用户名: 密码: 验证码:
四川核桃主产区根际解磷细菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃具有重要的经济价值和生态作用,在我国林业建设和生态环境建设中具有十分重要的意义,特别是对于提高四川省山区农业经济水平具有积极的作用。但是,核桃植株树体高大,生长旺盛,养分消耗高,特别是对磷素需求较大,易造成土壤肥力下降。因此,施肥尤其是磷肥的施用成为核桃生产必不可少的技术措施。然而,随着化肥使用量的增加,其负面影响日益凸显。因此,探寻新的肥源,尤其是生物肥源以替代或部分替代化肥的研究倍受关注。目前,关于解磷菌剂在核桃上的应用尚未见报道。
     本研究以四川省10个核桃主产区10年生核桃根际土壤为材料,进行了高效解磷细菌的分离,筛选,并通过形态特征、生理生化特性和16S rDNA鉴定其种属,优化了高效解磷菌株的基本培养条件,同时将高效解磷菌剂回接至美国山核桃(Carya illinoensis)1年生实生苗,观测其定殖规律,并探讨了解磷菌剂对核桃植株生长、养分吸收、土壤养分、土壤微生物区系及土壤酶活性的影响,获得以下主要研究结果:
     1、利用选择性培养基,对四川10个核桃主产区核桃根际解磷细菌进行了分离、筛选,并分析比较不同产区解磷细菌的数量、类群以及影响因素。研究发现:(1)10个核桃主产区根际解磷细菌数量在3.71×105~35.21×105cfu/g干土之间;(2)海拔高度对四川核桃主产区根际土壤解磷细菌数量没有明显的影响。不同土壤类型中,褐土对根际解磷细菌的数量影响最大,依次为黄壤、棕壤。根际解磷细菌数量及种群结构与土壤有机质含量和碱解氮含量呈显著正相关,相关系数分别为0.639和0.724(P<0.05),与土壤速效磷含量呈显著的负相关,相关系数为-0.896(P<0.05);(3)根据菌落形态、生理生化特征初步鉴定其类群分别属于9个属,其中以芽胞杆菌属(Bacillus)、假单胞菌属(Pseudomonas)和节杆菌属(Arthrobacter)为优势种群;(4)各核桃产区所处的生态环境不同,根际解磷细菌的种群多样性也存在一定的差异。解磷细菌多样性指数以汉源县最高,广元朝天区最低。丰富度指数以汉源县最高,兴汶县和广元朝天区丰富度指数最低。种群均匀度指数以广元朝天区最高,南江县最低。种群优势度指数以兴汶县最高,而以汉源县最低。
     2、分别以溶磷圈法、液体振荡培养试验测定了分离后经多次纯化仍保持一定溶磷活性的37个菌株的解磷能力。结果表明:(1)参试菌株在Pikovskaya培养液中培养7 d后,解磷量为81.09 mg/L-233.35 mg/L,培养结束时pH值与解磷量呈显著负相关(r=-0.698);(2)采用16S rDNA序列分析对菌株进行了鉴定,确定其中15株解磷菌株属于假单胞菌属(Pseudomonas),9株属于芽胞杆菌属(Bacillus),3株属于寡养单胞菌属(Stenotrophomonas),2株属于不动杆菌属(Acinetobacter),1株属于贪铜菌属(Cupriavidus),1株属于土壤杆菌属(Agrobacterium),1株属于节杆菌属(Arthrobacter),1株属于泛菌属(Pantoea),1株属于红球菌属(Rhodococcus)。
     3、液体振荡培养法结合正交设计优化了高效解磷细菌W25、W9、W12的最适培养条件。结果表明:3株解磷细菌在不同碳源、氮源、初始pH值、接种量、装液量条件下,其生长量及解Ca3(PO4)2能力不同。菌株长势和解磷能力之间具有一定的正相关性。(1)解磷细菌W25的最佳培养基配方为:碳源(葡萄糖)20g/L,氮源(NH4C1) 1.0 g/L,初始pH值为7.5,接种量为4%,装液量为75 mL,其影响因素依次为碳源>氮源>装液量>初始pH值>接种量。经优化培养后的解磷活性为204.56 mg/L,较普通解磷培养基中的解磷活性高16.28%;(2)解磷细菌W9的最佳配方为:碳源(蔗糖)30g/L,氮源(NH4C1) 1.0 g/L,初始pH值为7.0,接种量为6%,装液量为100 mL。其影响因素依次为碳源>初始pH值>氮源>接种量>装液量。经优化培养后的解磷活性为192.25mg/L,较普通解磷培养基中的解磷活性高12.43%;(3)解磷细菌W12的最佳培养基配方为:碳源(葡萄糖)30g/L氮源(NH4NO3) 1.0 g/L,初始pH值为6.0,接种量为7%,装液量为75 mL。其影响因素依次为氮源>装液量>碳源>接种量>初始pH值。经优化培养后的解磷活性为192.12 mg/L,较普通解磷培养基中的解磷活性高18.44%。
     4、在对解磷细菌W25,W9,W12进行耐药性标记、并得到稳定的链霉素抗性突变体菌株W25',W9'和W12'的基础上,通过盆栽试验,采用选择性培养基分离,研究了3株标记菌株在核桃根际的定殖动态。结果表明:(1)3株菌株均能成功地在核桃根际定殖;(2)两种土壤处理方式下,3株标记菌株的定殖动态变化规律相似。W25'在灭菌土和未灭菌中均为接种20 d后细菌数量达到最高,分别为1.28x108cfu/g根土、188x108cfu/g根土,接种后60 d细菌数量均趋向稳定;W9'在灭菌土和未灭菌土条件下,接种10 d后,根际土壤细菌数量均达到最高值,分别为2.02x107cfu/g根土和2.36x107cfu/g根土,之后逐渐下降,到60 d时趋向稳定;W12'在灭菌土和未灭菌土条件下,接种后20 d在根际的定殖水平最高,分别为1.94×107cfu/g根土和2.09×107cfu/g根土,之后逐渐下降,接种后60 d趋向稳定,菌株数量分别为3.38×103cfu/g根土和3.40×103cfu/g根土;(3)3株标记菌株在未灭菌土壤中的定殖能力高于灭菌土壤。
     5、采用盆栽试验系统研究了解磷细菌对美国山核桃1年生实生苗生长发育、光合特性、土壤养分、土壤微生物区系及酶活性的影响,结果表明:(1)接种4种解磷菌剂均可不同程度地促进美国山核桃实生苗的株高、生物量、净光合速率、植株全氮含量和全磷含量;(2)接种解磷菌剂后,根际土壤速效磷、碱解氮含量也有不同程度的提高;(3)接种4种解磷菌剂均能增加根际土壤中细菌和放线菌的数量,减少真菌数量,提高土壤磷酸酶和脲酶活性。核桃植株根际细菌数量以新梢生长期最多,放线菌数量为新梢生长期>落叶期>展叶期,真菌数量为新梢生长期<落叶期<展叶期。根际土壤磷酸酶和脲酶活性均为新梢生长期>落叶期>展叶期;(4)解磷菌剂在土壤有效磷含量较低的情况下,能更好的发挥其溶磷作用及促生效果;(5)在接种解磷菌剂、磷水平处理相同的情况下,在未灭菌土壤里生长的核桃植株,其株高、生物量、净光合速率、植株全磷、全氮含量、土壤速效养分含量等各项指标均高于灭菌土壤;(6)综合分析表明,解磷菌剂能改善核桃植株根际土壤微生态环境,增强土壤酶活性,而土壤酶活性的提高又促进了土壤养分的有效化,加强了植株对N、P营养的吸收,从而促进核桃植株的生长发育。
Walnut plays an important role in agriculture economy and ecological environment of mountainous areas in Sichuan province, because of economic nuts and water and soil conservation. However, walnut plants often grow vigorously into 30-40 feet in height, and assimilate and consume lots of soil nutrients, especially for phosphorus. So to fertilize, including phosphorus is absolutely necessary to get high economic effect of walnut production. Whereas, the more closely the negative effects face to us, the more chemical fertilizer used in field, such as less unproducible phosphate and harder environmental pollution. Biological fertilizer is one of effective ways to absolve this puzzledom. Up to now, no reports have been found for phosphorus sollubilizing bacteria (PSB) in walnut field management.
     In this study, rhizosphere soil of 10-year-old walnut plants were sampled separately in the ten important production areas in Sichuan province. The soil microorganisms were isolated and the PSBs with high ability of phosphorus solubilizing were screened out from all the rhizosphere soil samples. These PSBs were identified effectively according to their biophysical and biochemical characteristics and 16S rDNA sequencing. The culture conditions were optimized through orthogonal experiments for the three PSBs. At last, this three PSBs with high ability of phosphorus sollubilizing were inoculate into one-year-old seedlings of pecan (Carya illinoensis) to observe the inoculation effects on such as plant growth, soil nutrients, microorganism and activities of soil enzymes.
