用户名: 密码: 验证码:
水污染负荷分配理论模型与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染负荷分配是水污染总量控制的关键环节。本文从污染负荷分配应遵循的公平性、效率性以及区域差异性原则出发,依据决策准则的不同组合,提出3种水污染负荷分配模式,并将其应用于巢湖流域9个市、县之间的COD和氨氮削减负荷分摊,以期为水污染物总量分配提供新思路、新方法。论文的主要研究成果归纳如下:
     (1)利用基尼系数可以反映不公平程度的特性,从社会、经济、环境等多个领域筛选出6项指标,构建了以基尼系数为度量标准的水污染负荷公平分配评价指标体系。基于统计数据信息的模糊性、不准确性以及不同评价指标重要性程度的差异,建立了带有弹性约束和信息熵权的水污染物总量分配模糊优化决策模型,并采用模糊线性规划方法求解。
     (2)在定义加权综合基尼系数和环境经济效率参数的基础上,从经济最优性与公平性角度,构建了一个以环境经济收益最大、污染负荷削减费用最低和加权综合基尼系数值最小等为目标的水污染负荷分配多目标决策优化模型,并采用理想点法求取最优解。
     (3)考虑区域间客观存在的差异性,兼顾公平性与效率性,从水污染负荷分配涉及的社会、经济、环境、技术与管理等因素出发,筛选出16项评价指标,构建了具有多层次结构的水污染负荷分配评价指标体系。结合Vague集理论同时考虑隶属与非隶属信息的特点,建立了基于Vague集的区域水污染负荷分配多目标决策模式。
     (4)在实例应用中,根据巢湖流域“十一五”规划的总量控制目标,以2007年为水污染负荷分配基准年,对流域水污染物削减量进行分配。结果显示:在3种分配方法中,合肥市分摊到的COD和氨氮削减量都是最多的;在流域7个县中,庐江县与和县是重点削减区域。虽然不同分配方法的削减量分摊结果存在一定的差异,但仍与汇流区域社会经济总体发展状况基本吻合,证明了上述分配方法的科学性和合理性。
It is the core of water pollutant total amount control to allocate water waste loads. In this research, three models for water waste loads allocation were proposed based on different combinations of decision making principles such as equity, efficiency, and regional differences which should be followed in waste loads allocation. As a case, these models were applied to the distribution of reduction amount of COD and NH3-N loads among nine cities and counties in Chaohu Lake Basin. The main results were summarized as follows:
     (1) In terms of the characteristic of Gini coefficient reflecting the unfair level in economics, six indices were selected from such fields as society, economy, environment, etc., to construct an assessment system for water waste loads, which was measured for equity by using environmental Gini coefficient. Considering the fuzziness and imprecision of statistical data and differences in the importance of assessment indices, a fuzzy optimization model, with elastic constraints and weighted information entropy, was proposed for waste loads allocation, and solved by the fuzzy linear programming.
     (2) On the basis of defining weighted comprehensive Gini coefficient and environmental economic benefit parameter, a multi-objective decision making model for waste load allocations, which takes such three factors as economic income maximum, pollution abatement cost minimum and weighted comprehensive Gini coefficient minimum to be objectives, was proposed from the viewpoints of economy optimization and fair principles, and solved by the ideal point method.
     (3) Based on the principles of equity and efficiency and the differences between subdistricts, an evaluation index system for water waste loads allocation was established, which contained a multi-level structure comprised of sixteen indices involved in society, economic, environment, technique and management etc. According to the characteristics that attached and non-attached information are both taken into consideration by Vague set theory, a multi-objective decision making model was proposed for water waste loads allocation.
     (4) Take the 2007 year as the base year of water waste loads allocation, the reduction amount of water waste loads are distributed in Chaohu Lake basin, under the target of the total amount control in the "Eleventh Five-Year Plan". Study results indicated that Hefei City got the largest reduction amount of COD and NH3-N loads, and Lujiang County and He County were focused on reducing regions in seven counties of the basin. Although there were some differences among the results from different allocation methods, it proved the science and rationality of the allocation methods by fiting with the local social and economic situations.
引文
[1]李家科.博斯腾湖水环境容量及污染物排放总量控制研究[D].西安:西安理工大学,2004.
