用户名: 密码: 验证码:
多学科模糊满意协同优化方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家自然科学基金和国家863高技术发展计划的资助下,本文研究了多学科模糊满意协同优化方法,主要包括:多学科协同优化(CO)分学科(子系统)建模方法、模糊满意协同优化方法、基于全局共享变量近似子空间的协同优化方法,并将其应用于全断面岩石掘进机刀具布局优化设计中。该问题在理论研究中属于多学科设计优化方法(MDO);在机械设计中属于复杂布局方案设计;在人工智能领域中属于人机结合问题,具有重要的理论和工程应用价值。
     提出了基于全局共享变量近似子空间的协同优化方法,对于学科级共享变量的可行域以超切平面法来近似,当系统级共享设计变量达到了一致性要求,系统级才进行解耦操作,在一定程度上降低学科级的分析次数,具有很好的计算精度和计算稳定性,可以有效地解决TBM刀具布局优化设计这类涉及共享变量多,耦合变量相对较少的优化设计问题。
     为了能在协同优化中嵌入模糊因素与领域专家的知识和经验,本文给出了模糊满意协同优化模型及算法,在学科级分析模块中增加了极角模糊规则和模糊约束最优截集水平分析。从TBM刀具布局优化设计问题的应用效果来看,有效地解决了刀具布局协同优化设计中模糊推理、模糊约束的处理问题。
     针对TBM刀盘布置设计中具有布局计算复杂,优化器负载重、学科领域内容交叉的特点,提出了按MDO的学科分级优化的思想,利用协同优化方法,将刀盘最优布置模型分成了两层,共包括1个系统级和4个子系统(学科)级:刀盘几何学计算子系统、刀盘力学计算子系统、刀盘质心计算子系统和破岩量计算子系统,各子系统级采用并行优化器处理,以降低问题的求解规模,提高刀具布局寻优的效率。
     全文的主要工作内容包括:
     (1)讨论了并行子空间优化、协同优化和两级集成系统三种多学科优化方法的特点和应用,并根据系统工程学原理和TBM盘刀布置问题的特点,提出利用多学科协同优化方法来解决TBM刀具布局优化这类复杂问题的思想。
     (2)提出了多学科协同优化分学科优化策略、建模方法和盘刀布置方案系统级调整机制。分析了标准协同优化计算困难的原因,在此基础上提出了一种改良的协同优化方法——基于全局共享变量近似子空间协同优化。并通过实例验证该方法在求解复杂工程布局问题的可行性和有效性。
     (3)提出模糊协同优化模型及算法,主要包括两类模型——对称和非对称模糊协同优化模型,前者将截集水平作为学科级的共享变量来处理,它比较适合于约束条件和优化目标具有同等重要程度的情况;后者将截集水平嵌入到学科级中,由学科级分析模块来处理,比较适合于对约束条件和优化目标具有不同的重视度情况。
     (4)将本文提出的方法,应用到TBM掘进机刀具布局优化的工程实例中,具体方法包括:非对称模糊满意协同优化模型、学科级分析模块中极角模糊规则、模糊约束的最优截集水平、学科级模糊推理、极角模糊推理约束条件的构建等。
     本文以全断面岩石掘进机刀具布局设计为应用背景,根据MDO及模糊理论与方法,给出了多学科模糊满意协同优化方法,并在该方法中应用了近似和解耦协调机制、模糊优化、模糊推理等相关理论,具有一定的工程实用价值,本文工作期望有助于推动一类复杂工程布局优化设计理论研究的进展。
Supported by National Natural Science Foundation of China and National Hi-Tech Research and Development Program (863Program) of China, this research studies multidisciplinary collaborative satisficing design method, which mainly includes the method modeled by the discipline (subsystem) using multidisciplinary collaborative optimization(CO), the fuzzy satisficing collaborative optimization method, the collaborative optimization method based on the global shared variables approximation subspace. The indicated method is finally used at the cutter layout design of Full Face Rock Tunnel Boring Machine(TBM). The aforementioned studies belong to the method of multidisciplinary design optimization (MDO) in theory, the complex layout scheme design in mechanics design, and the human-computer cooperative problem in artificial intelligence, which is of the important theory and application value.
     This study proposes a collaborative optimization method based on the global shared variables approximation subspace. The super tangent plane method is used to approximate the feasible domain of each discipline level's shared variable. When shared design variables at the system level satisfy the consistency constraints, system level is to decouple the auxiliary variables in certain to reduce the analysis times of discipline level, and may obtain good accuracy and stability of computation. This method may efficiently solve this kind of problem, such as cutter layout design, which contains lots of shared variables and relatively few auxiliary variables.
