用户名: 密码: 验证码:
辣椒3414施肥模型的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以辣椒(热辣1号)作为研究对象,采用3414试验设计,研究花岗岩砖红壤上辣椒的施肥模型,以及氮磷钾肥料的利用率。研究结果表明:
     (1)辣椒3414试验产量多重比较结果显示,14个处理产量差异极显著。6号处理产量最大,达到12.1 t·hm-2。1号处理的产量为最小产量,为1.4 t·hm-2。
     (2)试验产量与肥料关系经过三元二次方程拟合,方程的F值达到极显著,方程为y=1243.057+17.806x1+29.04x2+28.962x3-0.078x12-0.623x22-0.056x32+ 0.24x1x2+0.09x2x3+0.017x1x3。根据此方程规划求解之后,得到氮磷钾最大施肥量分别为339.86.118.03.405.02 kg·hm-2。交互作用大小次序为NP>PK>NK,且都为正向效应。说明在交互作用中,氮、磷起主要作用,其次为磷与钾和氮与钾。
     (3)通过对辣椒氮磷钾单因素、双因素互作、三因素互作分析发现,氮磷钾之间的互作效应很明显。每公顷施氮量从114.141 kg到213.177 kg再到339.86 kg,施磷量从23.312 kg到44.578-64.374 kg再到118.03 kg,施钾量从258.589 kg到294.411 kg再到405.02 kg,交互作用随着施肥量而逐渐变大。
     (4)采用一元模型拟合肥料效应时,以处理2、3、6、11拟合N肥效应;以处理4、5、6、7拟合P肥效应;以处理6、8、9、10拟合K肥效应;线性加平台和平方根方程的F值大于0.05,没有达到显著水平,不能根据这两个方程计算推荐施肥量。;拟合成功的方程为一元二次方程。
     (5)维生素C与辣椒产量之间的关系为极显著相关。维生素C最大含量为处理6,这与辣椒最大产量也为处理6相同。所以,维生素C的最大施肥量可以根据辣椒重量的最大施肥量来确定。维生素C的氮磷钾最大施肥量分别为345.0、113.850、414kg·hm-2。
     (6)将三元二次方程和一元方程的进行比较,根据方程的Pr>F值判断得出,只有三元二次方程和一元二次方程可以计算推荐施肥量。最后,氮磷钾最大施肥量分别为332.35~339.86、117.84~118.03、396.77~405.02 kg·hm-2。这时辣椒产量在11.85-12.08 t·hm-2。
     考虑到辣椒品质指标——维生素C在达到最高含量时,氮磷钾最大施肥量分别为345.0~113.850~414 kg.hm-2,以及在肥料利用率中处理6的肥料利用率最高,调整后的氮磷钾最大施肥量分别为332.35-345.00、113.85-118.03、396.77-414.00kg·hm-2。
     综合考虑三元二次方程和一元方程的施肥效益,氮、磷、钾肥最佳施肥量确定为311.78~332.35、108.35~117.84、371.73~396.77 kg·hm-2。此时,施肥效益在3.56-4.13万元·hm-2。
     (7)将试验14个处理的氮磷钾养分利用率进行多重比较分析发现,各处理组合肥料利用率高低排列次序中,6号处理组合为最高值。N、P、K的肥料利用率分别为33.23%、13.97%、42.81%。
     (8)在验证试验中,地块1的推荐施肥量与常规施肥量的产量差异极显著,增产率为15.39%。地块2的推荐施肥与常规施肥之间差异不显著,原因可能是地块2中有1个重复与其他2个之间产量差距很大,减弱了推荐施肥与常规施肥产量之间的差异。地块2上增产率为20%。地块3的3个处理相互间差异显著。地块3增产率为17.31%。
This paper studied the effects of different fertilizer models on simulation for the '3414'fertilizer experiments in 2009~2010, which the Capsicum cultivated by Tropical Crops Genetic Resources Institute of the Chinese Academy of Tropical Agricultural Sciences. The results showed that.