     The main results according to this study are as follows:
     1. By using selective culture media, the phosphate solubilizing bacteria (PSB) in the walnut rhizosphere were isolated and identified with their community structure and genus studied. The results showed that:(1) The number of PSB that formed clear zones was among 3.71×105~35.21×105cfu/g dry soil (DS) across all the sites. (2) The altitude could not influence the PSB number. The maximum PSB number was recorded in cinnamon soil followed by yellow soil. The distribution of PSB was influenced by soil organic matter, soil available phosphorus, the content of alkali-hydrolysable nitrogen. The PSB number were found to be significantly positive correlated with organic matter or alkali-hydrolysable nitrogen of rhizosphere soil(r=0.639, r=0.724), but were significantly negative correlated to available phosphor content of soil(r=-0.896). (There were a strong negative correlation between the amount of PSB and available phosphorus content of soil. (r=-0.896). (3) The PSB isolated from all the rhizosphere soil were belonged to nine genera according to the colony morphogenesis, biochemical characterization, and Bacillus, Psedumonas and Arthrobacter were the dominant ones. (4) The diversity of PSB population could vary with different ecological environments. The diversity index of PSB was highest in Hanyuan site compared with the lowest index in Guangyuan site. Richness index changed as similar to the diversity index among all the sampling sites. The evenness index was highest in Guangyuan site and was the lowest in Nanjiang site. As for domination index, it was the highest in Xingwen site, whereas the lowest in Hanyuan site.
     2. Phosphate solubilizing activities of 37 strains of PSBs were tested on solid tricalcium and liquid phosphate medium. The soluble-P concentration ranged between 81.09 mg/L and 233.35 mg/L with variations among different strains. A strong negative correlation (r=-0.698) between pH and soluble P concentration was observed. Identification of 37 PSBs were carried out by 16S rDNA sequencing. Fifteen strains belonged to genus Pseudomonas, nine to genus Bacillus, three to genus Stenotrophomonas, two to genus Acinetobacter, one to genus Cupriavidus, one to genus Agrobacterium, one to genus Arthrobacter, one to genus Pantoe, one to genus Rhodococcus.
     3. The optimal culture media and phosphate solubilizing conditions of PSB W25, W9 and W12 were studied separately. We found that their growth and phosphate dissolving ability of these three bacteria strains were different under conditions of different carbon sources, nitrogen sources, initial pH, inoculums and liquid volumes. The growth ability of bacteria strains was positively correlated with their phosphorus dissolving abilities. The results of orthogonal experiments showed that:(1) for W25, the optimal carbon and nitrogen source were glucose at the concentration of 20.0 g/L, NH4C1 at the concentration of 1.0 g/L with pH7.5, inoculums of 4%, liquid volume of 75 mL. The importance of the four factors are ranked in decreasing order:carbon source> nitrogen source> liquid volume> the initial pH> inoculums. The phosphate solubilizing capacity of it was up to 204.56 mg/L under the optimized conditions of cultivation, being 16.28% higher than CK; (2) While for W9, the optimal carbon and nitrogen source were sucrose at the concentration of 30.0 g/L and NH4C1 at 1.0 g/L with pH7.0, inoculums of 6%, liquid volume of 100 mL. The importance of the four factors are ranked in decreasing order:carbon source> the initial pH> nitrogen source> inoculum> liquid volume. The phosphate solubilizing capacity of this bacteria strain was 192.25 mg/L under the optimized conditions of media, being 12.43% higher than CK; (3) For W12, the optimal carbon and nitrogen source were glucose at the concentration of 30.0 g/L, NH4NO3 at the concentration of 1.0 g/L with pH6.0, inoculums of 7%, liquid volume of 75 mL; The importance of the four factors are ranked in decreasing order: nitrogen source>liquid volume> carbon source> inoculum> the initial pH. The phosphate solubilizing activity of W12 was 192.12 mg/L under the optimized conditions of cultivation, being 18.44% higher than CK.