     For cutter layout design problem of TBM involves fuzzy factors and expertise's experience, a fuzzy satisficing collaborative optimization model and algorithm are presented. This model increases the analysis for fuzzy rules of the polar angle and optimal cut set level of fuzzy constrained at the discipline level, which may solve effectively multidisciplinary design problems of fuzzy constraint and fuzzy reasoning problem in cutter layout design.
     Considering the computational complexity, heavy load of the optimizer, multidisciplinary contents involved in TBM cutter layout design, and this dissertation indicates an optimization method classified by discipline of MDO. In accordance with collaborative optimization idea, the cutter optimal layout model is divided into two layers, including one system and four subsystems (disciplines) level, that is, cutterhead geometry subsystem, cutter dynamics subsystem, cutterhead center of mass subsystem and rock breaking volume subsystem. The subsystem level uses parallel optimizer, which reduces the scale of solving, and improves the efficiency of cutterhead layout optimization.
     The main contents of this dissertation are as follows:
     (1) This study reviews the layout design and development of multidisciplinary design optimization, discusses concurrent subspace optimization, collaborative optimization and Bi—level integration system synthesis optimization methods and the characteristics of their respective application. According to the idea of system engineering, multidisciplinary collaborative optimization method is proposed to solve the cutterhead layout optimization of this kind of complicated problem.
     (2) This dissertation presents a optimization strategy of disciplines, modeling method and adjustment mechanism of cutterhead layout scheme at system level.Through the analysis of the computational difficulties reason for standard collaborative optimization algorithm, this study puts forward an improved CO method:Based on global shared variables approximation subspace collaborative optimization. An example is used to test and verify that this method is feasible and effective.
     (3) Fuzzy collaborative optimization model and algorithm are presented, including two main kinds of model, that is, symmetric and asymmetric fuzzy collaborative optimization model. The former takes cut set level as the discipline level's shared variables, and it is more suited to the condition of the constraints and objectives with equal importance degree; The latter embeds cut set level into the discipline level, and it is processed by level analysis module, which is more suited to the condition of constraints and objectives with different importance degree.
     (4) The methods introduce by the above sections are applied to the cutter layout design optimization of TBM, such as the selection of asymmetric fuzzy satisficing collaborative optimization model, optimal cut set level of the polar angle of fuzzy rules and fuzzy constrained at the discipline level analysis module, fuzzy reasoning, the construction of the polar angle of fuzzy constraints, interactive preference optimization design at system level.
     Based on cutter layout design problem of full face rock tunnel boring machine, the study gives the multidisciplinary fuzzy and satisficing collaborative optimization method combined with human-computer interaction,which uses the approximation and decoupling coordination mechanism, fuzzy optimization, fuzzy reasoning theory. The research has a certain engineering application value, and contributes to the research progress of layout MDO problem.
引文
[1]Hales Thomas C. A proof of the Kepler conjecture[J]. Annual of Math,2005, (3):1065-1185.
    [2]余世根,鲁建厦.基于GA的固定约束条件下多目标车间设备们布局问题研究[J].浙江工业大学学报,2010,38(4):401-405.
    [3]王奕首.卫星有效载荷配置和布局设计方法[D].大连:大连理工大学,2008.
    [4]钱志勤,滕弘飞.复杂布局设计问题的算法[J].中国机械上程,2002,13(8):696-699.
    [5]张照煌.掘进机刀盘上盘刀布置规律的探讨[J].上程机械,1996,27(7):24-25.
    [6]霍军周,滕弘飞.全断Ⅲ岩石掘进机刀具布置优化设计方法:中国,2007100121129[P].2007-07-20.
    [7]荆道艳.TPB车体有限元分析与车下设备布局优化研究[D].北京:北京交通大学,2007.
    [8]范小宁,林焰,纪卓尚.多蚁群协进化的船舶多管路并行布局优化[J].上海交通大学学报,2009,43(2):193-197.
    [9]Cagan J, Shimada K, Yin S. A survey of computational approaches to three-dimensional layout problems[J]. Computer Aided Design,2002,34(8):597-611.
    [10]Grignon P M, Fadel G M. A GA based configuration design optimization method [J]. Journal of Mechanical Design,2004,126(1):6-15.
