用户名: 密码: 验证码:
基于性能的混凝土坝—地基系统地震破损分析与风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在研究基于性能的坝体、坝基交界面不同破损等级的评价准则、大坝易损性分析与风险评价方法基础上,初步建立了基于性能的大坝-地基系统在不同概率水平地震作用下的抗震设计分析理论框架,并应用于基于性能的混凝土高坝的安全评价与风险优化决策中,主要研究内容包括:
     1.在基于性能的砼坝抗震简化模型方面,建立了一种重力坝地震破损分析拟静力的简化方法。在基于第一振型等效地震荷载(施加方向分别指向上游或下游)基础上,应用弥散裂缝模型,建立了非线性拟静力简化方法,得到了单调加载极限变形,作为基于性能的混凝土坝破损分析的初步工具。
     2.在基于性能的砼坝抗震动力模型方面,根据大坝动力线弹性与非线性损伤断裂模型得到的地震应力水平、超应力累积持时与典型开裂特征,建立了一种基于大坝损伤开裂的地震破损评价模型,并建议了相应的损伤评价指标DM(Damage Measure)。
     3.在基于性能的坝基交界面抗震分析方面,根据岩体结构面的法向和切向本构关系,分别引入坝体底面刚性接触和弹性接触假设,建立了坝基交界面非线性接触模型,提出了以坝基交界面屈服范围、残余滑动位移以及坝基动力抗滑稳定安全系数等为评价指标的坝基交界面地震破损安全评价方法。
     4.在应用以上2、3所述模型的基础上,引入坝体-地基系统破损概率即易损性理念,通过拉丁抽样得到的坝体与地基材料参数抽样样本组合和对数正态分布假设,提出了大坝易损性分析方法,给出了考虑坝体破损、坝基交界面的屈服与残余滑动位移的地震易损性概率曲线,并提出了坝体-坝基系统整体易损性分析方法。
     5.在工程应用方面,采用本文上述提出的抗震破损模型,应用于金安桥重力坝坝体-地基系统的地震易损性分析,结合大坝设计地震超越概率,建立了大坝抗震风险分析模型以及考虑投资-效益准则与目标性能约束的抗震优化决策方法。根据坝体配筋加固方案,计算出采用抗震措施前后的风险概率及其经济损失评价,将基于性能的抗震风险模型运用于混凝土重力坝的抗震风险评价中。
It is of theoretical and practical significance to build a theoretical framework for performance-based seismic design of concrete dams at different levels of earthquake. A method of performance-based seismic analysis for concrete dams is presented including seismic evaluation model for analysis of damage and cracking behavior of dam, sliding behavior at the interface between dam and foundation, and a model of economic risk optimization with seismic fragility analysis. As an engineering application, it is then applied to study the performance-based safety assessment and decision-making with optimization of the Jinanqiao gravity dam.
     The main contents are summarized as follows:
     1. A simple pseudo-static method of damage and cracking for gravity dams is developed for performance-based seismic design and analysis of concrete dams. Based on the smear crack model and equivalent static loadings (acting towards upstream and downstream, respectively) considering fundamental mode of the dam, ultimate deformations of the gravity dam under monotonic equivalent loadings in seismic damage model can be obtained. As a preliminary tool, the model can be used in performance-based seismic damage analysis of concrete dam for simplification
     2. The seismic stress level, cumulative duration of overstress by using linear dynamic analysis can be obtained for failure zones of the dam under different levels of earthquake. Further, by using nonlinear plastic-damage analysis, a seismic damage model and corresponding damage measure (DM) index criterion are established.
     3. Based on normal and tangential constitutive relationships of dam-foundation contact surface, a nonlinear contact model along interface is developed by assuming rigid and elastic contact at the surface in the performance-based analysis of dam- foundation interface. Criterion of safety evaluation for the dam-foundation interface including the ratio of yielding identification region, maximum relative and residual sliding displacements, and dynamic safety factor against sliding, etc. is proposed.
     4. Based on above-mentioned 2nd and 3rd items, a damage probability concept of dam-foundation system, namely fragility of the system, is introduced. A numerical analysis model for computation of the seismic fragility of dam is developed by selecting sample sets of material variables using Latin hypercube method and assuming lognormal distribution. Fragility curves of different damage degrees for dam monolith and the interface along dam-foundation are respectively presented. Also, the fragility analysis of entire dam-foundation system is proposed.
     5. As an engineering application of the method, risk analysis and seismic optimum decision-making considering investment-benefit criterion and performance restriction conditions are founded associated with seismic hazard analysis in the region. The method is then applied to the performance-based seismic design of Jinanqiao concrete gravity dam. Risk probabilities and economic losses are compared between reinforcements strengthening and without reinforcements strengthening in the dam monolith, and alternative is given.
引文
[1]张楚汉主编.水利水电工程科学前沿.北京:清华大学出版社,2002.
    [2] Federal Guidelines for Dam Safety. Earthquake analyses and design of dams, FEMA ,2005
    [3]张楚汉,金峰,沈怀至,贾超.基于功能的高坝抗震安全与风险评价.天津:天津大学出版社,2004.
    [4]林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001, 32(2):8-15.
    [5]陈厚群.大坝抗震设防水准及相应性能目标.工程抗震与加固改造,2005, 27(增刊): 1-5.
    [6] Moehle J P. Displacement based design of RC structure. Proceedings of the 10 World Conference on Earthquake Engineering, Mexico, 1992.
    [7] Applied Technology Council. A critical review of current approaches to earthquake–resistant design. ATC-34 ,1995.
    [8] Applied Technology Council. Seismic evaluation and retrofit of existing concrete building.ATC-40,1996.