     4. The PSB strains W25, W9, W12 were marked with streptomycin, and the stable streptomycin resistance strains W25', W9'and W12'were obtained. Their colonization dynamics in walnut rhizosphere were studied under pot experiment condition by counting with selective medium. The results of potted experiment showed that:(1) the three strains could successfully colonize in the rhizosphere of walnut seedlings. (2) Both in sterilized and unsterilized soil, the colonization dynamics was similar for all the three bacteria strains. The highest colonization level of W25'and W12'were reached on 20 days after inoculation,1.28x108 cfu/g DS and 1.88x108 cfu/g DS,1.94x107 cfu/g DS and 2.09×107 cfu/g DS, respectively. But the survival number of W9'reached the peak value after inoculation of 10 days,2.02×107 cfu/g DS and 2.36×107 cfu/g DS under conditions of sterilized and unsterilized soil, respectively. And then, the population of the three strains decreased gradually and tended to be stable on 60 days after inoculation; (3) Colonization level in unsterilized soil was higher than sterilized soil.
     5. The effects of PSB strains on growth, photosynthesis characteristics, nutrient uptake and rhizosphere properties of walnut under pot experiment were studied. The results show that: (1) The plant height, biomass, net photosynthesis rate (Pn), total content of nitrogen and phosphorus of walnut seedlings were higher after inoculation with the PSB strains; (2) Application of the three PSB strains increased the content of available phosphorus and alkali-hydrolyzable nitrogen in the rhizosphere of walnut; (3) Amounts of bacteria and actinomyces of rhizosphere soil increased, but the amount of soil fungi decreased to some extent after inoculation with strains W25, W9 and W12. At the same time, activities of phosphatase and urease were improved effectively. The higher phosphorus solubilizing and growth promoting effects were observed for all the three PSBs in the low content of available phosphorus of potted soil. The maximum number of population of rhizosphere bacteria and actinomyces were measured at the shoot growth stage followed by defoliation and leaf expansion stage. Nevertheless, the amounts of rhizosphere fungi changed in opposite direction. For phosphatase and urease activities, both of them reached its maximum at the shoot growth stage followed by defoliation and leaf expansion stage of walnut seedlings; (4) The PSB strain could act with higher phosphate-solubilizing ability and growth promoting effect of plant under conditions of low available P in soil; (5) At the same phosphorus level of potted soil and bacteria strain, some important indexes including plant height, biomass, Pn value, total phosphorus and nitrogen content of plant, available nutrient of soil under conditions of unsterilized soil were higher than that under conditions of sterilized soil. (6) In conclusion, PSB strains could improve micro-ecological environment in rhizosphere soil of walnut plant, increase the enzyme activities which would promote effective absorption of N and P nutrition for walnut seedlings.
引文
[1]Abd-Alla M H. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae.Let [J].Appl.Microbiol.,1994,18:294~296
    [2]谢林花,吕家珑,张一平,等.长期施肥对石灰性土壤磷素肥力的影响Ⅰ.有机质、全磷和速效磷[J].应用生态学报,2004,15(5):787-789
    [3]陈欣,宇万太.磷肥地量施用制度下土壤磷库的发展变化(Ⅱ):土壤有机磷及无机磷组成[J].土壤学报,1997,34(1):81-88
    [4]章亭洲.山核桃的营养、生物学特性及开发利用现状[J].食品与发酵工业,2006,32(3):90-93
    [5]李月文.核桃资源的综合加工与利用[J].四川林业科技,2005,26(2):76-83
    [6]高云泉.大姚县核桃基地现状与发展措施[J].林业调查规划,2006,31(5):210-215
    [7]王根宪.早实核桃园施肥技术[J].河北果树,2005,(6):45
    [8]赵仁章,韩成兰.核桃栽培技术和后期管理[J].青海农林科技,2005,(3):63-65
    [9]赵荣芳,邹春琴,张福锁.长期施用磷肥对冬小麦根际磷、锌有效性及其作物磷锌营养的影响[J].植物营养与肥料学报,2007,13(3):368-372
    [10]余树文,汤章程.植物生理与分子生物学[M].北京:科学出版社,1998:336-343
    [11]刘国栋,李继云,李振声植物高效利用磷营养的化学机理[J]植物营养与肥料学报,1995,3(4):72-78
    [12]李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,43(11):1154-1160
    [13]Fredeen A L, Raab T K, Rao I M. Effects of phosphorus nutrition on photosynthesis in Ctycine Max L.[J]. Merr.Planta,1990,181:399~405
    [14]Steven J, Crafts-Brander M E, Salvucci J L. Phosphorus nutrition influence on plant growth and nonstructural carbohydrate accumulation in Tobacco[J]. Crop Sci.,1990,30:604~609