    [2]张永良,刘培哲.水环境容量综合手册[M].北京:清华大学出版社,1991.
    [3]徐进.大沽河干流青岛段水污染物总量控制研究[D].青岛:中国海洋大学,2004.
    [4]刘赣明.最大日负荷总量(TMDL)模式下的污染负荷分配研究[D].广州:中山大学,2005.
    [5]中华人民共和国环境保护部.巢湖流域水污染防治“十五”计划[R]. 2002.
    [6]中华人民共和国环境保护部.总量控制技术手册[M].北京:中国环境科学出版社,1990.
    [7]黄显峰,邵东国,顾文权.河流排污权多目标优化分配模型研究[J].水利学报,2008,39(1):73-78.
    [8] Dales J H. Pollution, Property and Prices [M]. Toronto:University of Toronto Press,1968.
    [9] Brady,Gordon L,Morrison,et al. Emissions trading: an overview of the EPA policy statement [J]. International Journal of Environmental Studies,1984,23(1):19-40.
    [10]张颖,王勇.我国排污权初始分配的研究[J].生态经济,2005,(08):50-52.
    [11]李寿德,黄桐城.基于经济最优性与公平性的初始排污权免费分配模型[J].系统工程理论方法应用,2004,13(3):282-285.
    [12]方秦华,张珞平,洪华生.水污染负荷优化分配研究[J].环境保护,2005,(13):29-31.
    [13] Thomann R V,Sobel M J. Estuarine water quality management and forecasting [J]. Journal of the Sanitary Engineering Division,1964,90(SA5):9-36.
    [14] Loucks D P,Revelle C S and Lynn W R. Linear programming models for water pollution control [J]. Management Science,1967,14(4):B166-B181.
    [15] Teller A. The use of linear programming to estimate the cost of some alternative air pollution abatement policies [A]//Proceedings of the IBM Scientific Computing Symposium on Water and Air Resource Management [C],1968,pp.345-353.
    [16] Revelle C S,Loucks D P and Lynn W R. Linear programming applied water quality management [J]. Water Resources Research,1968,4(1):1-9.
    [17] Kohn R E. Application of linear programming to a controversy on air pollution control [J]. Management Science,1971,17(10):B609-B621.
    [18] Hwang C L,Williams J L,Shojalashkari R,et al. Regional water quality management by the generalized reduced gradient method [J]. Water Resources Bulletin,1973,9(6):1159-1181.
    [19] Bayer M B. Nonlinear programming in river basin modeling [J]. Water Resources Bulletin,1974,10(2):311-317.
    [20] Ejaz M S,Peralta R C. Modeling for optimal management of agricultural and domestic wastewater loading to streams [J]. Water Resources Research,1995,31(4):1087-1096.
    [21] Futagami T. Dynamic programming for sewage treatment systems [A]//Advances in Water Pollution Research[C]. Proceedings of the Fifth international Water Pollution Research Conference,San Francisco,1970,Ⅱ-21/1 toⅡ-21/12.
    [22] Newsome D H. The Trent River– an aid to management [A]//Proceedings of the International Symposium on Mathematical Modeling Techniques in Water Resources Systems [C]. Ottawa,Canada,1972,613-632.
    [23] Hahn H H,Cembrowicz R G. Model of the Neckar River, Federal Republic of Germany.//Models for Water Quality Management [M],MCGRAW-HILL BOOK CO.,1221 AVE. Americas,New York,N.Y. 10020,1981,pp. 158-221.
    [24]林高松.基于公平、效益与多目标优化的河流污染负荷分配方法研究[D].广州:中山大学,2006.
    [25] Herbay J P,Smeers Y,Tyteca D. Water quality management with time varying river flow and discharger control [J]. Water Resources Research,1983,19(6):1481-1487.
    [26] Rossman L A. Risk equivalent seasonal waste load allocation [J]. Water Resources Research,1989,25(10):2083-2090.
    [27] Lence B J,Eheart J W,Brill E D Jr. Risk equivalent seasonal discharge programs for multidischarger streams [J]. Journal of Water Resources Planning and Management,ASCE,1990,116(2):170-186.
    [28] Kao J J,Bau S F. Risk analysis for flow duration curve based seasonal discharge management programs [J]. Water Research,1996,30(6):1369-1376.