    [9] Federal Emergency Management Agency (FEMA).Performance-based seismic design of building. FEMA Report283, September, 1996.
    [10] Federal Emergency Management Agency (FEMA). NEHRP Guideline for the seismic ehabilitation of building seismic safety council. FEMA Report 273,1997.
    [11] Structural Engineering Association of California. SEAOC Version2000. Performance based seismic engineering of building,1995.
    [12] Smith K G. Innovation in earthquake resistant concrete structure design philosophies: a century of progress since Hennebuque’s patent. Engineering Structure,2001,23: 72-81.
    [13] Yamanouchi H et al. Performance-based engineering for structural design of buildings, Building Research Institute, Japan, 2000.
    [14] Chopra A K. Estimating seismic demands for performance-based engineering of building.13th World Conference on Earthquake Engineering ,Canada, 2004.
    [15] Moehle J , Deierlein G. A Framework methodology for performance–based earthquake engineering. 13th World Conference on Earthquake Engineering , Canada, 2004.
    [16] Shunsuke Otan. Japanese seismic design of high-rise reinforced concrete buildings–an example of performance-based design code and state of practices. 13th World Conference on Earthquake Engineering, Canada , 2004.
    [17] Poland C D. Making performance–based engineering useful .13th World Conference on Earthquake Engineering, Canada, 2004.
    [18] Peng Pan, Makoto Ohsaki, Takuya Kinoshita. Constraint approach to performance-based design of steel moment-resisting frames. Engineering Structures, 2007, 29(2):186-194.
    [19] Karavasilis T L, Bazeos N, Beskos D E. Maximum displacement profiles for the performance-based seismic design of plane steel moment resisting frames. Engineering Structures, 2006, 28(1):9-22.
    [20] Hiroyuki Tamai, Takao Takamatsu. Cyclic loading tests on a non-compression brace considering performance-based seismic design. Journal of Constructional Steel Research, 2005, 61(9):1301-1317.
    [21]李刚、程耿东.基于性能的结构抗震设计-理论、方法与应用.北京:科学出版社,2004.
    [22] Kaplan M F. Crack propagation and the fracture of concrete. ACI, 1961,58: 591-610.
    [23]尹双增.断裂损伤理论及应用.北京:清华大学出版社,1992.
    [24] Chopra A K, Chakrabarti P. The earthquake experience at Koyna dam and stresses in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1971, 1:151-164.
    [25] Ingraffea A R, Saouma V. Numerical modeling of discrete crack propagation in reinforced and plain concrete, Fracture Mechanics of Concrete—Structural Application and Numerical Calculation. Sih G C, and Ditommaso A eds., Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1985, 171-225.
    [26] Tu Chuanlin. A study of the cracking of Zhexi diamond head buttress dam and its strengthening measures. Proc. 15th ICOld, 2, Lausanne, Switzerland, 1985, 673-692.
    [27] Linsbauer H N, Ingraffea A R, Rossmanith H P et al. Simulation of cracking in large arch dam: Part I. Journal of Structural Engineering, 1989, 7: 1599-1615.
    [28] Linsbauer H N, Ingraffea A R, Rossmanith H P et al. Simulation of cracking in large arch dam: Part II. Journal of Structural Engineering, 1989, 7: 1616-1630.
    [29] Feng Lingmin, Pekau O A, Zhang Chuhan. Cracking analysis of arch dams by 3-D boundary element method. Journal of Structural Engineering, 1996, 122(6):691-699.
    [30] Ingraffea A R. Case studies of simulation of fracture in concrete dams. Engineering Fracture Mechanics, 1990, 35(1/2/3):553-564.
    [31] Pekau O A, Zhang Chuhan , Feng Lingmin. Seismic fracture analysis of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1991, 20(4):335-354.
    [32]陆瑞明,钱济成.在动荷载下的结构断裂分析.水利学报,1994, 25(4) :81-87.
    [33] Ngo D, Scordelis A C. Finite element analysis reinforced concrete beams. Journal of the American Concrete Institute, 1967, 67: 152-163.
    [34] Skrikerud P E, Bachmann H. Discrete crack modeling for dynamically loaded unreinforced concrete structures.Earthquake Engineering and Structural Dynamics, 1986, 14(4):297-315.
    [35] Ayari M L, Saouma V E. A fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks. Engineering Fracture Mechanics,1990, 35(1-3):587-598.
    [36] Feltrin G , Wepf D, Bachmann H. Seismic cracking of concrete gravity dams. Dam Engineering, 1990, 1(4):279-289.
    [37] Ahmadi MT, Razai S. A three-dimensional joint opening analysis of an arch dam. Computers and Structures, 1992, 44(1/2):187-192.
    [38] Wepf D, Feltrin G, Bachmann H. Influence of time-doman dam-reservoir interaction on cracking of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1993, 22(5):573-582.
    [39] Rashid Y R. Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 1968, 7: 334-344.
    [40] de Borst R, Nauta P. Non-orthogonal cracks in smeared finite element model. Engrg. Comput., 1985, 2(1): 35-46.
    [41] Cope R J, Rao P V, Clark L A, Norris P. Modeling of reinforced concrete behavior for finite element analysis of bridge slabs. In: Taylor C, Hinton E, Owen D R J, editors. Numerical Methods for Nonlinear Problems. Swansea: Pineridge Press, 1980, 457-470.
    [42] Bazant Z P, Oh BH. Crack band theory for fracture of concrete .Material Structures, 1983, 16:155-177.
    [43] EI-Aidi B, Hall JF. Non-linear earthquake response of concrete gravity dams.Part 1: modeling. Earthquake Engineering and Structural Dynamics, 1989, 18:837-851.