    [11]王梦恕,李典璜,张镜剑,等.岩石隧道掘进机(TBM)施工及工程实例[M].北京:中国铁道出版社,2004.
    [12]中国铁建.用于广深港客专盾构机“金龙10号”出厂验收[EB/OL][2010,03,02].http://www.crccg.com/735-1966-14610.aspx.
    [13]张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007,26(2):226-238.
    [14]Reilly J, Arrigoni G, Xu S L, et alTBM及其在中国的应用(1)[J].现代隧道技术,2002,39(1):1-5.
    [15]崔国华,王国强,何恩光,等.盾构机的研究现状及发展前景[J].矿山机械,2006,(6):24-27.
    [16]新华社.国务院关于加快振兴装备制造业的若十意见[EB/OL](2007,06,20).http://www.gov.cn/jrzg/2006-06/29/content_322286.htm.
    [17]乔世珊,茅承觉,刘春.全断面岩石掘进机[M].北京:石油工业出版社,2005.
    [18]Reilly J, Arrigoni G, Xu S L et alTBM及其在中国的应用(1)[J].现代隧道技术,2002,39(1):1-5.
    [19]杨嫒媛,黄宏伟.围岩分类在TBM滚刀寿命预测中的应用[J].地下空间与工程学报,2005,1(5):721-724
    [20]Udy J J. Computation of interferences between three-dimensional objects and optimal packing problem[J]. Advances in Engineering Software,1988,10(1):8-14.
    [21]Teng H F, Sun S L, Liu D Q, et al. Layout optimization for the objects located within a rotating vessel—a three-dimensional packing problem with behavioral constraints[J]. Computers & Operation Research,2001,28(6):521-535.
    [22]袁苗龙,周济,张新访.三维几何布局的一类启发式求解算法[J].计算机学报,1999,22(9):923-930
    [23]Wu Y L, Huang W Q, Lau S C, et al. An effective quasi-human based heuristic for solving the rectangle packing problem [J]. European Journal of Operational Research, 2002,141(2):341-358.
    [24]Foulds L R, Tran H V. Library layout via graph theory[J]. Computers & Industrial Engineering,1986,10(3):245-252.
    [25]Dai Z, Cha J Z. A hybrid algorithm of heuristic and neural network for packing problems[C]//Proceedings of Conference on Design Automation. Minneapolis, USA, 1994:117-124.
    [26]Han S Y, Kim Y S, Lee T Y, et al. A framework of concurrent process engineering with agent-based collaborative design strategies and its application on plant layout problem[J]. Computers and Chemical Engineering,2000,24(2-7):1673-1679.
    [27]Chung Y K. Application of a cascade BAM neural expert system to conceptual design for facility layout[J]. Computers & Mathematics with Application,1999, 37(1):95-110.
    [28]Tazawa I, Koakutsu S, Hirata H. An evolution optimization based on the immune system and its application to the VLSI floor-plan design problem[J]. Electrical Engineering in Japan,1998,124(4):27-36.
    [29]徐义春,肖人彬.用蚁群算法求解带平衡约束的圆形布局问题[J].控制与决策,2008,23(1):25-29.
    [30]Chwif L, Barretto M R P, Moscato L A. A solution to the facility layout problem using simulated annealing[J]. Computers in Industry,1998,36(1-2):125-132.
    [31]史彦军.复杂布局的协同差异演化方法研究[D].大连:大连理工大学,2005.
    [32]刘飞,孙明,李宁等.粒子群算法及其在布局优化中的应用[J].计算机工程与应用,2004,40(12):71-73.
    [33]霍军周.人机结合协同进化设计方法及其应用[D].大连:大连理工大学,2007.
    [34]Smith R P, Heim J A. Virtual facility layout design:the value of an interactive three-dimensional representation [J]. International Journal of Production Research, 1999,37(17):3941-3957.
    [35]钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用[J].计算机学报,2001,24(5):553-559.
    [36]Dowsland K A, Dowsland W B. Solution approaches to irregular nesting problems[J]. European Journal of Operational Research,1995,84(3):506-521.
    [37]Lodi A, Martello S, Vigo D. Recent advances on two-dimensional bin packing problems[J]. Discrete Applied Mathematics,2002,123 (1-3):379-396.
    [38]滕弘飞,王奕首,史彦军.人机结合的关键支持技术[J].机械上程学报,2006,42(10):1-8.