    [29] Lohani B N,Thanh N C. Stochastic programming model for water quality management in a river [J]. Water Pollution Control Federation,1978,50(9):2175-2182.
    [30] Yaron D. A model for the analysis of seasonal aspects of water quality control [J]. Journal of Environmental Economics and Management,1979,6(2):140-151.
    [31] Fujiwara O,Gnanendran S K,Ohgaki S. River quality management under stochastic streamflow [J]. Journal of Environmental Engineering,1986,112(2):185-198.
    [32] Ellis J H. Stochastic water quality optimization using imbedded chance constraints [J]. Water Resources Research,1987,23(12):2227-2238.
    [33] Cardwell H,Ellis H. Stochastic dynamic programming models for water quality management [J]. Water Resources Research,1993,29(4):803-813.
    [34] Donald H B,Barbara J L. Comparison of optimization formulations for waste-load allocations [J]. Journal of Environmental Engineering,1992,118(4):597-612.
    [35] Sasikumar K,Mujumdar P P. Fuzzy optimization model for water quality management of a river system [J]. Journal of Water Resources Planning and Management,ASCE,1998,124(2):79-88.
    [36] Chen H W,Chang N B. Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling [J]. Water Science and Technology,1998,37(8):55-63.
    [37] Mujumdar P P,Saxena Pavan. A stochastic dynamic programming model for stream water quality management [J]. Sadhana,India,2004,29(5):477-497.
    [38] Lee C S,Chang S P. Interactive fuzzy optimization for an economic and environmental balance in a river system [J]. Water Research,2005,39(1):221-231.
    [39]胡康萍,许振成.水体污染物允许排放总量分配方法研究[J].中国环境科学,1991,11(6):447-452.
    [40]李开明,陈铣成,许振成.潮汐河网区水污染物总量控制及其分配方法[J].环境科学研究,1990,3(6):36-42.
    [41]李开明,陈铣成.东莞运河水环境容量优化研究[J].环境科学研究,1991,4(5):13-15.
    [42]张存智,韩康,张砚峰,等.大连湾污染排放总量控制研究——海湾纳污能力计算模型[J].海洋环境科学,1998,17(3):1-5.
    [43]裴相斌,赵冬至.基于GIS的海湾陆源污染排海总量控制的空间优化分配方法研究——以大连湾为例[J].环境科学学报,2000,20(3):294-298.
    [44]郭森,韩保新,杨静,等.纳污海域水环境容量计算与总量分配方法研究——以钦州湾为例[J].环境科学与技术,2006,29,增刊:19-22.
    [45]李劢,李岩,韩政,等.黄河三角洲河流水环境容量研究[J].山东科学,2007,20(2):50-54.
    [46]黄勇华,潘伟斌,曹英姿.岐江河城区段污染物总量控制研究[J].环境科学与管理,2007,32(3):27-32.
    [47]王先甲,肖文,胡振鹏.排污权初始分配的两种方法及其效率比较[J].自然科学进展,2004,14(1):81-87.
    [48]施圣炜,黄桐城.期权理论在排污权初始分配中的应用[J].中国人口·资源与环境,2005,15(1):52-55.
    [49]李寿德,黄桐城.交易成本条件下初始排污权免费分配的决策机制[J].系统工程理论方法应用,2006,15(4):318-322.
    [50]曹瑞钰,顾国维.水环境治理工程费用优化模型[J].同济大学学报,1997,25(5):548-552.
    [51]黄国如,胡和平,田富强,等.基于遗传算法的水污染控制系统规划[J].清华大学学报(自然科学版),2002,42(4):551-554.
    [52]申玮,郭宗楼,刘国华.直接搜索-模拟退火法在水污染控制系统规划中的应用[J].水科学进展,2004,15(4):445-447.
    [53]曹敏,徐洪庆,王琳.玉绣河水污染控制最优化研究[J].水资源与水工程学报,2009,20(3):108-110.
    [54]杨志平,陆景宣.污染物排放总量控制优化分配数学模型探讨[J].上海环境科学,1989,8(10):9-13.
    [55]胡炳清,李昌林.实施污染物排放区域总量控制优化的离散规划模型[J].环境保护,1999,(12):37-39.
