馆,2004.
    [114]张来亮.线性定常系统的结构分解的新方法.山东师范大学学报(自然科学版),2005,20(4):92-93.
    [115]李红星.线性系统的结构分解--一种便于计算机实现的方法.新疆工学院学报,1995, 16(3): 167-171,177.
    [116]刘筱毅.一种对线性定常系统同时按能控能观性的结构分析方法.北京机械工业学院学报,1996, 11(1):54-64.
    [117]周洪.最小实现的直接实现法.控制理论与应用,1993,10(4):484-488.
    [118] Leonard M.Silverman. Realization of Linear Dynamical Systems. IEEE Trans- actions on Automatic Control, Vol.AC-16, No.6, 1971.
    [119] B. De Schutter. Minimal State-space Realization in Linear System Theory: an Overview. Journal of Computational and Applied Mathematics, 2000, 121(1): 331-354.
    [120] D.Q.Mayne. Computational Procedure for the Minimal Realization of Transfer Function Matrices, Proc. IEE 115, 1968.
    [121] S.H.Wang, E.J.Davison. A Minimization Algorithm for the Design of Linear Multivariable Systems. IEEE Trans. on AC, Vol. AC-18, 1973.
    [122]肖衡,郭仲衡.复向量空间的分解与复线性变换的Jordan标准形.应用数学和力学,1994,15(11):943-949.
    [123]罗刚,张翼,周立峰.关于线性系统约当规范形的讨论.电子科技大学学报,1998,27(4):436-439.
    [124] B. Chen, Z. Lin, Y. Shamash. Linear Systems Theory: A Structural Decom- position Approach. Boston: Birkauser, 2004.
    [125] Xinmin Liu, Ben M. Chen, Zongli Lin. Linear Systems Toolkit in Matlab: Structural Decompositions and their Applications. Joumal of Control Theory and Appliauions 2005, 3(3): 287-294.
    [126]于寅.高等工程数学.(第三版).武汉:华中科技大学出版社,2001.
    [127]刘先忠,杨明.矩阵论(第二版).武汉:华中科技大学出版社,2005.
    [128]万百五,吴受章.大系统的模型简化.自动化学报,l980,(1).
    [129] B. Porter, T. R. Crossley. Modal Control (Theory and Application). London:Taylor and Francis, 1972.
    [130]陈绵云,周朝顺,徐海波.线性定常多变量控制系统模态结构分析.华中理工大学学报,1994,22(8):69-73.
    [131]陈绵云.模态系统的去余控制.华中工学院学报,1983, 11(2):39-44.
    [132]吴受章.大系统模型简化的一种新的时域逼近法.自动化学报,1984,(2).
    [133]胡克定.模态降阶和模态控制的若干问题.东南大学学报,1989, 19(2):101-108.
    [134]关肇直,陈翰馥.线性控制系统的能控性和能观测性.北京:科学出版社, 1975.
    [135] L.M.Silverman, B.D.O.Anderson. Controllability, Observability and Stability of Linear Systems, SIAM.J. Control, Vol. 6, 1968.
    [136] Izzet Cem Goknar, Ahmet Dervisoglu. An Algorithm to Determine the Controllability and Observability of Linear Time-Invariant Systems Using Zero- State Algebraic Equations. IEEE Transactions on Automatic Control, 1977.
    [137] P. J. Antsaklis.Cyclicity and Controllability in Linear Time-Invariant Systems. IEEE Transactions on Automatic Control, Vol.AC-23, No.4, 1978.
    [138] Wang Cheng-Hong, Song Su. On Controllability and Observability of Multi- variable Linear Time-invariant Systems.ACTA Automatica Sinica, 2005, 31(5): 662-667.
    [139] Fabio Fagnani. Controllability and Observability Indices for Linear Time- invariant Systems: A New Approach. Systems & Control Letters, 17 (1991): 243-250.
    [140] R.Eising. Between Lable and Uncontrollable. Systems and Control Letters, 4 (1984): 263–264.