    [15]Lauer M J, Pallardy S G, Blevirs D G. Whole leaf carbon exchange characteristics of phosphate deficient soybean[J]. Plant physiol.,1989,91:848~854
    [16]Rao I M, Abadia J, Terry N. The role of orthophosphate in the regulation of photosynthesis in vivo[M]. In progress in photosynthesis,1987:325~327
    [17]Foyer C H. The basis for sauce-sik interactiop in leaves[J].Plant Physiol. Bioch., 1987,25(5):649~657
    [18]Rao I M, Arulanantham A R, Terry N. Leaf phosphate status, photosynthesis and carbon partition in sugar beet[M].PIant Physiol.,1989,90:820~826
    [19]Hideaki U, Kousuke S. Phosphate deficiency in Maize[J]. Plant Cell Physiol,1991,32:1313~ 1317
    [20]丁洪,郭庆元,李志玉,等.磷对大豆不同品种产量和品质的影响[J].中国油料作物学报,1998,20(2):66-70
    [21]王庆仁,李振声.高效利用土壤磷素的植物营养学研究[J].生态学报,1999,19(3):416-421
    [22]孙惠敏,于振文,颜红,等.施磷量对小麦品质和产量及氮素利用的影响[J].麦类作物学报,2006,26(2):135-138
    [23]蔡柏岩,葛菁萍,祖伟.磷素水平对大豆品种氮素营养的影响[J].中国油料作物学报,2006,28(2):156-161
    [24]何萍,金继云,李文娟,等.施磷对高油玉米和普通玉米吸磷特性及品质的影响[J].中国农业科学,2005,38(3):538-543
    [25]王建国,李兆林,李文斌,等.磷肥与大豆产量及品质的关系[J].农业系统科学与综合研究,2006,22(1):55-57
    [26]张玉斌,曹庆军,张铭,等.施磷水平对春玉米叶绿素荧光特性及品质的影响[J].玉米科学,2009,17(4):79-81
    [27]刘世亮,崔海燕,介晓磊,等.磷锌配施对镉污染石灰性土壤中磷锌镉有效性的影响[J].生态环境,2008,17(2):623-626
    [28]肖厚军,王正银,何佳芳,等.酸性黄壤施用磷石膏对高粱营养生长和膜保护酶的影响[J].中国生态农业学报,2009,17(4):637-642
    [29]邢承华,朱美红,张淑娜,等.磷对铝胁迫下荞麦根际土壤铝形态和酶活性的影响[J].生态环境学报,2009,18(5):1944-1948
    [30]吴春芳,贾小明,许晓英.磷营养对侧柏、樟子松、油松抗旱性的影响[J].西北林学院学报,2005,20(1):53-56
    [31]张岁岐,山仑.磷素营养对春小麦抗旱性的影响[J].应用与环境生物学报,1998,4(2):115-119
    [32]Rubio F, Gassman W, Schroeder J I. Sodium-driven potassium by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science,1995,270:1660-1663
    [33]Shimon M, Tsipora T, Bernard R. Plant growth promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiol. Bioch.,2004,42:565-572
    [34]Eberhardt, Wegamnn. Effects of abscisic acid and prune on adapation of culture to salinity and osmotic stock[J]. Plant physiol.,1989,76:282~288
    [35]许雯,孙梅好,朱亚芳,等.甘氨酸甜菜碱增强青菜抗盐的作用[J].植物学报,2001,43(8):809-814
    [36]张岁歧,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2):147-151
    [37]陆景陵.植物营养学[M].北京:北京农业大学出版社,1994:32-33
    [38]冯固,李晓林,张福锁,等.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].生态学报, 2000,11(4):595-598
    [39]蔡妙珍,林咸永,罗安程,等.磷对水稻高Fe2+胁迫的缓解作用[J].中国水稻科学,2002,16(3):247-251
    [40]吴平,印莉萍,张立平,等.植物营养分子生理学[M].北京:科学出版社,2001:103-106
    [41]梁绍芬,姜瑞波.解磷微生物肥料的作用和应用[J].土壤肥料,1994,2:46-48
    [42]钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制[J].土壤学报,2004,41(6):931-937
    [43]何振立,朱祖祥Phosphate desorption from some important clay minerals and typical groups of soil in China: Hysteresis of adsorption and desorption[J]浙江农业大学学报,1988,(4):256-263
    [44]Stewart J W B, Tiessen H. Dynamics of soil organic phosphorus[J].Biogeochemistry,1987,4(1):41-60
    [45]明凤,米国华,张福锁,等.水稻对低磷反应的基因型差异及其生理适宜机制的初步研究[J].应用与环境生物学报,2000,6(2):138-141
    [46]米国华,邢建平,陈范骏,等.玉米苗期根系生长与耐低磷的关系[J].植物营养与肥料学报,2004,10(5):468-472
    [47]张宝贵,李贵桐.土壤生物在土壤P有效转化中的作用[J].土壤学报,1998,35(1):102-111
    [48]Johansen A. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.III.Hyphal transport of 32P and 15N[J].New Phytol.,1993,124:61~68
    [49]唐振尧.菌根促进柑橘吸收难溶性磷肥的机理研究[J].中国柑桔,1991,20(2):7-10
    [50]刘仕平.VA菌根营养生理研究概况及其应用前景[J].西南农业学报,2003,16(2):93-97
    [51]张俊伶.VA菌根营养生理研究概况及其应用前景[J].世界农业,1996,11:37-40
    [52]王淑平,周广胜,姜亦梅,等.玉米植株残体留田对土壤生化环境因子的影响[J].吉林农业大学学报,2002,24(6):54-57
    [53]耿玉辉,吴景贵.作物残体培肥土壤的研究进展[J].吉林农业大学学报,2000,22(2):76-79
    [54]李繁,涂然,陈三凤,等.7株解有机磷细菌的分离和鉴定[J].农业生物技术学报,2006,14(4):600-605
    [55]吴凡,崔萍,夏尚远,等.桑树根际解磷细菌的分离鉴定及解磷能力的测定[J].蚕业科学,2007,33(4):521-527
    [56]王莉晶,高晓蓉,吕军,等.解磷真菌C2的分离鉴定及其在土壤中实际解磷效果的研究[J].土壤通报,2009,40(4):771-775
    [57]王岳坤,于飞,唐朝荣.海南生态区植物根际解磷细菌的筛选及分子鉴定[J].微生物学报,2009,49(1):64-71
    [58]杨慧,范丙全,龚明波,等.一株新的溶磷草生欧文氏菌的分离、鉴定及其溶磷效果的初步研究[J].微生物学报,2008,48(1):51-56
    [59]张巍,冯玉杰,胡纯国,等.耐盐碱解磷菌的分离鉴定及解磷能力研究[J].土壤通报,2006,40(3):572- 575
    [60]林启美,赵小蓉,孙焱鑫.四种不同生态环境中解磷细菌的数量和种群分布[J].土壤与环境,2000,9(1):34-37
    [61]尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988,20(5):243-246
    [62]罗明,文启凯,慕玉俊,等.不同施肥措施对新疆地区棉田土壤磷细菌及磷转化强度的影响[J].土壤与环境,2001,10(4):316-318
    [63]Elliott J M, Mathre D E, Sands D C. Identification and characterization of rhizosphere-component bacteria of wheat[J].Appl. Environ. Microb.,1987,55:2793~2799
    [64]Ponmurugan P, Gopic C. Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops[J].J. Agron.,2006,5(4):600~604
    [65]赵小蓉,林启美.小麦根际与非根际解磷细菌的分布[J].华北农学报,2001,16(1):111-115