     (1) Through use of different weights of nitrogen, the results showed that there was a significant difference at the 0.05 or 0.01 probability levels in the yield between the treatments. And the average yield of treatment 6, reached a maximum of 12.1 t·hm-2. The average yield of treatment 1, reached a minimum of 1.4 t·hm-2.
     (2) The fertilizer consumption and production as a test factor, the equations for the three-factors obtained by fitting the equation y= 1243.057+17.806x1+29.047x2+ 28.962x3-0.078x12-0.623x22-0.056x32+0.24x1x2+0.09x2x3+0.017x1x3, this equation F<0.0001, the effect was extremely significant. According to this equation Solver, the received the largest NPK fertilizer were 339.86,118.03,405.02 kg·hm-2.we found that the order of the interaction of fertilizer NP> PK> NK, and all for the positive effect. These show that the interaction of NP play a major role, followed by PK, and finally for the NK.
     (3) The analysis of nitrogen, phosphorus, potassium single factor, two-factor interaction, and the interaction of three factors, the results show that the interaction between NPK effects is obvious, nitrogen fertilizer from 114.141 to 213.177, and then to 339.86 kg·hm-2, phosphate Fertilizer from 23.312 to 44.578~64.374, and then to 118.03 kg·hm-2, potash fertilizer from 258.589 to 294.411, and then to 405.02 kg·hm-2.
     (4) Using one-factor when the fertilizer model was fitted to treatments 2,3,6,11 to N fertilizer fitting, to treatments 4,5,6,7 fit for P fertilizer effect, to treatments 6,8,9,10 to K Fertilizer fitting. Linear plus plateau and Square root were Pr>F values are not reached significant levels, they were not calculated the recommended fertilizer.
     (5) Vitamin C and pepper weight relationship between the significant correlations. Maximum content of vitamin C was treatment 6, which is the maximum weight of pepper production process the same was treatment 6. Therefore, vitamin C, the maximum weight of fertilizer can determine the maximum amount of fertilizer. Vitamin C, the largest NPK fertilizer were 345.0 kg·hm-2,113.850 kg·hm-2,414 kg·hm-2.
     (6) three-factors and three of one-factor of the equation on the comparison, according to equation Pr<F value judgments come, only three-factors and one-factor can calculate the fertilizer recommendation. Finally, the largest NPK fertilizer were 332.35~339.86,117.84 ~118.03,396.77~405.02 kg·hm-2. Then pepper production in the 11.85~12.08 t·hm-2.
     Taking into account the quality of vitamin C, NPK largest fertilizer were 345.0, 113.850,414 kg·hm-2, and treatment 6 in the fertilizer use efficiency in the handling of fertilizer usage. The adjusted maximum of NPK fertilizer were 332.35~345.00 kg·hm-2, 113.85~118.03 kg·hm-2,396.77~414.00 kg·hm-2.
     Three-factors and three of one-factor compare the effectiveness of fertilizer, NPK fertilizer best defined as 311.78~332.35 kg·hm-2,108.35~117.84 kg·hm-2,371.73 396.77 kg·hm-2, and economic benefits in 35610~41310 Yuan·hm-2.
     (7) The analysis of NPK nutrient utilization for multiple comparisons, the high and low fertilizer use efficiency of each treatment arranged in order, the highest value was treatment 6. N, P, K fertilizer use efficiency were 33.23%,13.97%,42.81%.
     (4) In the verification test, the block 1, the recommended fertilizer application rates and conventional difference between the yield significantly, an increase of 15.39%. Block 2, and conventional fertilizer recommendation was no significant difference between fertilization, may be due to a block 2 repeat with the other two yield gap between the great weakening of the recommended fertilization and yield differences between conventional fertilization. Block 2 on the increase rate was 20%. Inα= 0.05, the block 3 of 3 treatment significantly different from each other, and block 3 output rate of 17.31%.