    [141]袁付顺.线性定常多输入多输出量系可控可观改进型代数判据.郑州大学学报(自然科学版),1996,28(1):8-11.
    [142]贺允东.判定线性系统的能控性和能观性.北京交通大学学报,1985,(2).
    [143]毛剑琴.线性系统能控性、能观测性的数值判断.控制理论与应用, 1986,(1).
    [144] H.H.Rosenbrock.峻崖.标准型、能控性和能观测性.系统工程与电子技术, 1981,(7).
    [145]储德林.可控性计算的一个稳定算法.数值计算与计算机应用,1992, 13(1):1-6.
    [146] B.N. Datta, K.Datta. On Eigenvalue and Canonical Form Assignments. Linear Algebra Appl., 131(1990): 161-182.
    [147] D.G.Luenberger. Canonical Forms for Linear Multivariable Systems, IEEE Trans. Automat. Control, AC-12 (1967): 290–293.
    [148] D. Pr?tzel-Wolters. Canonical Forms for Linear Systems, Linear Algebra and its Applications, Volume 50, 1983, 437-473.
    [149] T.R.Crossley. Canonical Form for a Multivariable Multi-output Linear Control System. International Journal Control, 1971, 13(3): 519-528.
    [150] T.Boros, P.Rózsa, L.Mironovskij et al. A Uniform Algorithm for the Trans- formation of Multivariable Systems into Canonical Forms. Linear Algebra and its Applications, Volume 147, 1991, 441-467.
    [151] Cheng Daizhan. Hu Qingxi. Qin Huashu. Feedback Diagonal Canonical Form and its Application to Stabilization of Nonlinear Systems. Science in China Series F-Technological Sciences, 2005, 48(2): 201-210.
    [152] Yih T. Tsay and Leang S. Shieh. Block Decompositions and Block Modal Controls of Multivariable Control Systems. Automatica, 1983, 19(1): 29-40.
    [153] L.S.Shieh, Y.T.Tsay. Transformations of a Class of Multivariable Control Systems to Block Companion forms. IEEE Trans. Autom. Control, Vol. AC-27 (1982):199-203.
    [154] L.S.Shich, Y.T.Tsay, R.E.Yates. Block Transformations of a Class of Multi- variable Control Systems to Four Block Companion Forms. Comput. Math. Applic., 1983,Vol. 9: 703-714.
    [155] C. P. Therapos, J. E. Diamessis. On Transformation of a class of Multivariable Control Systems to Block Companion Forms. IEEE Trans. Autom. Control, 1984, Vol. AC- 29, 86-88.
    [156] C.C.Tsui. An Algorithm for Computing State Feedback in Multi Input Linear Systems, SIAM J. Matrix Anal.Appl., 14 (1993), 33–44.
    [157] F. Blanchini. New Canonical Form for Pole Placement. IEEE Proc. D, 1989, 136(6):314-316.
    [158]彭学梅.矩阵多项式可逆性的判定.高等数学研究,2004,7(3):39-40.
    [159]张士诚.求多项式组最大公因式的矩阵变换及算法.徐州师范大学学报(自然科学版),2001,19(4):12-15.
    [160]邓勇.一元多项式组最大公因式计算的矩阵法.喀什师范学院学报,2004,25(3):22-25.
    [161]张伯春.用相似变换计算矩阵特征多项式的方法.西南民族学院学报(畜牧兽医版),1993,19(4):417-421.
    [162]解发瑜等.求MIMO系统能控规范型的一种改进型算法.计算机仿真,2003, 20(7):45-48.
    [163] Chen Ben M.H∞Control and its Applications. London: Springer, 1998.
    [164]曾建平,程鹏.线性时不变系统Kalman标准分解中的几个问题.北京航空航天大学学报,2000,26(1):41-44.
    [165]陈景良,陈向晖.特殊矩阵.北京:清华大学出版社,2001.
    [166] S.S.Agaian. Hadamard Matrices and their Applications. Berlin: Springer-Verlag, 1975.