    [39]陈琪锋,戴金海.异步并行的分布式协同进化MDO算法研究.宇航学报,2002,23(4):57-61.
    [40]Braun R D, Moore A A, Kroo I M. Collaborative approach to launch vehicle design[J]. Journal of Spacecraft and Rockets,1997,34(4):478-486.
    [41]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用.航空学报,2000,21(1):1-6.
    [42]陈琪锋,戴金海.卫星星座系统多学科设计优化研究.宇航学报,2003,24(5):502-533.
    [43]吴宝贵,黄洪钟,陶冶.复杂产品多学科设计优化的视图建模.清华大学学报(自然科学版),2006,46(11):1816-1819.
    [44]陶冶,吕显强,贾复等.基于计算机网络的拖网渔船船型协同经济论证.大连海洋大学学报,2007,22(4):289-292.
    [45]Dowsland K A, Dowsland W B. Packing Problems[J]. European Journal of Operational Research,1992,56:2-14.
    [46]Sweeney P E, Paterno ster E R. Cutting and pack ing problems:A categorized, application orientated research [J]. Journal of Operation Research Society,1992, 43(7):691-706.
    [47]唐飞,滕弘飞,刘骏等.带作用力约束的二维装填布局问题——航天器中复杂插座板上插孔的布局优化设计[J].宇航学报,2000,21(2):50-57.
    [48]Szykman S, Cagan J. Constrained three dimensional component layout using simulated annealing [J].ASME Journal of Mechanical Design,1997,119(1):28-35.
    [49]戴佐,袁俊良,查建中等.一种基于八叉树结构表达的三维实体布局启发式算法[J].软件学报,1995,6(10):629-636.
    [50]Jonathan Cagan, D rew Degentesh, Su Yin. A simulated annealing based algorithm using hierarchical models for general three dimensional component layout [J]. Computer Aided Design,1998,30(10):781-790.
    [51]王金敏,查建中.一种新的物体八叉树模型生成算法[J].河北工业大学学报,1996,25(2):16-22.
    [52]王爱虎,查建中.简单多边形裁剪及交并计算的统一算法[J].天津大学学报,1997,30(3):281-286.
    [53]陆一平,查建中,李建勇,等.抽象物体的2n-叉树表示及其在高维面局问题中的应用[J].工程图学学报,2001,22(4):24-30.
    [54]Beasley J E. An exact two dimensional nonguillotine cutting tree search procedure[J]. Operations Research,1985,33(1):49-64.
    [55]Udy J J, et al. Computation of interferences between three dimensional objects and the optimal packing p roblem [J].A dvances in Engineering Software,1988, 10(1):8-14.
    [56]Enrico Faggio li, Carlo A lberto Bentivoglio. Heuristic and exact methods for the cutting sequencing problem [J]. European Journal of Operational Research,1998,110: 564-575.
    [57]滕弘飞,孙守林,葛文海,等.转动圆桌平衡摆盘——带平衡性能约束的Pack ing问题[J].中国科学(A辑),1994,24(7):754-760.
    [58]葛文海,滕弘飞.多自由度多圆柱体舱内物体的三维布局优化[J].大连理工大学学报,1995,35(4):493-498.
    [59]张旭,冯恩民.卫星舱三维布局优化模型及判断不干涉性算法[J].运筹与管理,2004,13(3):15-19.
    [60]Mitchell WJ, Steadman J P, Liggett R S. Synthesis and Optimization of Small Rectangular Floor Plans [J]. Environment and Planning B,1976,3:37-70.
    [61]Roth J,Hashim shony R, Wachman A. Turning a graph into a rectangular floo r p Ian [J].Building and Environment,1982,17:163-173.
    [62]Dow sland K A. A n exact algo rithm for the pallet loading problem [J]. European Journal of Operational Research,1987,31:78-84.
    [63]吴慧中,王英林.一种立体空间布局模型及其布局算法[J].计算机学报,1994,17(11):835-841.
    [64]王英林,吴慧中.空间布局的约束图方法[J].软件学报,1998,9(3):200-205.
    [65]冯恩民,王锡禄.卫星舱内长方体群布局的优化模型及全局优化算法[J].运筹学学报,2001,5(3):71-77.
    [66]唐晓君,查建中,陆一平.布局问题的复杂性和建模方法[J].北方交通大学学报,2003,27(1):12-15.
    [67]刘占伟,滕弘飞.基于人智-图形-计算的布局设计方法[J].大连理工大学学报,2006,46(2):228-234.