引文
1 胡春花,陈拉,潘孝忠.海南瓜菜生产中的科学施肥技术[J].热带农业科学,2001(3):17-22
    2 陈建生,张发宝.发展作物专用肥推进我国平衡施肥[J].磷肥与复肥,1999,14(4):8-10
    3 陈勇,尹士佳.试论配方施肥技术和化肥企业农化服务[J].磷肥与复肥,200,15(4):64-65
    4 高启杰.现代农业推广学[M].北京:中国科学技术出版社,1997
    5 高祥照,郑义,等.肥料实用手册[M].北京:中国农业出版社,2002.50-65
    6 黄德明.十年来我国测土施肥的进展[J].植物营养与肥料学报,200,39(4):495-499
    7 李炳义.走出化肥施用误区[J].河北农业科技,2003(7):36-37
    8 兰美香.测土施肥技术在蔬菜生产中的应用实例研究[D].中国农业科学院,2007
    9 林葆,李家康,金继运.化肥与无公害食品[J].磷肥与复肥,2002,17(5):6
    10 雍洪俊,李峰元.反季节蔬菜生产的意义及作用[J].四川农业科技,2006(3):19.
    11 张乃凤.我国五千年农业生产中的营养元素循环总结以及今后指导施肥的途径[J].土壤肥料,2002(4):3-5.
    12 李清波.平顶山市实施测土配方施肥项目状况及问题研究[D].河南农业大学,2009
    13 张福锁.测土配方施肥技术要点[J].北京:中国农业大学出版社,2006.
    14 中华商务网.中国化肥行业研究咨询报告(内部资料)
    15 农牧渔业部农业局.配方施肥技术工作要点[J].土壤肥料,1987(1):6-12
    16 曾宪坤.我国化肥工业现状与展望[J].土壤学报,1995(2):117-119
    17 章明清,林琼,李娟,等.平衡施肥研究进展与展望[J].见:福建省土肥学会第八次代表大会论文集,2004:110-119
    18 陈义强.氮磷钾肥对烤烟内在品质的影响及其施肥模型[D].郑州:河南农业大学,2008
    19 Makowski David, Wallach Daniel, Meynard Jean-Marc. Models of yield, grain protein, and residual mineral nitrogen responses to applied nitrogen for winter wheat. Agronomy Journal,1999,91(3):377~385
    20 Kastens Terry L, Schmidt John P, Dhuyvetter Kevin C. Yield models implied by traditional fertilizer recommendations and a framework for including nontraditional information. Soil Science Society of America Journal,2003, 67(1):351~364
    21 柯庆明,林文雄,黄珍发,等.小白菜平衡施肥数学模型模拟研究[J].中国生态农业学报,2005,13(1):119-121
    22 孙波,严浩,施建平,等.基于组件式GIS的施肥专家决策支持系统开发和应用[J].农业工程学报,2006,22(4):75-79
    23 陈修斌,张红菊,赵怀勇,等.河西走廊加工型胡萝卜N、P、K肥配施数学模型构建与优化方案研究[J].沈阳农业大学学报,2007,38(4):540-543
    24 马成林,吴才聪,张书慧,等.基于数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2004,20(2):152-155
    25 谭宗琨.BP人工神经网络在玉米智能农业专家系统中的应用[J].农业网络信息,2004,(10):9-11
    26 陈研,胡克林,冯凌,等.基于土壤-作物系统模拟模型的冬小麦田间水氮优化管理[J].农业工程学报,2007,23(6):55-60
    27 马新明,张娟娟,席磊,等.基于叶面积指数(LAI)的小麦变量施氮模型研究[J].农业工程学报,2008,24(2):22-26
    28 刘军,周连仁,梁桂荣.白浆土生态平衡施肥参数的研究[J].东北农业大学学报,2007,38(2):215-220
    29 朱红春,张蕾,刘海英,等.基于GIS的猕猴桃土壤养分评价与施肥建议模型研究[J].农业工程学报,2007,23(6):194-198
    30 陈家金,徐宗焕,林晶,等.基于RCSODS的东南沿海水稻施肥量决策[J].中国农业气象,2008,29(1):71-74
    31 席运官,钦佩,丁公辉,等.基于RCSODS的有机水稻栽培施肥管理与效果分析[J].上海农业学报,2007,23(2):28-33
    32 马新明,张娟娟,刘合兵,等.基于氮素胁迫的WCSODS模型订正与检验[J].2008,41(2):391-396