    [44] EI-Aidi B, Hall JF. Non-linear earthquake response of concrete gravity dams.Part 2: modeling . Earthquake Engineering and Structural Dynamics, 1989, 18:853-865.
    [45] Vargas-Loli L, Fenves GL. Effects of concrete cracking on the response of gravity dams. Earthquake Engineering and Structural Dynamics, 1989, 18:575-592.
    [46] Bhattachafjee SS, Léger P. Seismic cracking and energy dissipation in concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1993, 22:991-1007.
    [47] Bhattachafjee S S, Léger P. Application of NLFM models to predict cracking in concrete gravity dams . Journal of Structural Engineering, 1994, 120(4):1255-1271.
    [48] Bhattachafjee SS, Léger P. Fracture response of gravity dams due to rise of reservoir elevation. Journal of Structural Engineering, 1995, 121(9):1298-1305.
    [49] Léger P, Leclerc M. Evaluation of earthquake ground motions to predict cracking response of gravity dams. Engineering Structures, 1996, 18 (3): 227-239.
    [50] Ghaemian M, Ghobarah A. Nonlinear seismic response of concrete gravity dams with dam-reservoir interaction . Engineering Structures, 1999, 21: 306-315.
    [51] Tinawi R, Léger P, Leclerc M, Ciipolia G. Seismic safety of gravity dams: from shake table experiments to numerical analysis. Journal of Structural Engineering, 2000, 126(4):518-529.
    [52] Wang Guanglun, Pekau OA, Zhang Chuhan,Wang Shaomin. Seismic fracture analysis of concrete gravity dams based on non-linear fracture mechanics. Earthquake Engineering and Structural Dynamics, 2000, 65 :67-87.
    [53] Vahid Lotfi, Radin Espandar. Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique. Engineering Structures, 2004, 26(1): 27-37.
    [54] Mirzabozorg H, Ghaemian M. Nonlinear behavior of mass concrete in three dimensional problems using a smeared crack approach. Earthquake Engineering and Structural Dynamics, 2005, 34 :247-269.
    [55] Yusuf Calayir, Muhammet Karaton. Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction. Computers and Structures, 2005, 83 :1595-1606.
    [56]周元德.混凝土非线性断裂力学模型与高拱坝开裂分析研究[博士学位论文].北京:清华大学,2004.
    [57] Mazars J. Application de la mécanique de ?endommangement au comportement non linéaire etàla rupture du béton de structure. Thèse de Doctorate d’Etat, L.M.T., UniversitéParis, France. 1984.
    [58] Ladeveze, P. Sur une théorie de l’endommagement anisotrope. Internal Report No.34, L.M.T., Cachan, France.
    [59]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社, 1993.
    [60] Krajcinovic D, Lemaitre J. Continuum damage mechanics theory and applications.Wien: Springer-Verlag, 1987.
    [61] Cervera M, Oliver J,Galindo H. Numerical analysis of dams with extensive cracking resulting from concrete hydration simulation of real case. Dam Engineering, 1992,111(1):1-22.
    [62] Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering and Structural Dynamics, 1995, 24 (9):1225-1245.
    [63] Cervera M, Oliver J, Manzoli O. A rate-dependent isotropic damage model for concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1996, 25 (9):987-1010.
    [64] Ghrib F,Tinawi R. An application of damage mechanics for seismic analysis of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1995, 24 (2):157-173.
    [65] Ghrib F, Tinawi R. Nonlinear behavior of concrete dams using damage mechanics. Journal of Engineering Mechanics, 1995, 121 (4):513-527.
    [66] Valliappan S ,Yazdchi M, Khalili N. Nonlinear behavior of concrete dams using damage mechanics. International Journal of Numerical and Analytical Methods in Geomechanics, 1996, 20 (10):725-751.
    [67] Valliappan S ,Yazdchi M, Khalili N. Seismic analysis of arch dams-a continuum damage mechanics approach. International Journal of Numerical Methods in Engineering, 1999, 45 (10):1695-1724.
    [68] Lee J, Fenves G L. A plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering and Structural Dynamics, 1998, 27 (9):937-956.
    [69] Yazdchi M, Khalili N, Valliappan S. Non-Linear seismic behavior of concrete gravity dams using coupled finite element-boundary element technique. International Journal of Numerical Methods in Engineering, 1999, 44(1):101-130.
    [70] Yusuf Calayir, Muhammet Karaton. A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems. Soil Dynamics and Earthquake Engineering, 2005,25(7): 857-869.
    [71]杜荣强,林皋,胡志强.混凝土重力坝动力弹塑性损伤安全分析.水利学报,2006,36(9):1056-1062.
    [72]张我华,邱战洪,余功权.地震荷载作用下坝及岩基的脆性动力损伤分析.岩石力学与工程学报,2004,23(8):1311-1317.
    [73]杜成斌,苏擎柱.混凝土坝地震动力损伤分析.工程力学,2003,20(5):170-173.
    [74]潘坚文,王进廷,张楚汉.超强地震作用下拱坝的损伤开裂分析.水利学报,2007,38(2):143-149.
    [75]王光远等著.工程结构与系统抗震优化设计的使用方法.北京:中国建筑工业出版社, 1999.
    [76] Power G H, Allahabadi R. Seismic damage prediction by deterministic methods:concepts and procedures. Earthquake Engineering and Structural Dynamics, 1988, 16:719-734.
    [77] Fajfar P. Equivalent Ductility factors ,taking into account low-cycle fatigue. Earthquake Engineering and Structural Dynamics, 1992, 21:837-848.