    [68]孙守迁,唐明,潘云鹤.面向人机工程的布局设计方法的研究[J].计算机辅助设计与图形学学报,2000,12(11):870-872.
    [69]霍军周,李广强,滕弘飞,等.人机结合蚁群遗传算法及其在卫星舱布局设计中的应用[J].机械工程学报,2005,41(3):112-116.
    [70]苗玉彬,刘成良,赵爽等.基于人机交互的遗传退火算法及其在履带起重机布局设计中的应用[J].中国机械工程,2004,15(3):238-241.
    [71]钱学森,于景元,戴汝为.一个科学新领域一开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [72]刘峻,杨光辉,滕弘飞.运用系统工程方法处理复杂布局问题[J].机械科学与技术,2001,20(6):933-935.
    [73]王金山.系统工程基础与应用[M].北京:地质出版社,1996.
    [74]Sobieski J S. On the sensitivity of complex, internally coupled systems [J]. AIAA Journal,1990,28(1):153-160.
    [75]Chi H W, Huang C, Bloebaum L. Incorporation of preferences in multi—objective concurrent subspace optimization for multidisciplinary design[C]//10th AIAA/ ISSMO Multidisciplinary Aanalysis and Optimization Conference, Albany, New York, 2004, AIAA 2004-4548.
    [76]Sellar R S. Response surface based, concurrent subspace optimization for multidisciplinary system design[C]//Symposium on Multidisciplinary Analysis and Optimization. Reston, VA, USA, AIAA,1996:20-30.
    [77]Batill S M, Stelmack M A, Yu X Q. Multidisciplinary design optimization of an elect ric-powered unmanned air vehicle[J]. Aircraft Design,1999,2(1):1-18.
    [78]Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design[C]//AIAA 94-4325-CP. Proceedings of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Panama City, FL, AIAA,1994:1,697-707.
    [79]Braun R D. Collaborative optimization. An archi tecture for large-scale distributed design[D]. Stanford, CA:Stanford University,1996.
    [80]Braun R D, Kroo I M. Development and application of the collaborative optimization architecture in a multidisciplinary design environment[C]//International Congress on Industrialand Applied Mathematics. Reston, VA, USA:AIAA,19951 20-39.
    [81]马明旭,王成恩,张嘉易,等.复杂产品多学科设计优化技术[J].机械工程学报,2008,44(6):15-26.
    [82]Kodiyalarn S, Sobieski J S. B-level integrated system synthesis with response surfaces[J]. AIAA Journal,2000.38(8):1479-1485.
    [83]高丽,曾庆良,范文慧.多学科设计优化研究及发展趋势分析[J].工程设计学报,2007,14(6):429-434.
    [84]胡洁,彭颖红,熊光楞.基于系统论的并行协同设计方法研究[J].计算机集成制造系统,2005,11(2):151-156.
    [85]贾建东,姚卫星,吴德海.飞行器多学科优化设计技术概论[J].航空科学技术,2005(6):21-25.
    [86]张科施,李为吉.改进的并行子空间优化算法及其在飞机概念设计中的应用[J].西北工业大学学报,2008,26(1):110-115.
    [87]胡志强,崔维成.多学科优化设计在缓冲球鼻首设计中的应用[J].中国造船,2009,50(3):32-39.
    [88]黄英杰,姚锡凡,葛动元.多学科设计优化的新成果-ATC法及其应用[J].机械设计与制造,2009,5(11):81-83.
    [89]胡添元,余雄庆.基于分布/并行计算框架求解多学科设计优化问题[J].航空计算技术,2010,40(2):21-23.
    [90]张静,刘永均,李柏林.多学科设计优化耦合复杂性的研究进展[J].机械设计与制造,2010,21(10):217-219.
    [91]余雄庆,姚卫星,薛飞,等.关于多学科设计优化计算框架的探讨[J].机械科学与技术,2004,32(3):286—289.
    [92]Allison J, Walsh D, Kokkolaras M, et al. Analytical Target Cascading in Aircraft Design [C]//44th AIAA Aerospace Sciences Meeting,2006:16112-16120.
    [93]WOYAK S, KIM H, MULLINS J. A web centric architecture for deploying multidisciplinary engineering design processes[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,2004, Albany, New York, AIAA 2004-4498.
    [94]Shen Weiming, GHENNIWA Hamada. A distributed multidisciplinary design optimization framework:technology integration[J]. Journal of Integrated Design and Process Science,2003(7)95-108.