    [167] M.Fiedler. Special Matrices and their Applications in Numerical Mathematics. Dordrecht: Martinus Nijhoff, 1986.
    [168] K.H.Kim. Boolean Matrix Theory and Applications. New York: Marcel Dekker, 1982.
    [169] D.A.Suprenenko, R.I.Tyshkevich. Commutative Matrices. New York: Academic Press, 1968.
    [170] A.L.Andrew. Centrosymmetric matrices. SIAM Rev., 40 (1998):697-698.
    [171]王恩平,王朝珠.多项式与多项式矩阵.北京:国防工业出版社,1992.
    [172]江兆林,郝彦.对称r-循环Hankel矩阵逆矩阵的一种求法.齐齐哈尔师范学院学报,1997,17(3):11-14.
    [173]何承源,黄廷祝.两类循环分块矩阵及其有关算法.应用数学学报,2002,25(2):279-288.
    [174]田素霞.对称循环矩阵的逆矩阵.河南科学,2003,21(4):385-388.
    [175]郝志峰,王美华.r-循环矩阵求逆的快速算法.华南理工大学学报,2000, 28(1):1–4.
    [176]张爱平,陈志彬. n阶R循环矩阵的性质和对角化.南昌大学学报(工科版), 2002,24(4): 89-92.
    [177] P.J.Davis. Circulant Matrices. New York: Wiley, 1979.
    [178] Mohammad A. Hasan, Ali A. Hasan. Hankel Matrices and Their Applications to the Numerical Factorization of Polynomials. Journal of Mathematical Analysis and Applications, 1996, 197, 459-488.
    [179] E. L. Basor, H.Widom, Y. Chen. Determinants of Hankel Matrices. Journal of Functional Analysis. 2001, 179(1): 214-234.
    [180] A. Bottcher; S. M. Grudsky; E. Ramirez de Arellano. Approximating Inverse of Toeplitz Matrices by Circulant Matrices. Methods and Applications of Analysis, 2004, 11(2):211-220.
    [181] G.Heinig, R.Rost. Algebraic Methods for Toeplitz-like Matrices and Operators. Berlin: Akademie-Verlag, 1984.
    [182] Georg Heinig, Karla Rost. New Fast Algorithms for Toeplitz-plus-Hankel Matrices. SIAM J. Matrix Anal. Appl., 2004, 25(3):842–857.
    [183]刘建中.范德蒙行列式的再推广.河北大学学报(自然科学版),1999, 19(2):119-124.
    [184]钱江,程明松,徐树方.一种求解单输入极点配置问题的新算法.中国科学A辑数学,2005,35(1):64-77.
    [185]蔚建斌,齐晓慧,一种求解多输入系统极点配置问题的新方法.河北省科学院学报,2004,21(2):4-6.
    [186]潘晓中,王法能,苏旸.线性系统极点配置问题的算法及实现.计算机仿真, 2002,19(1):104-106.
    [187]廖福成,土谷武士,江上正.多输入多输出线性控制系统的简单极点配置算法.信息与控制,1995, 24(6):330-337.
    [188]龚德恩,用矩阵广义逆的极点配置问题新解法.华侨大学学报(自然科学版),2000,21(1):101-106.
    [189]胡金莲,熊金志.一类线性控制系统的快速极点配置法.华东交通大学学报, 1999,16(3):34-38.
    [190]孙福良.多输入系统的参数极点配置.中国纺织大学学报,1996, 22(2):18-24.
    [191] M.Valasek, N.Olgac. Efficient Pole Placement Technique for Linear Time- variantSISO Systems, IEE Proc. Control Theory Appl., 142 (1995): 451-458.
    [192] B.S.Morgan. The Synthesis of Linear Multivariable Systems by State Feedback. J. A. C. C, 1964, Vol. 64.
    [193] Michael Valasek, Nejat Olgac. Efficient Eigenvalue Assignments for General Linear MIMO Systems. Automatica, 1995, 31(11):1605-1617.