    [78] Krawinkler H, Zourei M. Comulative damage in steel structures subjected to earthquake ground motions . Computers & Structures , 1983, 16(1/4): 531-541.
    [79] Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete. Journal of structural Engineering , 1985, 111(4): 722-739.
    [80] Park Y J, Ang A H S,Wen Y K. Seismic damage analysis for reinforced concrete buildings. Journal of structural Engineering , 1985, 111(4): 740-757.
    [81]江近仁,孙景江.砖结构的地震破坏模型.地震工程与工程振动,1987, 7(1):20-34.
    [82]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠度分析与设计.地震工程与工程振动,1990,10(4):27-37.
    [83]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型.地震工程与工程振动,1996, 16(4):44-54.
    [84]杜修力,欧进萍.建筑结构地震破坏评估模型.世界地震工程,1991,7(3):52-58.
    [85] Hide yuki Horii, Shue Cheng Chen. Computational fracture analysis of concrete gravity dams by crack-embedded elements–toward an engineering evaluation of seismic safety. Engineering Fracture Mechanics, 2003, 70(4): 1029-1045.
    [86] Manolis Papadrakakis,Vissarion Papadopoulos, et al. Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach. Structural Safety, 2007, 29(1):1-19.
    [87]尹显俊.岩体结构面循环加载本构模型研究及工程应用[博士学位论文].北京:清华大学,2004.
    [88] Cai M, Horii H. A constitutive model of highly jointed rock masses .Mechanics of materials, 1992, 13:217-246.
    [89]盛金昌,速宝玉,王媛等.裂隙岩体渗流弹塑性应力耦合分析.岩石力学与工程学报,2000,19(3):304-309.
    [90] Goodman R E,Taylor R L , Brekke T A. A model for the mechanic of jointed rock . J. Soil Mech. Fdns. Div. ASCE, 1968, 94(SM3):637-659.
    [91] Goodman R E, John C S .不连续岩体的有限单元分析.见:Desai C S编.岩土工程数值方法.孙广忠译.北京:中国建筑工业出版社,1981.
    [92] Goodman R E . Introduction to rock mechanics. New York :Wiley ,1989.
    [93] Desai C S , Zaman M M, Lightner J G et al . Thin-layer element for interfaces and joints. International Journal for Numerical and Analytical methods in geomechanics, 1984, 8:19-43.
    [94] Sharma K G, Desai C S . Analysis and implementation of thin-layer element for interfaces and joints. Journal of Engineering Mechanics, 1992, 118(12):2442-2462.
    [95] Desai C S, Ngaraj B K. Modeling for cyclic normal and shear behavior of interfaces. Journal of Engineering Mechanics, 1988, 114(7):1198-1217.
    [96] Oden J T, Martins J. Models and computational methods for dynamic friction phenomena. Computer Methods in Applied Mechanics and Engineering, 1985,52:527-634.
    [97] Malama B,Kulatilake P. Models for normal fracture deformation under compressive loading. International Journal of Rock Mechanics and Mining Sciences, 2003, 40:893-901.
    [98] Jing L, Nordlund E ,Stephansson O. A 3-D constitutive model for rock joints with anisotropic friction and stress dependency in shear stiffness . International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts. 1994, 31(2):173-178.
    [99] Boulon M, Armand G, Hoteit N et al. Experimental investigations and modeling of shearing of calcite healed discontinuities of granodiorite under typcal stress. Engineering Geology , 2002, 64: 117-133.
    [100] Souley M, Homand F, Amadei B. An extension to the Saeb and Amadei constitiutive model for rock joints to include loading paths. Int. J. Rock. Mech. Min. Sci.. & Geomech. Abstr., 1995, 32(2): 101-109.
    [101] Bandis S C, Lumsden A C, Barton N R. Fundamentals of rock joint deformation. Int. J. Rock Mech. Sci. & Geomech. Abstr. 1983, 20(6):249-268.
    [102]刘书,刘晶波,方鄂华.动接触问题及其数值模拟的研究进展.工程力学,1999,16(6):14-28.
    [103] Léger P, Katsouli M. Seismic stability of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 1989, 18(12):889-902.
    [104] Chopra A K, Liping Zhang. Earthquake-induced based sliding of concrete gravity dams. Journal of Structural Engineering, 1991, 117(12):3698-3719.
    [105] Danay A, Adeghe L N. Seismic-induced slip of concrete gravity dams. Journal of Structural Engineering, 1993, 119(1):108-128 .
    [106] Chávez J W, Fenves G L. Earthquake response of concrete gravity dams including base sliding. Journal of Structural Engineering, 1995, 121(5):865-875.
    [107] Fenves G L, Chávez J W. Evaluation of earthquake induced sliding gravity dams. 11th World Conf erence on Earthquake Engineering, 1996 :2069.
    [108] Tekie P B,Ellingwood B P. Seismic fragility assessment of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 2003, 32(3):2221-2240.
    [109] Kennedy R.P., et al. Seismic fragilities for nuclear power plant risk studies. Nuclear Engineering and Design, 1980,59(2):315-338.
    [110] Kennedy R.P., Ravindra M.K. Seismic fragilities for nuclear power plant risk studies. Nuclear Engineering and Design, 1984,79(1):47-68.
    [111] Hirata K., Kobayashi Y, Kameda H and Shiojiri H. Fragility of seismically isolated FBR structure. Nuclear Engineering and Design, 1991, 28(2 ):227-236.
    [112] Cǎrǎusu A, Vulpe A. Fragility estimation for seismically isolated nuclear structures by high confidence low probability of failure values and bi-linear regression. Nuclear Engineering and Design, 1996, 160(3):287-297.
