用户名: 密码: 验证码:
高产粮区不同施肥模式下农田氮素损失途径及水氮利用效率分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以农业面源污染风险极高的华北高产粮区为对象,将田间定位观测与农田水氮管理模型(WNMM)相结合,系统研究了6种施肥模式下玉米-小麦轮作体系土壤中化肥氮素的去向、农田水氮的运移规律及其生态环境效应,归纳分析了农田氮素损失的途径,最终确定了较优的氮肥管理方案。主要研究结果如下:
     玉米季籽粒产量最高为CRF处理,达到8632 kg hm~(-2),其他依次为OPT处理>CRFM处理>FP处理>OPTM处理,小麦季籽粒产量最高为CRFM处理,达到6369 kg hm~(-2),其他依次为OPT处理>FP处理>OPTM处理>CRF处理,优化施肥和缓控释肥呈现出一定的增产效果,方差分析结果显示5个施氮处理间作物籽粒产量无显著差异。
     与2009年初始土壤剖面储水量相比,2010年收获期各处理土体储水量均有所下降。各施肥处理下土体储水量有一定区别,但降低幅度基本一致。
     除CRFM处理外,各处理均表现为氮亏损。2009年玉米季收获时各施氮处理上层土壤硝态氮累积量较2009年播种前降低,FP处理NO_3~--N累积在70-160cm,集中分布在120-140cm土层,并且累积量居首位;OPT和OPTM处理NO_3~--N累积在100-160cm土层,集中分布在110-130cm土层;CRFM和CRF处理NO_3~--N累积在60-180cm土层,且在各土层分布较均匀。小麦季OPT、OPTM和CRF处理土壤各层NO_3~--N累积量都降低到10kg hm~(-2)以下,相比于FP处理,0-180cm土层NO_3~--N累积量分别降低35%、59%和70%。水氮管理模型(WNMM)的校验结果表明:土壤水分、土壤剖面硝态氮浓度和作物生物学指标的模拟值与实测值比较吻合,结果令人满意,表明应用模型分析土壤水分动态及氮素去向是可行的。
     模型模拟结果:玉米季水分损失主要途径是蒸散和渗漏,各处理蒸散量基本一致,OPT处理水分渗漏量最少;5个施肥处理的氮素淋失量占施肥量的比例范围为6%-18%,其中OPT处理氮素淋失量最少;5个施氮处理的氨挥发量占施肥量的比例范围为5%-34%,其中CRF处理氨挥发量最少。小麦季的主要途径是蒸散,各处理的蒸散量基本一致,5个施氮处理的氨挥发量占施肥量的比例范围为7%-16%。2009-2010年农田氮素总损失量依次为FP>OPT>OPTM>CRFM>CRF>CK.
     旱地农田氮素损失的主要途径是硝态氮淋失和氨挥发损失。优化的氮肥管理可以显著减少氮素淋失,控释肥可以有效减少农田氨挥发。因此,在保证作物产量的前提下,综合考虑农学效应和环境效应,最终确定优化施肥处理和缓控释肥处理为5个施氮处理中的较优方案。
Using field experiment combined water and nitrogen (N) management model (WNMM), the nitrogen loss, the eco-environmental effect, the soil water and nitrogen behaviors under six kinds of nitrogen fertilizer management practices in high yield production area of Huantai County in Shandong province were systematically studied. The objectives of the paper were to evaluate the agronomic and environmental effects under different management practices and to determine the optimal N management practice. The main results are as follows: The yield for CRF was 8632 kg hm~(-2) and was the highest in the maize growth season .The order of the yield under the other treatments was following as: OPT >CRFM >FP >OPTM. The yield for CRFM was 6369 kg hm~(-2) and was the highest in the wheat growth season .The order of the yield under the other treatments was following as: OPT >FP >OPTM >CRF. The OPT and CRT treatments both could increase grain yield, and the difference among the six fertilizer treatments was not significant.
     Soil water storage of in 1.8 m-soil profile on the end of the wheat growth season was lower than that on the beginning of the maize growth season. The difference among different fertilizer treatments was not significant.