    [194] Chiang Huann-Keng, J.S.H.Tsai, Sun York-Yih. Pole-placement Designs via Novel Block Canonical Forms for Multivariable Control Systems. Journal of the Franklin Institute, 1992, 329(5):843-857.
    [195] A.G. J. MacFarlane, N.Karcanias. Poles and Zeros of Linear Multivariable System: a Survey of the Algebraic, Geometric and Conplex-Variable Theory, Int.J. Control, Vol. 24, 1976.
    [196] W.M.Wonham. On Pole Assignment in Multi-input Controllable Linear Systems. IEEE Trans. Automat. Contr., 1967, Vol.AC-12:660-665.
    [197] E.J.Davision. On Pole Assignment in Muti-input Linear Systems. IEEE Trans. Automat. Contr., 1968, Vol. AC-13.
    [198] M.Heymann. Pole Assignment in Multi-input Linear Systems. IEEE Trans. Automat. Contr., 1968, Vol. AC-13.
    [199] W.M.Wonham, A.S.Morse. Decoupling and Pole Assignment in Linear Multi variable Systems: a Geometric Approach. SIAM J. Contr, 1970, Vol.8.
    [200] S.P. Bhattacharyya, E. De Souza. Pole Assignment via Sylvester’s Equations. Systems Control Lett., 1 (1982): 261–263.
    [201] V.Mehrmann, H.Xu. An Analysis of the Pole Placement Problem I, the Single-input Case. Electron.Trans. Numer. Anal., 4 (1996): 89-105.
    [202] V.Mehrmann, H.Xu. An Analysis of the Pole Placement Problem II, the Multi-input Case. Electron.Trans. Numer. Anal., 5 (1997): 77-97.
    [203] V. Mehrmann, H. Xu, Choosing the Poles so that the Single-input Pole Placement Problem is well Conditioned. SIAM J. Matrix Anal. Appl., 1998, 19(3): 664-681.
    [204] A. Varga. A Schur Method for Pole Assignment IEEE Trans. Automat. Control, AC-26 (1981): 517-519.
    [205] G.S. Miminis, C.C. Paige. A Direct Algorithm for Pole Assignment of Linear Time-invariant Multi-input Linear Systems Using State Feedback. Automatica, 24 (1988): 343–356.
    [206] Huann-Keng Chiang. Pole-placement Designs via Novel Block Canonical Forms for Multivariable Control Systemm. Journal of the Franklin Institute, 1992,329(5):843-857.
    [207] T.H.S. Abdelaziz. M. Vala′sˇek. Pole-placement for SISO Linear Systems by State-derivative Feedback. IEE Proceedings-Control Theory Applications, 2004, 151(4):377-385.
    [208] Y. F. Duan, Y. Q. Ni, J. M. Ko. State-Derivative Feedback Control of Cable Vibration Using Semiactive Magnetorheological Dampers. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(6): 431-449.
    [209] Boukas, T.K.; Habetler, T.G. , High-performance Induction Motor Speed Control Using Exact Feedback Linearization with State and State Derivative Feedback. IEEE Transactions on Power Electronics, 2004,19(4) :1022– 1028.
    [210] Lewis F.L., Syrmos V.L.. A Geometric Theory for Derivative Feedback. IEEE Trans. Autom. Control, 1991, 36(9): 1111–1116.
    [211] Kucera V., Loiseau M.. Dynamics Assignment by PD State Feedback in Linear Reachable Systems. Kybernetika, 1994, 30(2): 153–158.
    [212] Eric C. Vannell, Sean P. Kenny, Peiman G. Maghami. Efficient Eigenvalue Assignment by State and Output Feedback with Applications for Large Space Structures. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950018161_1995118161.pdf.
    [213] Wu Zhigang, Wang Benli, Ma Xingrui. Parameter Identification Method of Nonlinear Joints. Chinese Journal of Aeronautics, 1999, 12(1):14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700