    [113] Kapilesh Bhargava, Ghosh AK , Ramanujam S. Seismic response and fragility analysis of a water storage structure. Nuclear Engineering and Design, 2005, 35(4):481-1501.
    [114] Dimova S L, Negro P. Seismic assessment of an industrial frame structure designed according to Eurocodes. Part 2: Capacity and vulnerability. Engineering Structures, 2005, 27(5):724-735.
    [115] Sang-Hoon Kim, Maria Q. Feng. Fragility analysis of bridges under ground motion with spatial variation. International Journal of Non-Linear Mechanics, 2003,38(5):705-721.
    [116] Sang-Hoon Kim,Masanobu Shinozuka. Development of fragility curves of bridges retrofitted by column jacketing. Probabilistic Engineering Mechanics, 2004,19(1-2): 105-112.
    [117] Eunsoo Choi, Reginald DesRoches , Bryant Nielson. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 2004,26(2):187-199.
    [118] Kazi Rezaul Karim , Fumio Yamazaki. Effect of isolation on fragility curves of highway bridges based on simplified approach. Soil Dynamics and Earthquake Engineering, 2007, 27(5): 414-426.
    [119] H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报,2004, 37(6): 47-51.
    [120] Jin-Hak Yi, Sang-Hoon Kim , Shigeru Kushiyama. PDF interpolation technique for seismic fragility analysis of bridges. Engineering Structures, 2007,29(7):1312-1322.
    [121] Rossetto T, Elnashai A. Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures, 2003, 25(10):1241-1263 .
    [122] Schotanus M I J, Franchin P, Lupoi A , Pinto P E. Seismic fragility analysis of 3D structures. Structural Safety, 2004, 26(4):421-441.
    [123] Mehrdad Sasani, Armen Der Kiureghian, Vitelmo V. Bertero. Seismic fragility of short period reinforced concrete structural walls under near-source ground motions. Structural Safety, 2002,24(2-4):123-138.
    [124] Rossetto T, Elnashai A. Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures, 2003,25(10):1241-1263.
    [125] Altug Erberik M, Elnashai AS. Fragility analysis of flat-slab structures. Engineering Structures, 2004,26(7):937-948.
    [126] Mark G. Stewart. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. Structural Safety, 2004,26(4):453-470.
    [127] Paskaleva Ivanka, Dimova Silvia, Panza Giuliano GF, Vaccari Franco. An earthquake scenario for the microzonation of Sofia and the vulnerability of structures designed by use of the Eurocodes. Soil Dynamics and Earthquake Engineering, 2007, 27(11): 1028-1041.
    [128] Oh-Sung Kwon , Amr Elnashai. The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure. Engineering Structures, 2006, 28(2):289-303.
    [129] Seong-Hoon Jeong, Elnashai Amr S. Fragility relationships for torsionally-imbalanced buildings using three-dimensional damage characterization. Engineering Structures, 2006, 12:1-12.
    [130] Mary Beth D, Hueste , Jong-Wha Bai. Seismic retrofit of a reinforced concrete flat-slab structure: Part II—seismic fragility analysis. Engineering Structures, 2007,29(6): 1178-1188.
    [131] Kursat Kinali , Bruce R. Ellingwood. Seismic fragility assessment of steel frames for consequence-based engineering: A case study for Memphis, TN. Engineering Structures, 2007,29(6):1115-1127.
    [132]张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析.地震工程与工程振动, 2002,22(1):49-55.
    [133] Benjamin J R. Risk and decision analyses applied to dams and levees. Structural Safety, 1982-1983, 1(4):257-268.
    [134] Fadi Karaa , Roman Krzysztofowicz. Bayesian decision analysis of dam safety. Applied Mathematics and Computation, 1984,14(4):357-380.
    [135] Vick S G, Atkinson G M, Wilmot C I. Risk analysis for seismic design of tailings dams. J Geotech Engng Div ASCE,1985, 111( N7):915–933.
    [136] Vick S G, Bromwell L G. Risk analysis for dam design in karst. J Geotech Engng Div ASCE, 1989,115(N6):819-835.
    [137] Yegian M K, Marciano E A, Ghahraman V G. Seismic risk analysis for earth dams. J Geotech Engng Div ASCE, 1991,117(N1):18–34.
    [138] Salmon G M, Hartford D N D. Risk analysis for dam safety . International Water Power & Dam Construction, 1995, 47(3):42-47.
    [139] Salmon G M, Hartford D N D. Risk analysis for dam safety . International Water Power & Dam Construction, 1995, 47(4):38–39.
    [140]姜树海,范子武.时变效应对大坝防洪风险率的影响研究.水利学报,2006,37(4):425-430.
    [141]梅亚东,谈广鸣.大坝防洪安全的风险分析.武汉大学学报(工学版),2002,35(6):11-15.
    [142]金峰,贾超,王品江,张楚汉.基于功能的高坝建设方案的风险决策研究.岩土力学,2006,27(8):1421-1424.
    [143] Koyna Earthquake of December 1967. Report of the UNESCO Committee of Experts, New Delhi, 1968.
    [144]陈厚群.大坝抗震[A],中国大坝50年.北京:中国水利水电出版社,2000:675-733.
    [145]李瓒,陈兴华,郑建波,王光纶.混凝土拱坝设计.北京:中国电力出版社,2000.
    [146] Hinks J L, Gosschalk EM. Dam and Earthquake. Dam Engineering , 1993, 4(1) :9-24.
    [147] Zhang Chuhan, Xu Yanjie, Wang Guanglun,et al. Nonlinear Seismic Response of Arch Dams with Contraction Joint Opening and Joint Reinforcements. Earthquake Engineering and Structural Dynamics, 2000, 29(10) :1547-1566.