    [66]赵小蓉,林启美.玉米根际与非根际解磷细菌的分布[J].生态学杂志,2001,20(6):62-64
    [67]于翠,吕德国,秦嗣军,等.大青叶根际与非根际解磷细菌分布特征研究初报[J].中国农学通报,2006,22(2):237-240
    [68]Cunningham J E,Kuiack C.Production of citric and oxalic acids and solubilization of calcium phosphates by Penicillium bilaii[J].Appl. Environ. Microbiol.,1992,58:1451 ~1458
    [69]Kim K Y, Jordan D, McDonald G A. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soilmicrobial activity[J].Biol.Fertil Soils,1998,26:79~ 87
    [70]Perez E, Sulbaran M, Ball M M, et al. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region[J].Soil Boil. Biochem.,2007,39(11):2905~2914
    [71]Prasanna N D, Vijayalakshmi K, Shaheen S K, et al. Screening and isolation of phosphate solubilizing Pseudomonas stutzeri (EGB(3)) from gut of earthworm (Eisenia foetida): solubilization as influence by organic acids [J].J. Pure Appl. Microbiol.,2010,4(2):717~723
    [72]Tripura C, Sudhakar Reddy P, Reddy M K, et al. Glucose dehydrogenase of a rhizobacterial strain of enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of enterobacteriaceae[J].Indian J.Microbiol.,2007,47(2): 126~131
    [73]Velterop J S, Sellink E, Meulenberg J M,et al. Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway[J].J. Bacteriol.,1995,177(17): 5088~5098
    [74]Morris C J, Biville F, Turlin E, et al. Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinine and sequences of pqqD,pqqG, and pqqC[J].J.Bacteriol.,1994,176:1746~1755
    [75]Gyaneshwar P, Parekh L J, Archana G, et al. Involvement of aphosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae[J].FEMS Microbiol. Lett.,1999,171:223-229
    [76]Meulenberg J J M, Sellink E, Riegman N H, et al. Nucleotide sequence and structure of the Klebsiellapneumoniae pqq operon[J].Mol. Gen. Genet,1992,232:284~294
    [77]Kim C H, Han S H, Kim K Y, et al. Cloning and exp ression of pyrroloquinoline quinone (PQQ) genes from a phosphate solubilizing bacterium enterobacter intermedium[J].Curr. Microbiol., 2003,47:457~461
    [78]Magnusson O T, Toyama H, Saeki M,et al.Structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone[J].PNAS,2004,101(21):7913~7918
    [79]Narsian V, Patel H H. Aspergillus aculeatus as a rock phosphate solubilizer[J].Soil Biol. Biochem., 2000,32:559~565
    [80]王富民,刘桂芝,张彦,等.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J].生物技术,1992,2(6):34-37
    [81]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525-530
    [82]Louw H A, Webley D M. A study of soil bacteria dissolving certain mineral phospnate fertilizers and related compounds[J].J. Appl. Bacteriol.,1959,22:227~233
    [83]Picini D, Azcon R. Effect of phosphate solubilzing bacteria and Vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sandvermiculite medium[J].Plant Soil,1987,101:45~50
    [84]Asea P E A, Kucey R M N, Stewart J W B. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil[J].Soil Biol. Biochem.,1988,20:459~464
    [85]IUmer P, Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanisms[J].Soil Biol. Biochem.,1995,27(3):257~263
    [86]Illmer P, Barbato A, Schinner F. Solubilization of hardly soluble A1PO4 with P-solubilizing microorganisms[J].Soil Biol. Biochem.,1995,27(3):265~270
    [87]Ahuja A, Ghosh S B, D'Souza S F. Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization[J]. Biores. Technol.,2007,98(17):3408~3411
    [88]Maria J H, Gary R, Liu J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J].Plant Cell,2002,14:2413~ 2429
    [89]Javot H, Penmetsa R, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J].PNAS,2007,104 (5):1720~1725
    [90]Maeda D, Ashida K, Iguchi K, et al. Knockdown of an arbuscular mycorrhiza inducible phosphate transporter gene of lotus japonicus suppresses mutualistic symbiosis [J]. Plant Cell Physiol., 2006,47(7):807-817
    [91]Glassop D, Smith S E, Smith F W. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate up take into roots[J]. Planta,2005,222(4):688~698
    [92]Xu G H, Chague V, Melamed-Bessudo C, et al. Functional characterization ofLePT4:A phosphate transporter in tomato with mycorrhiza-enhanced expression[J] J. Exp. Botany,2007,58(10):2491~ 2501
    [93]Sakurai K, Tanaka N, Iwasaki K, et al. Effect of arbuscular mycorrhizal application on the distribution of phosphorus and iron in the rhizosphere soils of sunflower(Helianthusannus L.)[J].Plant Nutr.,2002,92:620-621