     The accumulative nitrate in 1.8 m-soil profile after wheat harvest in 2010 was lower than that of before maize sowing in 2009, except for CRFM. During the maize growth season, the substantial amount of NO_3~--N under FP accumulated in soil layer of 70cm to 160cm, especially 120-140cm; the amount of NO_3~--N under OPT and OPTM accumulated in soil layer of 100cm to 160cm, especially 110-130cm; the amount of NO_3~--N under CRFM and CRF accumulated in soil layer of 60cm to 180cm. During the wheat growth season, the amounts of NO_3~--N under OPT, OPTM and CRF reduced to 35%, 59% and 70% of FP.
     Based on field experiment, water and N management model (WNMM) was calibrated and validated, the results indicated that the simulated soil water content and nitrate content were both agreed well with the measured values. Thus, the model could be used to simulate the soil water and N transport in the study area.
     During the maize growth season, the main sources of water loss were evapotranspiration and leakage, the difference of evapotranspiration among the six fertilizer treatments was not significant and the leakage of water under OPT was the lowest; The results indicated that the ratio of nitrate leaching and NH3 volatilization accounting of fertilizer N ranged from 6% to 18% and 5% to 34%, respectively, and the amount of N leaching under OPT was 14.5 kg hm~(-2), was the lowest in all treatments, but the amount of NH3 volatilization under CRT were 7.6 kg hm~(-2), respectively, was the lowest in all treatments. During the wheat growth season, the main source of water loss was evapotranspiration, and the results indicated that the ratio of NH3 volatilization accounting of fertilizer N ranged from 7% to 16%. The order of total N loss under six treatments was following as: FP > OPT >OPTM >CRFM >CRF>CK.
     The OPT and CRT treatments both are the best management practices considering their high grain yield, water and nitrogen use efficiencies, and environmental protection.
引文
陈新平,周金池,王兴仁,等.应用土壤无机氮测试进行冬小麦氮肥推荐的研究[J].土壤肥料,1997, 5(4):19-22.
    陈同斌,陈世庆,徐鸿涛,等.中国农用化肥氮磷钾需求比例的研究[J].地理学报,1998,53(1):32-41.
    陈淑峰,李帷,胡克林,等.基于GIS的华北高产粮区地下水硝态氮含量时空变异特征[J].环境科学,2009,30(12):3541-3547.
    丁洪,蔡贵信,王跃思,等.华北平原几种主要类型土壤的硝化及反硝化活性[J].农业环境保护,2001,20(6):390-393.
    范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展[J].山东农业科学,2001, 4(19):47-50.
    樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮的分布与累积的影响[J].土壤与环境,2000,9(1):23-26.
    葛顺峰,姜远茂,彭福田等.春季有机肥和化肥配施对苹果园土壤氨挥发的影响[J].水土保持学报,2010,24(5):199-203.
    郭胜利,郝明德,党廷辉.黄土高原沟壑区小流域NO-3-N的积累特征及其影响因素[J].自然资源学报,2003,18(1):37-43.
    郭胜利,党廷辉,郝明德.黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征[J].干旱地区农业研究,2000,18(1):22- 27.
    贺明荣,杨雯玉,王晓英,等.不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响[J].作物学报,2005,31(8):1047-1051.
    黄元仿,李韵珠,李保国,等.区域农田土壤水和氮素行为的模拟[J].水利学报,2001(11):87-92.
    黄绍敏,宝德俊,皇甫湘荣.施氮对潮土土壤及地下水硝态氮含量的影响[J].农业环境保护,2000,19(4):228-229,241.
    胡克林,李保国,陈研,等.作物生长与土壤水氮运移联合模拟的研究I模型[J].水利学报,2007,38(7): 779-785.
    贾丽华,费良军,程东娟.不同灌溉施肥方式的土壤硝态氮分布特性试验研究[J].干旱地区农业研究,2008,26(2):44-48.
    巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    巨晓棠,潘家荣,刘学军,等.北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J].植物营养与肥料学报,2003,3(1):264-270.