    [95]Namhm Y E, ISHIKAWA H. A hybrid multi-agent system architecture for enterprise integration using computer networks[J]. Robotics and Computer Integrated Manufacturing,2005(21):217-234.
    [96]Shi Dongcai, YIN Jianwei, ZHUANG Wenyu, et al. A distributed collaborative design framework for multidisciplinary design optimization[C]//CSCWD 2005, LNCS 3865, 2006:294-303.
    [97]韩明红,邓家提.多学科设计优化中的不确定性建模[J].北京航空航天大学学报,2007,33(1):22-25.
    [98]陈建江.面向飞航导弹的多学科稳健设计方法及应用[D].武汉:华中科技大学研究生院,2004:77--102.
    [99]Tappeta R V, Renaud J E. Multi-objective collaborative optimization [J]. Journal of Mechanical Design,1997,119(9):403-411.
    [100]Tappeta R V, Nagendra S, Renaud J E. A multidisciplinary design optimization approach for high temperature aircraft engine components[J]. Structural Optimization,1999,18,134-145.
    [101]Haftka, R T. Simultaneous analysis and design [J]. AIAA Journal,1985,23(7): 1099-1103.
    [102]Cramer, E J, Dennis, J, Frank P D, et al. Problem formulation for multidisciplinary optimization [J]. SIAM Journal of optimization,1994,4,103-111.
    [103]Balling, R J, Wilkinson, C A. Execution of multidisciplinary design optimization approaches on common test problems [C]//Proceeding s of the 6th AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization. Bellevue, WA, AIAA,1996:421-437.
    [104]Schmit L A, Farshi B. Some approximation concepts for structural synthesis[J]. AIAA Journal,1974,12(5):692-699.
    [105]Barthelemy J F M, Haftka R T. Approximation concepts for optimum structural design a review[J]. Structural Optimization,1993, (5):129-144.
    [106]Braun R, Gage P, Kroo I M, et al. Implementation and performance issues in collaborative optimization[R], AIAA-96-4017,1996.
    [107]Alexandrov, N. M., Dennis, Jr J. E., Lewis, R. M., Torczon, V.:A trust region framework for managing the use of approximation models in optimization [J]. Struct Optim,1998(15):16-23.
    [108]李响,李为吉.基于序列响应面方法的协同优化算法[J].西北工业大学学报,2003,21(1):79-82.
    [109]Jang, B.S., Yang, Y.S., Jung, H.S.:Managing approximation models in collaborative optimization[J]. Struct Multidisc Optim,2005(30):11-26.
    [110]Alvarez L F. Approximation model Building for Design Optimization Using the Response Surface methodology and Genetic Programming[D]. Bradford:University of Bradford,2000.
    [111]陈树勋,胡迎春.工程系统设计的两类协同优化讨论[J].现代制造工程,2004(6):7-10.
    [112]陈树勋Internet环境下机械结构系统的分布式全局协调优化.中国机械工程,2003,14(8):675-677.
    [113]余雄庆,薛飞,穆雪峰,等.用遗传算法提高协同优化方法的可靠性[J].中国机械工程,2003(14):211808-1812.
    [114]邢小楠,徐元铭,李烁,等.神经网络响应面逼近在飞机总体优化设计中的应用[J].机械设计与研究,2004(20):68-71.
    [115]Hajela P. Soft computing in multidisciplinary aerospace design-new directions for research [J]. Progress in Aerospace Sciences,2002,38 (1):10-31.
    [116]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011,47(2):102-108.
    [117]黄英杰,姚锡凡,颜亮.基于目标级联法和遗传算法的多学科设计优化研究[J].机械设计与制造,2010,(9):39-41.
    [118]杨希祥,杨慧欣,江振宇,等.基于支持向量回归机和粒子群算法的改进协同优化方法.湖南大学学报,2011,38(3):34-39.
    [119]Du X, Chen W. Collaborative Reliability Analysis under the Framework of Multi disciplinary Systems Design [J]. Optimization and Engineering,2005,6:63-84.
    [120]McAllister C D, Simpson T W, Hacker K, et al Integrating linear physical programming within collaborative optimization for multi objective multidisciplinary design optimization[J]. Struct Multidisc. Optim,2005,29: 178-189.
    [121]Balling R, Rawlings M. Collaborative optimization with disciplinary conceptual design[J]. Struct. Multidisc. Optim,2000,20:232-241.