    [94]Antunes P M, Schneider K, Hillis D. Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates[J].Pedobiologia,2007,51(4):281 ~286
    [95]Ghani A, Rajan S S S, Lee A. Enhancement of phosphate rock solubility through biological processes [J]. Soil Boil. Biochem,1994,26(1):127-136
    [96]朱培淼,扬兴明,徐阳春,等.高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J].应用生态学报,2007,18(1):107-112
    [97]覃丽金,王真辉,陈秋波,等.解磷细菌接种对热研2号柱华草生长与土壤酸化的效应[J].草业学报,2008,20(2):20-28
    [98]郜春花,卢朝东,张强,等.解磷菌剂对作物生长和土壤磷素的影响[J].水土保持报,2006,4(8):54-56
    [99]韩文星,姚拓,席琳乔,等PGPR菌肥制作及其对燕麦生长和品质影响的研究[J].草业学报,2008(4):75-84
    [100]Ekin Z. Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower(Helianthus annuus L.) in the presence of phosphorus fertilizer[J].Afr. J. Biotechnol., 2010,9(25):3794~3800
    [101]李玫,廖宝文,康丽华,等PGPB对红树植物木榄幼苗的接种效应[J].林业科学研究,2006,19(1):109-113
    [102]Kohler J, Caravca F, Carrasco L, et al. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilizing fungus in the rhizosphere of Lactuca sativa[J]. Appl. Soil Ecol.,2007,35:480~487
    [103]简宜裕,吴继光.溶磷菌于土壤中之存活对土壤有效磷影响的研究[J].土壤肥料报告(台湾),1995,8(3):313-319
    [104]林启美,赵小蓉,等.纤维素分解菌与无机磷细菌的相互作用[J].生态学杂志,2001,20(3):69-70
    [105]Rudresh D L, Shivaprakash M K, Prasad R D. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea[J].Appl.Soil Ecol.,2005,28:139~146
    [106]Elkoca E, Turan M, Donmez M F. Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv.'Elkoca-05') [J].J.Plant Nutr.,2010,33:2104~2119
    [107]刘微.解磷微生物浸种对大豆生长发育及其根瘤形成的影响研究[J].中国生态农业学报,2004,12(3):153-155
    [108]陶光灿.芽胞杆菌属(Bacillus sp.)10株细菌混合制剂对4种作物出苗及苗期生长的影响[J].应用与环境生物学报,2003,9(6):598-602
    [109]洪坚平,郝晶,毕理智.不同解磷菌群对油菜土壤养分与酶活性的影响[J].中国生态农业学报,2007,15(5):51-54
    [110]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,1999,1(4):21-27
    [111]许衡,杨和生,徐英,等.果树根际微域环境的研究进展[J].山东农业大学学报,2004,35(3):476-480
    [112]韩振海.园艺植物根际营养学的研究-文献评述[J].园艺学报,1993,20(2):116-122
    [113]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104-111
    [114]Prikry L Z. Root exudates of plant[J].Plant Soil,1980,57:69~83
    [115]潘超美,郭庆荣,邱桥姐,等.VA菌根真菌对玉米生长及根际土壤微生态环境的影响[J].土壤与环境,2000,9(4):304-306
    [116]朱丽霞.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105
    [117]Blum U, Stanan K L, Flint L J,et al. Induction and/or selection of phenolics acid-utlizating bulk-soil and rhizosphere bacteria and their influence on phenolics acid phytotoxicity [J].Chem. Ecol.,2000,26:2059~2078
    [118]熊明彪.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148
    [119]Molla M A Z, Chowdhury M A. Microbial mineralization of organic phosphate in soil[J].Plant Soil,1984,78(1):393-399
    [120]Arihara J, Kanasawa T. Effect of previous crops on arbucular mycorrhizal formation and growth of succeeding maize[J].Soil Sci. Plant Nutr.,2000,46(1):43~51
    [121]曾广勤,刘荣昌.磷细菌剂在小麦上应用研究[J].微生物学研究与应用,1995,(1):23-25
    [122]郜春花,王岗.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40-43
    [123]石璟.微生物解磷能力比较及复合微生物菌剂在大葱种植上的肥效研究[D].甘肃农业大学硕士研究生学位论文,2008
    [124]唐菁.杨树施用细菌肥料的增长效应及作用机理研究[D].中国林业科学研究院博士学位论文,2006
    [125]康贻军,程洁,梅丽娟,等.植物根际促生菌作用机制研究进展[J].应用生态学报,2010,21(1):232- 238
    [126]Potgieter H J, Alexander M. Susceptibility and resistance of several fungi to microbial lysis[J]. J. Bacteriol.,1966,91(4):1526-1532
    [127]Phae C G, Shoda M, Kita N. Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22[J].Ann. Phytopath. Soc. JPN.,1992,58:329~339
    [128]Zaidi S, Usmani S, Singh B, et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere,2006,64(6):991~997
    [129]Lim H S, Kim Y S, Kim S D. Psedumonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot[J].Appl. Environ Microbiol., 1991,57(2):510~516
    [130]Kirk G J D, Santos E E, Santos M B. Phosphate solubilization by organic anion excretion from rice growing in aerobic soil:rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake[J].New Phytol.,1999,142(2):185~200
    [131]周鑫斌,谢英荷,洪坚平,等.不同水分条件下磷细菌肥使用效果的研究[J].山西农业大学学报,2003,4:331-334
    [132]宋勇春,李晓林,冯固.泡囊丛枝菌根对玉米根际磷酸酶活性的影响,应用生态学报,2001,12(4):593-596
    [133]张彦丽,谷思玉,曾祥书,等.接菌壮秧剂对低磷土壤水稻秧苗生理生化特性的影响[J].西北植物学报,2007,27(10):2059-2064
    [134]周鑫斌,洪坚平,谢英荷.溶磷细菌肥对石灰性土壤磷素转化的影响[J].水土保持学报,2005,19(6):70-73
    [135]肖相政,刘可星,廖宗文.短小芽胞杆菌BX-4抗生素标记及定殖效果研究[J].农业环境科学学报,2009,28(6):1172-1176
    [136]游春平,刘任,肖爱萍,等.拮抗细菌Bio-d5在香蕉根系定殖能力的测定[J].华中农业大学学报,2008,27(3):363-366