    巨晓棠.冬小麦—夏玉米轮作体系中土壤-肥料氮的转化及去向[D].[中国农业大学博士论文].北京:中国农业大学,2000.
    巨晓棠,刘学军,张福锁.尿素与DCD和有机物料配施条件下氮素的转化和去向[J].中国农业科学,2002,2:181-182. 寇长林,徐建生,王恒宇.砂质潮土冬小麦对氮肥的利用与氮素平衡[J].核农学
    报,2003,17(6):476 -480. 刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态
    学报,2002,22(7):1121-1128.
    刘小刚,张富仓,田育丰,等.限量灌溉对石羊河流域春小麦根区水氮迁移和利用的影响[J]. 干旱地区农业研究,2008,26(6):57-62.
    刘敏超,曾长立,王兴仁,等.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究,2000,21(5):309-312.
    罗阳,张增阁,霍家明,等.灌溉施肥条件下田间氮素在土壤中迁移情况的研究[J].水资源保护,2000,(4):7-11.
    吕殿青,同延安.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(2):8-15. 李世娟,周殿玺,兰林旺.不同水分和氮肥水平对冬小麦吸收肥料氮的影响[J].核农学
    报,2002,16(5):315-319. 李科江,李保国,胡克林,等.不同水肥管理对冬小麦灌浆影响的模拟研究[J].植物营养与
    肥料学报,2004,10(5):449-454.
    李亚龙,崔远来,李远华.作物水氮生产函数研究进展[J].水利学报,2006,37(6):704-710. 李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学
    报,2000,11(2):240-242.
    李晓鹏,张佳宝,朱安宁,等.基于WNMM模型的潮土地区农田水氮优化管理[J].生态与农村环境学报,2009,25(1):62-68.
    马兴华,王东,于振文等.不同施氮量下灌水量对小麦耗水特性和氮素分配的影响[J].生态学报,2010,30(8):1955-1965.
    彭琳.中国化肥施用与粮食生产的进程前景与布局[J].西北农地学报,1999,8(6):1-5.
    邵则瑶,杨海顺,朱昭仪,等.作物根层(0—100cm)土壤剖面残留无机态氮研究报告之一[J].北京农业大学学报,1988,14(4):420-429.
    史晓楠,王全九,苏莹.微咸水水质对土壤水盐运移特征的影响[J].干旱区地理, 2005, 28(4):516-520.
    沈善敏主编.中国土壤肥力[M].北京:中国农业出版社,1998.
    沈景文.化肥农药和污灌对地下水的污染[J].农业环境保护,1992,11(3):137-139.
    唐玉霞,孟春香,贾树龙.干旱胁迫对冬小麦氮素营养效率的影响.河北农业科学,2000,4(2):10-13.
    汪强,李双凌,韩燕来,等.缓/控释肥对小麦增产与提高氮肥利用率的效果研究[J].土壤通报,2007,38(4):693-696.
    王朝辉,宗志强,李生秀,等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):80-83.
    王秀丽,孙波.红壤旱地施用有机肥的氮素淋失过程[J].土壤学报,2008,45(4):745-749.
    王海云,邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报2009,28(12):2631-2636.
    徐钰,刘兆辉,江丽华,等.不同氮肥运筹对冬小麦氮肥利用率和土壤硝态氮含量的影响[J]. 水土保持学报,2010,24(4):90-93.
    袁新民,同延安,杨学云,等.施用磷肥对土壤NO-3-N累积的影响[J].植物营养与肥料学报,2000,6(4):397-403.
    阎崇彪.涂层尿素及其农业应用[M].北京:中国农业出版社, 1997.
    杨荣,苏永中.水氮配合对绿洲沙地农田玉米产量、土壤硝态氮和氮平衡的影响[J].生态学报,2009,29(3):1459-1469.
    中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,1981.
    中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2002.
    朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    朱兆良,张福锁,等著.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].北京:科学出版社,2010,339-400.
    张志明,毕庶春,李继云,等.长效碳铵特性与应用效益研究[J].科学通报, 1997,42(8):874-878.
    张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9(2):150-157.