    [56]尚静石.动态规划在河流初始排污权分配中的应用[J].东北水利水电,2006,(5):9-10.
    [57]王有乐.区域水污染控制多目标组合规划模型研究[J].环境科学学报,2002,22(1):107-110.
    [58]熊德琪,陈守煜,任洁.水环境污染系统规划的模糊非线性规划模型[J].水利学报1994,(12):22-30.
    [59]李群,黄锦辉,田凯.黄河三门峡库区段水污染物排放总量控制研究[J].环境与开发,2000,15(4):14-16.
    [60]秦肖生,曾光明.遗传算法在水环境灰色非线性规划中的应用[J].水科学进展,2002,13(1):31-36.
    [61]林高松,李适宇,江峰.基于公平区间的污染物允许排放量分配方法[J].水利学报,2006,37(1):52-57.
    [62]林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型[J].环境科学,1996,17(3):35-37.
    [63]黄玉凯.总量控制负荷分配技术及经济分析[J].环境污染与防治,1991,13(6):18-21.
    [64]包存宽,张敏,尚金城.流域水污染物排放总量控制研究——以吉林省松花江流域为例[J].地理科学,2000,20(1):61-64.
    [65]张玉清.河流功能区水污染物容量总量控制的原理和方法[M].北京:中国环境科学出版社,2001.
    [66]李开明.污染物总量控制及其合理分配方法和实例[A].//国家环境保护部.环境背景值和环境容量研究[C].北京:科学出版社,1993,221-226.
    [67]李彦武,张永良.污染负荷分配计算的技术方法研究[A].//国家环境保护部.环境背景值和环境容量研究[C].北京:科学出版社,1993,199-204.
    [68]傅国伟.水污染物排放总量的分配方法与原则[A].//国家环境保护部.环境背景值和环境容量研究[C].北京:科学出版社, 1993,444-455.
    [69]林巍.环境规划与管理中冲突的分析与处理的研究[D].北京:清华大学,1995.
    [70]林巍,郭京菲,傅国伟.淮河流域省界水质标准的确定——以淮河流域为例[J].中国环境科学,1997,17(1):10-14.
    [71]汪俊启,张颖.总量控制中水污染物允许排放量公平分配研究[J].安庆师范学院学报(自然科学版),2000,6(3):37-40.
    [72]潘俊,周立冬,高艳艳.浑河沈阳城区段污染总量控制研究[J].吉林大学学报(地球科学版),2007,37(2):331-334.
    [73]袁辉,王里奥,胡刚,等.三峡重庆库区水污染总量的分配[J].重庆大学学报,2004,27(2):136-139.
    [74]伦纳德·奥托兰诺.环境管理与影响评价[M].北京:化学工业出版社,2004.
    [75]王紫雯,陈昌军.湖泊水库入流河道排污总量分配方法的探讨[J].浙江大学学报(工学版),2001,35(5):534-539.
    [76]杨玉峰,傅国伟.区域差异与国家污染物排放总量分配[J].环境科学学报,2001,21(2):129-133.
    [77]吴悦颍,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究[J].环境科学研究,2006,19(2):66-70.
    [78]王媛,张宏伟,杨会民,等.信息熵在水污染物总量区域公平分配中的应用[J].水利学报,2009,40(9):1103-1107.
    [79]林高松,李适宇,江峰.河流允许排污量公平分配的多准则决策方法[J].环境科学学报,2007,27(3):494-500.
    [80]林高松,李适宇,李娟.基于群决策的河流允许排污量公平分配博弈模型[J].环境科学学报,2009,29(9):2010-2016
    [81] Johnson E L. A study in the economics of water quality management [J]. Water Resources Research,1967,3(2):291-305.
    [82] Brill E D Jr,Liebman J C,Revelle C S. Equity measures for exploring water quality management alternatives [J]. Water Resources Research,1976,12(5):845-851.
    [83] Takyi A K,Lence B J. Markov chain model for seasonal-water quality management [J]. Journal of Water Resources Planning and Management,ASCE,1995,121(2):144-157.
    [84] Takyi A K,Lence B J. Chebyshev model for water-quality management [J]. Journal of Water Resources Planning and Management,ASCE,1996,122(1):40-48.