    33 韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2006.91-107,125-162
    34 唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2007.100-105
    35 丁维龙,赵星,熊范纶,等.虚拟植物建模及其软件开发进展[J].模式识别与人工智能,2002,15(4):435-442
    36 王晓方.“八五”国家农业科技攻关论文选萃[J].中国农业科技出版社,1996
    37 张永成.饱和D最优设计方法在农业试验中的应用[J].马铃薯杂志,1997,11(3):172-174
    38 陈伦寿,陆景陵.蔬菜营养与施肥技术[M].北京:中国农业出版社,2002
    39 张振贤,于贤昌.蔬菜施肥原理与技术[M].北京:中国农业出版社,1996
    40 唐栓虎,张发宝,黄旭,等.缓/控释肥料对辣椒生长及养分利用率的影响[J].应用生态学报,2008,19(5):986-991
    41 杨熙仁.肥料增产效应与经济合理施肥[J].土壤通报,1982(5):28-31.
    42 张桂兰,宝德俊.冬小麦氮吧增产效应与经济用量的研究[C].全国化肥试验会议论文,1984.
    43 高凤友.玉米测土配方施肥应用技术的基础研究[D].中国农业科学院,2007.
    44 Rasmussen P E, Douglas Jr C L, Collins H P, et al. Long-term cropping system effects on mineralizable nitrogen in soil [J]. Soil Biology and Biochemistry, 1998,30(13):1829~1837.
    45 Sonar K R, Tamboli B D, Patil Y M, et al. Targetting yield of pearl millet on vertisols based on soil testing [J]. Journal of the Indian Society of Soil Science,1994,42(4):658~660.
    46 Hariprakasa Rao M, Subramanian T R. Fertilizer needs of vegetable crops based on yield goal approach in alfisols of Southern India [J]. Journal of the Indian Society of Soil Science,1994,42(4):565~568.
    47 Prasad R, Prasad B. Fertilizer requirements for specific yield targets of soybean based on soil testing in alfisols [J]. Journal of the Indian Society of Soil Science,1996,44(2):332~333.
    48 姜文彬,杨铁成,单文波.玉米诊断施肥技术的研究与应用[J].吉林农业大学学报,1986,8(4):62-68.
    49 朱兆良.关于稻田土壤供氮量的预测和平均适宜施氮量的应用[J].土壤,1988,20(2):57-61.
    50 张宽,赵景云,王秀芳,等.黑土供磷能力与磷肥经济合理用量问题的初步研究[J].土壤通报,1984(3):120-123.
    51 Bielek P. Nitrate in nature:product of soil cover [J]. Environmental Pollution,1998,102(1):527~530.
    52 朱涛,张中原,李金凤,等.应用二次回归肥料试验“3414”设计配置多种肥料效应函数功能的研究[J].沈阳农业大学学报,2004,35(3):211-215
    53 王圣瑞,陈新平,高祥照,等.”3414”肥料试验模型拟合的探讨[J].植物营养与肥料学报,2002,8(4):409-413
    54 赵斌,王勇,路钰,等.多元二次肥料效应函数极值的判别及函数优化[J].杂粮作物,2001,21(2):42-45
    55 汪建飞,邢素芝,于群英,等.结球甘蓝NKMg肥配施数学模型的研究[J].土壤, 2004,36(4):412-415
    56 兰澍芬,王葳,黄永良.兴安盟旱作区向日葵高产优化施肥模型建立及其应用[J].内蒙古农业科技,1999(5):7-9
    57 闫礼,樊秀荣,韩成,等.临河区油用向日葵肥料肥效试验及施肥指标体系的建立[J].内蒙古农业科技,2008(6):47-48,54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700