    [137]吕德国,于翠,秦嗣军,等.本溪山樱根系解磷细菌的定殖规律及其对植株生长发育的影响[J].中国农业科学,2008,41(2):508-515
    [138]盛下放.硅酸盐细菌NBT菌株在小麦根际定殖的初步研究[J].应用生态学报,2003,14(1):1914-1916
    [139]田涛,亓雪晨,王琦,等.芽胞杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探[J].植物病理学报,2004,34(4):346-351
    [140]张昕,张炳欣,喻景权,等.生防菌ZJY-1及ZJY-116的GFP标记及其在黄瓜根围的生态适应性[J].应用生态学报,2005,16(11):2144-2148
    [141]张晓霞,王平,冯新梅,等.外源基因标记的紫云英根瘤菌在水稻根系的定殖研究[J].生态学报,2003,23(4):771-776
    [142]刘健,李俊,姜昕,等.巨大芽胞杆菌luxAB标记菌株的根际定殖研究[J].微生物学通报,2001,28(6):1-4
    [143]王素芳,王占武,李洪涛,等.土壤因子对链霉菌S506定殖和促生功能的影响[J].中国生态农业学报,2009,17(2):335-338
    [144]韩华君,张磊,谢德体,等.耐酸苜蓿根瘤菌在酸性黄壤中的定殖研究[J].西南农业大学学报,2006,28(5):722-726
    [145]齐飞飞,夏觅真,唐欣昀,等luxAB基因标记的K2116L菌株在棉花根际中的定殖[J].生态学杂志,2008,27(2):192-196
    [146]徐瑞福,路宁海,张定法,等.土壤不同微生物量对木霉菌定殖的影响和木霉菌生态学习性研究[J].中国生态农业学报,2007,15(1):207-208
    [147]Rafet A, Ramazan C, Fikrettin S. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions[J]. Sci. Hortic.,2007,111:371~377
    [148]韩华柏,朱益川,余凌帆,等.四川核桃生产现状与产业化发展对策[J]..经济林研究,2003,21(4):138-140
    [149]陆文静,何振立,许建平,等.石灰性难溶态磷的微生物转化和利用[J].植物营养与肥料学报,1999,5(4):377-383
    [150]陈哲,吴敏娜,秦红灵,等.土壤微生物溶磷分子机理研究进展[J].土壤学报,2009,46(5):925-931
    [151]郝晶,洪坚平,刘冰,等.石灰性土壤中高效解磷细菌菌株的分离、筛选及组合[J].应用与环境生物学报,2006,12(3):404-408
    [152]蒋宝贵,赵斌.解磷解钾自生固氮菌的分离筛选及鉴定[J].华中农业大学学报,2005,24(1):43-48
    [153]余贤美,王义,沈奇宾,等.解磷细菌PSB3的筛选及拮抗作用的研究[J].微生物学通报,2008,35(9):1398-1403
    [154]范丙全,刘巧玲.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].中国生态农业学报,2005,13(3):130-132
    [155]王光华,周克琴,金剑,等.黑土区高效溶磷真菌筛选及其溶解磷矿粉的影响[J].中国生态农业学报,2004,12(3):143-145
    [156]易艳梅.细菌溶磷作用及其对磷矿粉重金属释放和小麦盐胁迫的缓解[D].南京农业大学博士学位论文,2007
    [157]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978
    [158]佟秀珠,蔡妙英.常用细菌系统鉴定手册[M].北京:北京科学出版社,2001:182
    [159]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984
    [160]郭正刚,王根旭,沈禹颖.青藏高原北部多年冻土区草地植物多样性[J].生态学报,2004,(]):95-100
    [161]Poonguzhali S, Munusamy M, Tongmin S. Isolation and identification of phosphate solubilizing bacteria from Chinese Cabbage and their effect on growth and phosphorus utilization of plants[J]. J.Microbiol.biotechnol,2008,18(4):773~777
    [162]Kucey R M N. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils[J].Can. J. Soil Sci.,1983,63:671~678
    [163]夏红珍,朱越雄,王芹,等.桑园土壤理化性状与土壤磷细菌存在量的关系[J].蚕业科学,1999,25(1):57-59
    [164]Yeates J S, Clarke M F. Developing alternatives to phosphate fertilizers of high water solubility[J]. Nutr. cycling Agroecosys.,1993,36(2):141 ~ 150
    [165]易艳梅,黄为一.产多糖溶磷细菌对难溶性Ca-P的活化特性[J].南京农业大学学报,2008,31(2):49-54
    [166]冯瑞章,姚拓,周万海,等.溶磷菌和固氮菌溶解磷矿粉时的互作效应[J].生态学报,2006,26(8):2764-2769
    [167]刘文强,贾玉萍,赵宏坤16SrDNA在细菌分类鉴定研究中的应用[J].动物医学进展,2006,27(11):5-18
    [168]林万明.细菌分子遗传学分类鉴定法[M].上海:上海科技出版社,1990
    [169]程宝森,房玉林,刘延林等.渭北旱塬葡萄根际解磷细菌的筛选及其对葡萄促生效应研究[J].西北农业学报,2009,4:185-190
    [170]Rashid M, Khalil S, Ayub N, et al. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms(PSM)under in vitro conditions[J]. Pak.J.Biol.Sci., 2004,7:187~196
    [171]Nautiyal Shekhar C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J].FEMS Microbiol. Lett.,1999,170(1):265~270
    [172]Goldstein A H. Recent progress in understanding the molecular genetics bacteria[J].Biol.Agric.Hort.,1995,12:185~193
    [173]Kim K Y, Mcdonald G A, Jordan D. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil:effect of carbon sources[J].Soil Biol. Biochem.,1998,30:995~1003
    [174]Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soil[J].Soil Biol. Biochem.,1992,24:389~395
    [175]Liu S T, Lee L Y, Tai C Y, et al. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coil IIB101:nucleotide sequence and propable involvement in biosynthesis of the coenzyme pyrroloquinoline quinine[J].J. Bacteriol.,1992,174:5814-5819
    [176]Goldstein A H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria[J]. Biol.Agric.Hort.,1995,12:185~ 193
    [177]Halder A K, Mishra A K, Bhattacharya P, et al. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium[J].J.Gen.Appl.Microbiol.,1990,36:81~92
    [178]林启美,赵海英,赵小蓉.4株溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002,29(6):24-28
    [179]Sperber J I. Solution of mineral phosphat es by soil bacteria[J].Nature,1957,180:994~995
    [180]Rajan S S S. Use of low grade phosphate rocks as biosuper fertilizer[J].Fertilizer Res.,1981(2):199~ 210
    [181]Chen Y P, Rekha A B, Arun F T, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J].Appl. Soil Ecol.,2006,34:33-41