    [85] Herzog H W Jr. Economic efficiency and equity in water quality control: Effluent taxes and information requirements [J]. Journal of Environmental Economics and Management,1976,2(3):170-184.
    [86] Vasquez J A,Maier H R,Lence B J,et al. Achieving water quality system reliability using genetic algorithms [J]. Journal of Environmental Engineering,2000,126(10):954-962.
    [87] Onal H,Algozin K A,Isik M,et al. Economically efficient watershed management with environmental impact and income distribution goals [J]. Journal of Environmental Management,1998,53(3):241-253.
    [88] Kampas A,White B. Selecting permit allocation rules for agricultural pollution control: a bargaining solution [J]. Ecological Economics,2003,47(2-3):135-147.
    [89]孟伟,张楠,张远,等.流域水质目标管理技术研究(Ⅰ)—控制单元的总量控制技术[J].环境科学研究,2007,20(4):1-8.
    [90]杨龙,王晓燕,孟庆义.美国TMDL计划的研究现状及其发展趋势[J].环境科学与技术,2008,31(9):72-76.
    [91] USEPA(美国环保署). Water Quality Models and Tools: 19 Allocation Schemes [OL]. http://www.epa.gov/waterscience/models/allocation/19schemes.htm,2009.
    [92] Giglio R J,Writhtington R. Methods for apportioning costs among participants in regional systems [J]. Water Resources Research,1972,8(5):1133-1144.
    [93] Dinar A,Howitt R E. Mechanisms for allocation of environmental control cost: Empirical tests of acceptability and stability [J]. Journal of Environmental Management,1997,49(2):183-203.
    [94]陈文颖,方栋,薛大知,等.总量控制优化治理投资费用分摊问题的分析与处理[J].清华大学学报(自然科学版),1998,38(4):5-9.
    [95]徐百福.允许排放总量分配方法与公平-效益原则[J].污染防治技术,1994,7(2):14-16.
    [96]徐华君,徐百福.污染物允许排放总量分配的公平协调思路与方法[J].新疆大学学报(自然科学版),1996,13(3):86-89.
    [97]樊鸿涛,王华东.区域水环境风险容量的合理分配研究[J].环境工程,1994,12(6):50-54.
    [98]陈阳,赵勇,肖江文.激励机制下污染物允许排放总量的分配模型[J].华中科技大学学报(自然科学版),2006,34(6):103-105.
    [99]何冰,欧厚金.区域水污染削减总量分配的层次分析方法[J].环境工程,1991,6(9):50-53.
    [100]李如忠,钱家忠,汪家权.水污染物允许排放总量分配方法研究[J].水利学报,2003,34(5):112-115.
    [101]梅永进.层次分析法在沙溪水污染物总量分配中的应用[J].厦门理工学院学报,2005,13(4):54-57.
    [102]徐鸿德.河流水污染物协调分配系统分析[J].环境科学研究,1991,4(2):37-40.
    [103]毛战坡,李怀恩.总量控制中削减污染物合理分摊问题的求解方法[J].西北水资源与水工程,1999,10(1):25-30.
    [104]吴汉涛.汉江水环境容量分配研究[J].陕西水利水电技术,2002,(1):20-26.
    [105]郭宏飞,倪晋仁,王裕东.基于宏观经济优化模型的区域污染负荷分配[J].应用基础与工程科学学报,2003,11(2):133-141.
    [106]陈丁江,吕军,金树权,等.河流水环境容量的估算和分配研究[J].水土保持学报,2007,21(3):123-127.
    [107]田旭东,姜斌彤,俞洁,等.生态环境功能区规划中水环境容量分配方法探讨[J].环境污染与防治,2009,31(1):83-85.
    [108]冯耀龙,韩文秀.河流系统水质管理模糊优化模型[J].天津大学学报,2001,34(5):698-701.
    [109]张志耀,张海明.污染物排放总量分配的群体决策方法研究[J].系统科学与数学,2001,21(4):473-479.
    [110]吴亚琼,赵勇,吴相林,等.初始排污权分配的协商仲裁机制[J].系统工程,2003,21(5):70-74.
    [111]顾文权,邵东国,黄显峰,等.模糊多目标水质管理模型求解及实例验证[J].中国环境科学,2008,28(3):284-288.