    [148] Zhang Chu-han, et al. Numerical model of concrete dam-foundation-reservior systems. Beijing:Tsinghua University Press,2001.
    [149]郭永刚,涂劲,陈厚群.高拱坝伸缩横缝间布设阻尼器对坝体地震反应影响的研究.世界地震工程, 2003, 19( 3):44-49 .
    [150]郭永刚,涂劲,陈厚群.抗震钢筋对高拱坝抗震性能的影响.水利学报,2004,35(3):1-6.
    [151] Suidan M, Schnobrich W C. Finite element analysis of reinforced concrete .ASCE, J. Struct. Div., 1973, 99: 2109-2122.
    [152] Bazant ZP. Instability ,ductility and size effect in strain softening concrete .ASCE, J Engng. Mech., 1976, 102(2): 331-344.
    [153] Crisfield MA. Local instabilities in the non-linear analysis of reinforced concrete beams and slabs. Proc. Instn. Civ. Engrs.Part2, 1982, 73:135-145.
    [154] Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack grow in concrete by means of fracture mechanics and finite elements. Cement Concr. Res., 1976, 6: 773-782.
    [155] Gupta A K, Akbar H. Cracking in reinforced concrete analysis, ASCE J. Struct. Engrg. 1984, 110(8): 1735-1746.
    [156] Milford R V, Schnobrich W C. Numerical model for cracked reinforced concrete, Damjanic F. Proceedings of international conference on computer aided analysis and design of concrete structures. Swansea: Pineridge Press, 1984.
    [157] William K, Pramono E, and Sture S. Fundamental issues of smeared crack models, Proc. SEM-RILEM Int. Conf. on Fracture of Concrete and Rock. Shah S P and Swartz S E, Eds., SEM, Bethel. 1987, 192-207.
    [158] Rots J G. Computational modeling of concrete fracture, Dissertation, Delft Univ. of Technology, Dept. of Civil Engng., Delft, 1988
    [159] Jirasek M, Zimmermann T. Rotating crack model with transition to scalar damage. Journal of Engineering Mechanics, ASCE, 1998,124(3): 277-284.
    [160] Li Y J ,Zimmerman TH. Numerical evaluation of the rotation crack model. Computers and Structures, 1998, 69: 487-497.
    [161] Petersson P E, Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology, 1981.
    [162]蔡四维,蔡敏.混凝土的损伤断裂.北京:人民交通出版社,1999.
    [163] Gopalaratnam V S, Shah S P. Softening response of plain concrete in direct tension. Journal of the American Concrete Institute, 1985, 82(3): 310-323.
    [164] Lubliner J. A plastic-damage model for concrete . Int. J. Solids Structures, 1989, 25(3): 299-326.
    [165]何政,欧进萍等著.钢筋混凝土结构非线性分析.哈尔滨:哈尔滨工业大学出版社,2007.
    [166] Dimaggio FL, Sandler IS. Material models for granular soils. J Engng Mech Div , 1971,(EM4):935-950.
    [167] Ottosen NS. A failure criterion for concrete. ASCE, 1977, 103(EM4):527-535.
    [168] Schickert G,Winkler H. Results of test concerning to multiaxial compressive stresses. Deutscher Ausschuss Fur Stahlbeton, Heft 277, Berlin, 1977.
    [169] Richart FE, Brandtzaeg A, Brown R L. A study of the failure of concrete under combined compressive stresses. University of Illinois, Engineering Experiment station Urbana. Bulletin No.185,1982.
    [170] Mills LL, Zimmerman RM. Compressive strength of plain concrete under multiaxial loading conditions. Journal of ACI ,1970 ,802-807.
    [171] Ju J W. On energy-based coupled elastoplastic damage theories : Constitutive modeling and computational aspects. Int J Solids and Struct ,1989,25(7):803-833.
    [172] Hansen N R, Schreyer H L. Athermodynamically consistent framework for theories of elastoplasticity coupled with damage . Int J Solids and Struct , 1994, 31(3):359-389.
    [173] Fenves G, Chopra A K. Simplified earthquake analysis of concrete gravity dams. Journal of Engineering Mechanics, 1985, 111(6):736-756.
    [174] Fenves G, Chopra A K . Simplified earthquake analysis of concrete gravity dams: Separate Hydrodynamic and Foundation Interaction. Journal of Engineering Mechanics, 1985, 111(6):715-735.
    [175] Fenves G, Chopra A K. Simplified earthquake analysis of concrete gravity dams. Journal of Structural Engineering, 1987, 113(8):1688-1709.
    [176] Ghobarah A, Ahamed, EI-Nady, Tarek, Aziz. Simplified dynamic analysis for concrete gravity dams. Journal of Structural Engineering, 1994, 120(9):2697-2716 .
    [177] Riks E. Some computational aspects of the stability analysis of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 1984, 47: 219-259.
    [178] Tsai CT, Palazotto A N. A modified Riks approach to composite shell snapping using a high-order shear deformation theory. Computer & Structures, 1990, 35(3):221–226.
    [179] Crisfield M A. An arc-length method including line searches and accelerations. Computer Methods in Applied Mechanics and Engineering, 1983, 19: 1269-1289.
    [180] Work Group on Guidelines for Seismic Assessment of dams: Final Report. ICOLD European Club, United Kingdom, 2004.
    [181] Raphael J M. Tensile Strength of concrete. ACI Journal, 1984, 82(2): 158-165.
    [182] Gonnerman H F,Shunman E C. Compression, flexural and tension tests of plain concrete , Proceedings,1928, 28(ASTM):527-564.