    [182]Hwangbo H, Park R D, Kim Y W, et al.2-Ketogluconic production and phosphate solubilization by Enterobacter intermedium[J].CUrr.Microbiol.,2003,47:87~92
    [183]Kucey R M N. Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat[J].Can.J.Soil,Sci.,1988.68:261 ~270
    [184]赵小蓉,林启美,孙焱鑫.细菌解磷能力的测定方法的研究[J].微生物学通报,2001,28(1):1-4
    [185]Reyes I. Effect of nitrogen sources on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants[J].FEMS Microbiol.Ecol., 1999,28:281-290
    [186]Reyes I. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants [J]. FEMS Microbiol.Ecol.,1999,28:291~295
    [187]王光华,周克琴,金剑.不同氮源对3种溶磷真菌溶解磷矿粉能力的影响[J].农业系统科学与综合研究,2003,19(4):260-263
    [188]王光华.不同C源对三种溶P真菌溶解磷矿粉能力的影响[J].生态学杂志,2004,23(2):32-36
    [189]赵小蓉,林启美,李保国.C、N源及C/N比对微生物溶磷的影响[J].植物营养与肥料学报,2002,8(2):197-204
    [190]Reddy M S, Kumar S, Babita K et al.. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger[J].Bioresour.Technol.,2002,84:187~189
    [191]王光华,周克琴,周德瑞等.三种溶磷真菌对不同磷源溶解效果的比较[J].土壤通报,2004,35(4):462-465
    [192]赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J].微生物学杂志,2003,23(3):5-7
    [193]张毅民,孙亚凯,吕学斌,等.高效溶磷菌株Bmp5筛选及活力和培养条件的研究[J].华南农业大学学报,2006,27(3):61-65
    [194]张炳欣,张平.根际引入微生物的检测[J].浙江大学学报(农业与生命科学版),2000,26(6):624-628
    [195]吴霭明,顾本康,傅正擎等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究[J].植物 病理学报,2001,31(4):289-294。
    [196]蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态[J].福建农林大学学报(自然科学版),2003,32(1):41-45
    [197]郭小芳,宗兆锋,杨洪俊.6种放线菌抗药性标记及其在植株体内定殖能力测定[J].西北农业学报,2005,14(2):69-73
    [198]黎起秦,罗宽,林纬等.内生菌B47的定殖能力及其对番茄青枯病的防治作用[J].植物保护学报,2006,33(4):363-368
    [199]胡小加,江木兰,张银波.巨大芽孢杆菌在油菜根系定殖和促生作用的研究[J].土壤学报,2004,41(6):945-948
    [200]胡小加,黄沁洁.恶臭假单胞菌P861(GUS)在油菜根系定殖的生态研究[J].植物营养与肥料学报,1999,5(4):359-365
    [201]王平,胡正嘉.土壤因子对发光酶基因标记的荧光假单胞菌X16L2在小麦根圈定殖[J].微生物学报,2000,40(3):312-317
    [202]曹璞.土壤生态环境对Serratia plymuthica A21-4根际定殖的影响[D].河南农业大学硕士学位论文,2009
    [203]翁启勇,陈庆河,赵健等.利福平标记菌株BSI在番茄、茄子根系及土壤中的定殖动态[J].福建农业学报,2003,18(2):87-88
    [204]朱伟杰,王楠,郁学平等.生防菌Pseudomonas fluorescens 2P24对甜瓜根围土壤微生物的影响[J].中国农业科学,2010,43(7):1389-1396
    [205]徐玲,王伟,魏鸿刚等.多粘类芽胞杆菌HY96-2对番茄青枯病的防治作用.中国生物防治,2006,22(3):216-220
    [206]范丙全.不同施肥措施对土壤溶磷微生物的影响[J].河北农业科学,1999,(3):9-12
    [207]樊磊,叶小梅,何家骏,等.解磷微生物对土壤磷素作用的研究进展[J].江苏农业科学,2008(5):261-263
    [208]李娟,王文丽,卢秉林.解磷微生物菌剂对油菜生长及产量的影响[J].中国土壤与肥料,2010,(3):67-69
    [209]夏铁骑,朱学文,吕爱国.小麦根际细菌的互作效应及其对小麦生长的影响[J].河南农业科学,2009,(5):53-55
    [210]吕成群,付淼,黄宝灵等PGPR混合菌对马尾松幼苗的综合效应[J].安徽农业科学,2008,38(18):9849-9853
    [211]王守宗,杨承栋,谢应先,等.细菌肥料对杨树生长效应的研究[J].林业科学研究,1996,(6):654-657
    [212]方丽英,吴庆梅,吕成群,等.土壤益生菌对盆栽马尾松苗生长的影响[J].四川林业科技,2007,28(5):65-68
    [213]梁智,邹耀湘,张计峰.新疆南疆核桃树氮磷钾肥料效应试验研究[J].新疆农业科学,2010,47(5):958-963
    [214]邓振义,张国祯.N、P、K肥对核桃幼苗生长的影响[J].陕西林业科技,2006,(3):7-10
    [215]李彦慧,李保国,郭素萍,等.早实核桃幼树施肥效果研究[J].河北农业大学学报,2006,29(1):9-11,23
    [216]王慧娟,孟月娥,理向阳,等.不同施肥水平对茶条槭生长及光合生理特性的影响[J].植物营养与肥料学报,2008,14(5):1023-1026
    [217]汪斌,兰涛,吴为人.水稻叶绿素含量的QTL定位[J].遗传学报,2003,30(12):1127-1132
    [218]崔晓阳.森林土壤现代实验分析技术[M].哈尔滨:东北林业大学出版社,1998
    [219]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1986
    [220]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [221]洪坚平,谢英荷,Neumann G,等.两种微生物菌剂对小麦幼苗生长和磷吸收机理的影响研究[M].中国生态农业学报,2008,16(1):105-108
    [222]胡晓峰,郭晋云,张楠等.一株溶磷抑病细菌的筛选及其溶磷特性[J].中国农业科学,2010,43(11):2253-2260
    [223]焦如珍,杨承栋,孙启武.细菌肥料菌株对无效磷的转化利用[J].林业科学,2005,41(4):194-198
    [224]Barea J M, Navarro E, Montoya E. Production of plant growth regulators by rhizosphere phosphate- solubilizing bacteria[J].J. Appl. Microbiol.,1978,40(2):129~134
    [225]马冬云,郭天财,宋晓,等.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响[J].生态学报,2007,27(12):5222-5228
    [226]刘兰兰,史春余,梁太波,等.腐植酸肥料对生姜土壤微生物数量和酶活性的影响[J].生态学报,2009,29(11):6136-6141
    [227]杨凤娟,吴焕涛,魏珉,等.轮作与休闲队日光温室黄瓜连作土壤微生物和酶活性的影响[J].应用生态学报,2009,20(12):2983-2988
    [228]Chabot R, Hani A, Cescas PM. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar.phaseoil[J].Plant Soil,1996,184(2):311-321
    [229]Laheurte F, Berthelin J. Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus[J].Plant Soil,1988,105(1):11 ~17
    [230]刘俊杰,王光华,金剑,等.磷浓度处理对大豆根际土壤微生物群落结构的影响[J].大豆科学,2008,27(5):801-805
    [231]秦芳玲,王敬国,李晓林等.VA菌根真菌和解磷细菌对红三叶草生长和氮磷营养的影响[J].草业学报,2000,9(1):9-14
    [232]张新平,万里强,李向林,等.添加乳酸菌和纤维素酶对苜蓿青贮品质的影响[J].草业学报,2007,16(3):139-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700