    张庆忠,陈欣,沈善敏.农田土壤硝酸盐累积与淋失研究进展[J].应用生态学报,2002,13(2):233-238.
    张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716.
    张庆利,张民,田维彬,包膜控释和常用氮肥氮素淋溶特征及其对土水质量的影响[J].土壤与环境,2001,10(2): 98-103.
    张迪,牛明芬,王少军,等.不同有机肥处理对设施菜地土壤硝态氮分布影响[J].农业环境科学学报,2010,29(增刊):156-161.
    张民,史衍玺,杨守祥,等.控释和缓释肥的研究现状与进展[J].化肥工业,2001, 28(5):27-30.
    张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国
    农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    赵荣芳,陈新平,张福锁.基于养分平衡和土壤测试的冬小麦氮素优化管理方法研究[J],中国农学通报,2005.(11): 219-223.
    赵营,同延安,赵护兵.不同施氮量对夏玉米产量、氮肥利用率及氮平衡的影响[J].土壤肥料,2006,(2):30-33.
    邹国元.冬小麦—夏玉米轮作体系中肥料氮的硝化—反硝化作用研究[D].[中国农业大学博士学位论文].北京:中国农业大学,2001.
    周静,崔键,王霞.红壤不同含水量对尿素氨挥发的影响[J].土壤,2008,40(6):930-933.
    Alkanani T., Mackenzie A. F., Barthakur N. N. Soil -water and ammonia volatilization relationships with surface-applied nitrogen-fertilizer solutions [J]. Soil Science Society of America Journal, 1991, 55(6):1761-1766.
    Apsimon H. M., Kruse M., Bell J. Ammonia emissions and their role in acid deposition[J]. Atmospheric Environment, 1987, 21:1939-1946.
    Bouwmeester R.,Vlek P.,Stumpe J. M.Effect of environmental factors on ammonia volatilization from a Urea -Fertilized Soil [J]. Soil Science Society of America Journal,1985, 49(2):376-381.
    Bundy L.G., Andraski T.W. Recovery of fertilizer nitrogen in crop residues and cover crops on an irrigated sandy soil [J]. Soil Science Society of America Journal, 2005, 69: 640-648.
    Chen Q., Zhang H. Y., Tang L.,et al. Effects of water and nitrogen supply on spinach (Spinacia oleracea L.) growth and soil mineral N residues[J].Pedosphere, 2002,12(2):171-178.
    Cai G. X.,Chen D. L.,Ding H.,et al.Nitrogen losses from fertilizers applied to maize,wheat and rice in the North China Plain[J].Nutrient Cycling in Agro-ecosystems,2002,63:187-195.
    Delgada J. A., Mosier A. R. Mitigation alternatives decrease nitrous oxide emissions and urea-nitrogen loss and their effect on methane flux [J]. Journal of Environmental Quality, 1999, 28(6):1105-1111.
    Delgado J.A., Riggenbach R.R., Sparks R.T., et al. Evaluation of nitrate-nitrogen transport in a potato-barley rotation [J]. Soil Science Society of America Journal, 2001, 65: 878-883.
    Duan Z. H.,Xiao H. L. Effects of soil properties on ammonia volatilization [J]. Soil Science and Plant Nutrition,2000,46(4):845-852.
    Ferguson R. B., Hergert G. W., Schepers J. S., et al. Site-specific nitrogen management of irrigated maize: Yield and soil residual nitrate effects [J]. Soil Science Society of America Journal, 2002, 66:544-553.
    Fenn L. B. , Escarzaga R . Ammonia volatilization from surface applications of ammonium-compounds on calcareous soils [J]. Soil Science Society of America Journal, 1976, 40(4):537-541.
    Gehl R. J., Schmidt J. P., Godsey C. B., et al. Post-Harvest soil nitrate in irrigated corn: variability among eight field sites and multiple nitrogen rates [J]. Soil Science Society of America Journal, 2006, 70: 1922-1931.
    Hu, K. L., Li B. G., Chen D. L., et al. Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China [J]. Agricultural Water Management, 2008, 95: 1180-1188.