    [183] Walker,Stanton,Bloem,Delmar L. Effects of Aggregate size on properties of concrete .ACI J, 1960,57(3):283-298.
    [184] Grieb W E, Werner G. Comparsion of the splitting tensile strengths of concrete with fle xural and compressive strength, Public Roads,1962,32(5):97-106.
    [185] Houk.Concrete Aggregate and Concrete Properties Investigations, Dworshak Dam and Reservoir. Design Memorrandum No. 16, U.S. Army Engineer District, Walla Walla, 1965,203-212.
    [186] Whitney, Charles S. Design of reinforced concrete members under flexureor combined flexural and compression. ACI J,1937, 33(4):483-498.
    [187] Hatano T,Tsutsumi H. Dyniamic compressive deformation and failure of concrete under earthquake load.Technical Report No.C-5904,Technical Laboratory of the research Institute of Electric Power Industry,1959 .
    [188] Hatano T. Dynamic behavior of concrete under impulsive tensile load.Technical Report No.C-6002,Technical Laboratory of the research Institute of Electric Power Industry,1960.
    [189] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension. ACI Material Journal, 1998, 95(6): 735-739.
    [190] Takashi Sasaki, Kenichi Kanenawa,Yoshikazu Yamaguchi, Dr Eng. Simple estimating method of damage of concrete gravity dam based on linear dynamic analysis. 13th World Conference on Earthquake Engineering, Canada,Paper No.128,2004.
    [191] Yusof Ghanaat. Failure modes approach to safety evaluation of dams. 13th World Conference on Earthquake Engineering, Canada, No.1115, 2004.
    [192] Feasibility Design Summary ,Auburn Dam ,Concrete Curved Gravity Dam Alternative (CG-3). Denver:Water and Power Resources Service, U.S. Bureau of Reclamation, page:26,1980 .
    [193] Dungar R. EI Cajon Hydroelectric Power Plant ,Arch dam final design ,static and dynamic stress analysis. Baden: Motor Columbus Engineers, page 25,1981.
    [194] Martins J A C, Oden J T, Simoes F M F. A study of static and kinetic friction. International Journal of Engineering Science, 1990, 28(1):29-92.
    [195] Martins J AC, Oden J T. Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Analysis, 1987,11(3): 407-428.
    [196] Grasselli G, Wirth J, Egger P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6):789-800.
    [197] Lee H S, Park Y J, Cho T F, You K H. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7):967-980.
    [198] Papadopoulos P, Solberg J M. A Lagrange multiplier method for the finite element solution of frictionless contact problems. Mathematical and Computer Modeling, 1998, 28(4-8): 373-384.
    [199] Perter Heintz, Peter Hansbo. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Computer Methods in Applied Mechanics and Engineering, 2006, 195(33-36): 4323-4333.
    [200]贡金鑫.工程结构可靠度计算方法.辽宁:大连理工大学出版社,2003.
    [201] Shayanfar M A, Kheyroddin A, Mirza M S. Element size effects in nonlinear analysis of reinforced concrete members. Computers & Structures, 1997, 62(2):339-352.
    [202]吴世伟.结构可靠度分析.北京:人民交通出版社,1990.
    [203] Ellingwood BR,Tekie PB. Fragility analysis of concrete gravity dams. Journal of Infrastrutcture Systems , 2001, 7(2): 41-48.
    [204] Helton JC, Davis FJ. Latin hypercube and the propagation of uncertainty in analyses of complex systems. Reliability Engineering and System Safety, 2003, 81: 23-69.
    [205] Huntington DE, Lyrintzis CS. Improvements to and limitations of Latin hypercube sampling. Prob. Engng. Mech., 1997, 13(4):245-253.
    [206] Budiman Minasny ,McBratney AB. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers&Geosciences, 2006, 32(2): 1378-1388.
    [207] Bates AJ, Seinz J, Langley DS. Formulation of the Audzes–Eglais uniform Latin hypercube design of experiments. Advances in Engineering Softyware, 2003, 34: 493-506.
    [208] Olsson A, Sandberg G, Dahlblom O. On Latin hypercube sampling for structural reliability analysis. Structual Safety, 2002, 25: 47-68.
    [209] Sallaberry CJ, Helton JC, Hora SC . Extension of The Latin hypercube samples with correlated variables. Reliability Engineering & System Safety, 2007, 92(1): 1-35.
    [210]秦权,林道锦,梅刚著.结构可靠度随机有限元.北京:清华大学出版社,2006.
    [211] Goodman J. Structural fragility and principle of maximum entropy. Structural Safety, 1985, 3: 37-46.
    [212] Karim K R, Fumio Yamazaki. Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation. Earthquake Engineering and Structural Dynamics, 2001, 30: 1839–1856.
    [213] Dcr Klure ghian A, Ang HS. A fault rupture model for seismic risk analysis. BSSA, 1977,64(4): 163-189.
    [214] Cornell CA. Engneering seismic risk analysis. BSSA ,1977, 67(4): 539-545.
    [215]章在墉.地震危险性分析及其工程应用.北京:中国地震出版社,1999.
    [216]胡聿贤.地震工程学(第二版).北京:地震出版社,2006.
    [217]陈厚群,侯顺载,梁爱虎.水电工程抗震设防概率水准和地震作用概率模型.自然灾害学报, 1993, 2(2): 91-98.
    [218] ICOLD. Selecting parameters for large dams-guidelines and recommendations. ICOLD Committee on seismic aspects of large dams. Bulleton, 1989, 72.
    [219] Hasan Tosun ,Ismail Zorluer et al. Seismic hazard and total risk analyses for large dams in Euphrates basin Turkey. Engineering Geology, 2007, 89: 155-170.