    [112]邓义祥,孟伟,郑丙辉,等.基于响应场的线性规划方法在长江口总量分配计算中的应用[J].环境科学研究,2009,22(9):995-1000
    [113]王勤耕,李宗恺,陈志鹏,等.总量控制区域排污权的初始分配方法[J].中国环境科学,2000,20(1):68-72.
    [114]李寿德,黄桐城.初始排污权分配的一个多目标决策模型[J].中国管理科学,2003,11(6):40-44.
    [115]赵文会,高岩,戴天晟.初始排污权分配的优化模型[J].系统工程,2007,25(6):57-61.
    [116]赵海霞.不同市场条件下的初始排污权免费分配方法的选择[J].生态经济,2006,(2):51-53.
    [117] Arikol A M,Basak N. An equity approach to stream water quality management [J]. European Journal of Operational Research,1985,20(2):182-189.
    [118] Cho J H,Ahn K H,Chung W J,et al. Waste load allocation for water quality management of a heavily polluted river using linear programming [J]. Water Science & Technology,2003,48(10):185-190.
    [119] Burn D H,Yulianti J S. Waste-load allocation using genetic algorithms [J]. Journal of Water Resources Planning and Management,ASCE,2001,127(2):121-129.
    [120] Murty Y S R,Srinivasan K,Murty B S. Multiobjective optimal waste load allocation models for rivers using nondominated sorting genetic algorithm-II [J]. Journal of Water Resources Planning and Management,ASCE,2006,132(3):133-143.
    [121]李如忠.地质环境与巢湖富营养化控制机制研究[D].合肥:合肥工业大学,2007.
    [122]石勇.巢湖塘西河河口湿地沉积物污染特征及环境质量评价[D].合肥:合肥工业大学,2009.
    [123]中华人民共和国环境保护部.巢湖流域水污染防治规划(2006-2010)[R]. 2008.
    [124]《安徽统计年鉴-2008》编辑委员会.安徽统计年鉴-2008[M].北京:中国统计出版社,2008.
    [125]王媛,牛志广,王伟.基尼系数法在水污染物总量区域分配中的应用[J].中国人口·资源与环境,2008,18(3):177-180.
    [126]孟祥明,张宏伟,孙韬,等.基尼系数法在水污染物总量分配中的应用[J].中国给水排水,2008,24(23):105-108.
    [127]王丽琼.基于公平性的水污染物总量分配基尼系数分析[J].生态环境,2008,17(5):1796-1801.
    [128]肖伟华,秦大庸,李玮,等.基于基尼系数的湖泊流域分区水污染物总量分配[J].环境科学学报,2009,29(8):1765-1771.
    [129]李柏年.模糊数学及其应用[M].合肥:合肥工业大学出版社,2007.
    [130]陈南祥,李跃鹏,徐晨光.基于多目标遗传算法的水资源优化配置[J].水利学报,2006,37(3):308-313.
    [131]曹卫华,郭正.最优化技术方法及MATLAB的实现[M].北京:化学工业出版社,2005.
    [132] Zadeh L A. Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [133] Gau W L,Buehrer D J. Vague Sets [J]. IEEE Transactions on Systems, Man, and Cybernetics,1993,23(2):610-614.
    [134]刘华文.多目标模糊决策的Vague集方法[J].系统工程理论与实践,2004,24(5):103-109.
    [135]王珏,刘三阳,张杰.基于Vague集的模糊多目标决策方法[J].系统工程理论与实践,2005,25 (2):119-122.
    [136] Chen S M,Tan J M. Handling multicriteria fuzzy decision-making problems based on vague set theory [J]. Fuzzy Sets and Systems,1994,67(2):163-172.
    [137]畅明琦,刘俊萍,黄强.水资源安全Vague集多目标评价及预警[J].水力发电学报,2008,27(3):81-87.
    [138]李如忠,汪家权,钱家忠.区域水污染负荷分配的Delphi-AHP法[J].哈尔滨工业大学学报,2005,37(1):84-88.
    [139]吴开亚,金菊良.区域生态安全评价的熵组合权重属性识别模型[J].地理科学,2008,28(6):754-758.
    [140]李如忠,金菊良,钱家忠,等.基于指标体系的区域水资源合理配置初探[J].系统工程理论与实践,2005,25(3):125-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700