    Hu K. L., Li Y., Chen W. P., et al. Modeling nitrate leaching and optimizing water andnitrogen management under irrigated maize in desert oasis in Northwestern China[J]. Journal of Environmental Quality, 2010, 39(2): 667-677.
    Hu K. L., Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China [J]. Agricultural Water Management, 2009, 96: 1114-1119.
    IPCC, Climate Change. The scientific basis: Chapter 4. Atmosphere chemistry and greenhouse gases [R]. Cambridge: Cambridge University Press, UK 2001.
    Li Y., White R. E., Chen D. L., et al. A spatially referenced Water and Nitrogen Management Model (WNMM) for (irrigated) intensive cropping systems in the North China Plain [J]. Ecological Modelling, 2007, 203: 395-423.
    Ma L.W., Malone R.W., Jaynes D.B., et al. Simulated effects of nitrogen management and soil microbes on soil nitrogen balance and crop production [J]. Soil Science Society of America Journal, 2007, 72: 1594-1603.
    Mikha M. M., Rice C. W., Benjamin J. G. Estimating soil mineralizable nitrogen under different management practices [L]. Soil Science Society of America Journal, 2006, 70: 1522-1531.
    Mack U. D., Feger K. H., Gong Y. S., et al. Soil water balance and nitrate leaching in winter wheat–summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain [J]. Journal of Plant Nutrition and Soil Science, 2005, 4(168): 454-460.
    Mclay C. D. A., Dragten R., Sparling G. Predicting groundwater nitrate concentration in a region of mixed agricultural land use: a comparison of three approaches [J]. Environmental Pollution, 2001, 115:191-204.
    Nyord T.,Schelde K. M.,Sogaard H. T.,et al.A simple model for assessing ammonia emission from ammonia cal fertilizers as affected by pH and injection into soil [J]. Atmospheric Environment,2008,42(19):4656-4664.
    Ouyang D. S.,Mackenzie A. F.,Fan M. X. Ammonia volatilization from urea amended with triple super phosphate and potassium chloride [J]. Soil Science Society of America Journal, 1998, 62(5):1443-1447.
    Ottman M.J., Pope N.V. Nitrogen fertilizer movement in the soil as influenced by nitrogenrate and timing in irrigated wheat [J]. Soil Science Society of America Journal, 2000, 64: 1883-1892.
    Pang X. P., Gupta S. C., Moncrief J. F., et al. Evaluation of nitrate leaching potential in Minnesota glacial outwash soils using the CERES-maize model[J]. Journal of Environmental Quality, 1998, 27:75-85.
    Reddy D. D.,Sharma K. L. Effect of amending urea fertilizer with chemical additives on ammonia volatilization loss and nitrogen-use efficiency [J]. Biology and Fertility of Soils,2000,32(1):24-27.
    Sutton M. A.,Lee D. S.,Dollard G. J.Atmospheric ammonia: Emission, deposition and environmental impacts-Introduction [J]. Atmospheric Environment,1998,32:269-271.
    Velthof G. L.,Oudendag D.,Witzke H. R.,et al. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE [J]. Journal of Environmental Quality,2009,38(2):402-417.
    Wei Y. P., Chen D. L., Velthof G. L., et al. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE [J]. Journal of Environmental Quality, 2009, 38: 402-417.
    Wang H. Y., Ju X. T., Wei Y. P., et al. Simulation of Bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain [J]. Agricultural Water Management, 2010, 97(10):1646-1654.
    Wylie B. K., Shaffer M. J.,Hall M. D. Regional assessment of NLEAP NO_3~-N leaching indices [J]. Water Resources Bulletin, 1995, 31:399-403.
    Zhu Z. L., Chen D. L. Nitrogen fertilizer use in China—Contributions to food production, impacts on the environment and best management strategies [J]. Nutrient Cycling in Agro-ecosystems, 2002, 63: 117–127.
    Zhang Y. M., Hu C. S., Zhang J. B., et al. Nitrate leaching in an irrigated Wheat-Maize rotation field in the North China Plain [J]. Pedosphere, 2005, 15(2):196-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700