    [122]胡峪,李为吉.飞机多学科设计的分级优化方法[J].西北工业大学学报,2001,19(1):144-147.
    [123]陈琪锋,戴金海.多目标的分布式协同进化MDO)算法[J].国防科技大学学报,2002,24(4):12-15.
    [124]吴魁,华楠,弓川锦,等.运载火箭总体多学科协同优化平台方案研究[J].宇航学报,2009,30(6):2072-2076.
    [125]宋保维,杜伟,高智勇,等.基于协同优化的鱼雷多学科设计优化[J].鱼雷技术,2009,17(6):7-11.
    [126]张静,刘永均,李柏林.圆柱螺旋压缩弹簧的多学科协同优化设计[J].机械设计与制造,2010(3):46-48.
    [127]陶冶,黄洪钟,吴宝贵.基于满意度原理的多学科协同优化.应用基础与工程科学学报,2006,14(1):106-113.
    [128]刘英,王凤歧.产品稳健设计响应面模型法的试验设计[J].机械设计与制造,2005,7(7):34-36.
    [129]李健,王计斌,张鸿梁,等.基于对象技术的协同设计研究[J].计算机工程与应用,2000,36(4):1-4.
    [130]李海燕,马明旭,井元伟.鲁棒协同优化模型及其求解方法[J].机械工程学报,2010,46(20):182-190.
    [131]郭健彬,曾声奎,陈云霞,等.稳健协同优化方法的改进和应用[J].火力与指挥拧制,2010,35,(4):32-35.
    [132]常绿,王国强,冯素丽,等.基于遗传算法的混凝上搅拌机上料机构优化设计[J].建筑机械,2005,(12):76-78.
    [133]伍奎,李润方,刘景浩.智能化系统的知识表达与推理机制[J].机械工程学报,2005,41(5):98-103.
    [134]尚欣,殷国富,杨佐卫,等.基于实例的网络化可重构模块设计技术[J].计算机集成制造系统,2010,16(4):703-716.
    [135]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2001.
    [136]Braun R D, Moore A A. Collaborative approach to launch vehicle design [J]. Journal of spacecraft and rockets,1997,34(4):478-486.
    [137]Alexandrov N M, Robert M L. Analytical computational aspects of collaborative optimization for multidisciplinary design[J]. AIAA Journal,2002,40(2):301-309.
    [138]李响,李为吉.基于超球近似子空间的协同优化方法及应用研究[J].西北工业大学学报,2003,21(4):461-464.
    [139]冯向军,戴今海.基于学科间差异信息的协同优化改进算法[J].国防科技大学学报,2008,30(2):128-134.
    [140]郭健彬,曾声奎.自适应协同优化方法研究[J].系统工程与电子技术,2009,31(5):1108-1112.
    [141]Simpson T W, Mauery T M, Korte J J, et al, Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal,2001,39(12):2233-2241.
    [142]Sobester A, Leary S J, Keane A J. On the design of optimization strategies based on global response surface approximation models[J]. Journal of global optimization, 2005,33(1):31-59.
    [143]McDonald D B, Grantham W J, Tabor W L, et al. Global and local optimization using radial basis function response surface models. Applied Mathematical Modelling, 2007,31(10):2095-2110.
    [144]Regis R G, Shoemaker C A. Parallel radial basis function methods for the global optimization of expensive functions[J]. European Journal of Operational Research, 2007,182(2):514-535.
    [145]Papadrakakis M, Lagaros M, Tsompanakis Y. Structural optimization using evolution strategies and neural networks[J]. Computer Methods in Applied Mechanics and Engineering,1998,156(1-4):309-333.
    [146]Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design[J]. Transactions of the ASME,2005,127(6):1077-1087.
    [147]Turner C J, Crawford R H, Campbell M I. Multidimensional sequential sampling for NURBs-based metamodel development[J]. Engineering with Computers,2007,23(3): 155-174.
    [148]Breitkopf P, Naceur H, Rassineux A, et al. Moving least squares response surface approximation:Formulation and metal forming applicat ions[J]. Computers and Structures,2005,83(17-18):1411-1428.
    [149]Yang R J, Wang N, Tho C H, et al. Metamodel ing development for vehicle frontal impact simulation. Journal of Mechanical Design[J]. Transactions of the ASME,2005, 127(5):1014-1020.