    [220] Wai-Fah Chen, Charles Scrawthorn. Earthquake Engineering handbook, Boca Raton, FL:CRC Press, 2003.
    [221] Bureau GJ, Ballentine GD. A comprehensive seismic vulnerability and loss assessment of the State of South Carolina using HAZUS. 7th National Conference on Earthquake Engineering ,Boston,2002.
    [222]国家地震局监测预报司.中国大陆地震灾害损失评估汇编.北京:地震出版社,2001.
    [223]吕祖珩.刘家峡水电站泄水道2号孔磨蚀破坏修复.西北水电,2001,3:61-65.
    [224]陈如春.潘家口水库41#坝段水平裂缝的处理.海河水利,1998,1:23-24.
    [225]孙志勇,张晓梅.观音阁水库大坝233.25m高程水平裂缝处理设计.吉林水利,2004,12:39-41.
    [226]孙建华,董连鹏.参窝水库大坝裂缝的处理.吉林水利,2003,5:40-42.
    [227]邢林生,方榴声.陈村水电站105m高程水平裂缝的性态分析.水力发电学报,1988,24(4):66-74.
    [228]李发旭.柘溪大坝裂缝水下粘贴堵漏及修补.水力发电,1989,24(11):45-49.
    [229]宋天霞,黄荣杰,杜太生.钢筋混凝土非线性有限元及其优化设计.武汉:华中科技大学出版社,2003.
    [230] Gilbert RI, Warner FR.Tension stiffening in reinforced concrete stabs. Journal of Structural Engineering Division ,ASCE, 1978, 104:1885-1900.
    [231] Scanlon A, Murray DW. Time dependent reinforced concrete slab deflections. Journal of Structural Engineering Division ,ASCE, 1974, 100:1811-1924.
    [232] Van Greunen J. Nonlinear geometric, material and time dependent analysis of reinforced and prestressed concrete slabs and panels. University of California Berkeley:Report No. UCSESM79-3, 1979.
    [233] Foegl H, Mang HA. Tension stiffening concept based on bond slip. Journal of Structural Engineering Division, ASCE, 197582, 108:2681-2701.
    [234] Gupta A K, Maestrini SR.Tension-stiffening model for reinforced concrete bars. Journal of Structural Engineering Division, ASCE, 1990, 116:769-790.
    [235]龙渝川,周元德,张楚汉.钢筋混凝土相互作用效应的钢筋刚化模拟.清华大学学报(自然科学版),2007,47(6):793-796.
    [236] National concrete masonry association. Cracking of concrete member in direct tension. Americal Concrete Association: Report No.ACI2242R-92, 1992.
    [237] Chang-koon, Cheung sung-hoon.Tension stiffening model for planar reinforced concrete members. Computer and Structures, 1996, 59(1):179-190.
    [238] Lin CS, Scordelis AC. Nonlinear analysis of RC shells of general forms. Journal of Structural Engineering Division, ASCE, 1975, 111:523-538.
    [239] An Xuehui, Maekawa K, Okamura H. Numerical simulation of size effect in shear Strength of RC beams. Concrete Library of JSCE, 1998, 31:323-346.
    [240] Maekawa K, Pimanmas A, Okamura H. Nonlinear mechanics of reinforced concrete[M]. Spon Press, 11 New Fetter Lane, London EC4P 4EE, 2003:79.
    [241] Maekawa K, An Xuehui. Shear failure and ductility of RC columns after yielding of main reinforced. Engineering Fracture Mechanics, 2000, 65:3356-368.
    [242] Ayoub A, Felippou FC. Mixed formulationof bond-slip problems under cyclic loads Structural Engineering, 1999, 125(6):661-671.
    [243] Jendele L, Cervenka J. Finite element modelling of reinforcement with bond. Computers & Structures, 2006 ,84(28) :1780-1791.
    [244] CEB-FIP, Model Code. First draft ,Committee Euro-International du Beton, Bulleton d’information No.195,196 ,1990.
    [245] Bigaj AJ. Structural dependence of rotation capacity of plastic hinge in beam and slabs[D].Delft University of Technology ,1999.
    [246]龙渝川,张楚汉,周元德.钢筋混凝土嵌入式滑移模型.工程力学,2007,24(增刊Ⅰ):41-45.
    [247]徐有林,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究.建筑结构学报,1994,15(3):26-37.
    [248]藤志明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析.土木工程学报,1996,29(2):19-26.
    [249] Elighausen R,Popov EP , Bertero VV. Local bond stress-slip relationships of deformation bars under generalized excitation.University of California Berkeley:Report No. UCB/EERC-83/23, 1983.
    [250] Hawkins HM,et.al. Local bond strength of concrete for cyclic reversed loadings [M]. London : Applied Science Publishers Ltd., 1982.
    [251]周利利,段晓惠,汪术明,黄鸣钊.丹江口混凝土坝113m高程水平裂缝处理.人民长江,2004,35(2):32-35.
    [252] Shalev DM, Joseph Tiran. Condition-based fault tree analysis (CBFTA): a new method for improved fault tree analysis(FTA),reliability and safety calculations. Reliability Engineering and system Safety, 2007, 92:1231-1241.
    [253] Frohwein HI, Lambert JH, Haimes YY. Alternative measures of risk of extreme events in decision tress. Reliability Engineering and system Safety, 1999, 66:69-84.
    [254] Papazoglou IA. Mathematical foundation of event trees. Reliability Engineering and system Safety, 1998, 61:169-183.
    [255] Varpasuo P, Puttonen J, Ravindra M K. Seismic probabilistic safety analysis of unit1 of the Loviisa nuclear power plant. Nuclear Engineering and Design, 1996, 160:411-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700