    [150]Crino S, Brown D E. Global optimization with multivariate adaptive regression splines[J]. IEEE Transactions on Systems, Man, and Cybernetics,2007,37(2): 333-340.
    [151]柴天佑.多变量间接自适应解耦控制算法[J].自动化学报,1991,17(2):182-190.
    [152]胡峪.飞机多学科设计优化及其应用研究[D].西安:西北工业大学,2001.
    [153]Srinivas K. Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Phase Ⅰ [R].NASA/CR-1998-208716,1998.
    [154]Bellman R E, Zadeh L A. Decision-making in a fuzzy environment [J]. Manage Science, 1970,17(4):141-164.
    [155]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-Ⅰ, Ⅱ, Ⅲ [J]. Information Science,1975,8(2):199-249.
    [156]黄洪钟.非对称模糊优化设计的基本理论与方法[J].机械设计,1997(2):40-45.
    [157]黄洪钟.机械设计模糊优化原理及应用[M].北京:科学出版社,1997,108-137.
    [158]Renaud J, Gabriele G. Approximation in non-hierarchic system optimization [J]. AIAA Journal,1994,32 (1):198-205.
    [159]CSM [EB/OL]. [2008,6,20]. http://www.mines.edu/Academic/mining/research/emi/index.htm.
    [160]Rostami J, Ozdemir L, Nilson B. Comparison between CSM and NTH hard rock TBM performance prediction models[C]//Proceedings of Institute of Shaft Drilling Technology (ISDT) annual Technical Conference'96. Las Vegas, NY,1996.
    [161]Bruland A. Future demands and development trends[C]//Norwegian TBM Tunnelling, Oslo.1998:99-103.
    [162]何小新,吴庆鸣.全断面岩石掘进机主参数回归模型[J].武汉大学学报(工学版)2007,40(2):99-103,109.
    [163]Howarth D F. Database of TBM projects undertaken between 1950 and 1990 and an assessment of associated ground-strength limitations [J]. Tunnelling and Underground Space Technology,1994,2:209-213.
    [164]Okubo S, Fukui K, Chen W. Expert system for appl icability of tunnel boring machines in Japan[J]. Rock Mechanics and Rock Engineering,2003,36(4):305-322.
    [165]张照煌,叶定海,赵庆玉.岩石掘进机刀间距的确定及分析[J].上程机械,2002,33(11):11-12.
    [166]张照煌,李福田.全断面隧道掘进机施工技术[M].北京:中国水利水电出版社,2006.
    [167]刘志杰.岩石隧道掘进机刀盘设计方法研究[D].大连:大连理工大学,2008.
    [168]钟诗胜.工程方案设计中的模糊理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [169]王梦恕,李典璜,张镜剑等.岩石隧道掘进机(TBM)施工及工程实例[M].北京:中国铁道出版社,2004.
    [170]乔世珊,茅承觉,刘春.全断面岩石掘进机[M].北京:石油工业出版社,2005.
    [171]霍军周,史彦军,滕弘飞.卫星舱布局CAD系统:十涉计算和质量特性计算[J].计算机辅助设计与图形学学报,2007,19(9):1218-1222.
    [172]Rostami J, Gertsch R, Gertsch L. Rock fragmentation by disc cutter:A critical review and an update[C]//Proceedings of the North American Rock Mechanics Symposium (NARMS)-Tunneling Association of Canada (TAC) Meeting. Toronto, Canada, 2002.
    [173]霍军周.人机结合协同进化设计方法及其应用[D].大连:大连理工大学,2007.
    [174]Rostami J, Ozdemir L. A new model for performance prediction of hard rock TBMs[C]// Proceedings of Rapid Excavation and Tunneling Conference (RETC). Boston, USA,1993: 793-809.
    [175]霍军周,李广强,滕弘飞,等.人机结合蚁群遗传算法及其在卫星舱布局设计中的应用.机械工程学报,2005,41(3):112-116.
    [176]张勇,李为吉,唐伟,等.基于多目标遗传算法的再入飞行器气动布局优化.空气动力学学报,2001,19(4):478-482.
    [177]Ye Tao, Hong-Zhong Huang, Bo Yang. An interactive preference-weight genetic algorithm for multi-criterion satisficing optimization[C]//Lecture Notes in Computer Science, ICNC 2006, Proceedings, Part I, Vol.4221.2006:643-652.
    [178]Timothy J Ross著,钱同惠等译.模糊逻辑及其工程应用[M].北京:电子工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700