用户名: 密码: 验证码:
离心压缩机无叶扩压器失速与系统喘振先兆分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心压缩机作为一种提高气体压力的通用机械,在国民经济的许多部门得到了广泛的应用,并占有重要地位,但是同时也是这些部门的耗能大户。近年来,国际国内能源形势的日益严峻也对离心压缩机的设计提出了更高的要求,即要求设计压比更高、效率更高、工作范围更宽的离心压缩机。而这其中对工作范围的要求尤其突出,比如工作范围的增加可明显降低车用涡轮增压器的匹配困难;增加CHP系统热电比调节范围等。除了堵塞之外,失速和喘振是限制离心压缩机稳定工作范围的主要原因,同时也是级间匹配或压缩机与透平匹配机组匹配的关键问题,处理不当,甚至会导致机毁人亡的灾难性事故。然而,迄今为止有关离心压缩机的研究并未有突破性进展,因此这方面的研究是本领域的前沿热点,本文对此进行了若干尝试性的工作,现将主要的工作与结果总结如下:
     1.对无叶扩压器旋转失速的起因进行了新解释,研究方法主要包括数值模拟以及数值结果与实验结果对比。本文采用了二维数值模拟方法对无叶扩压器从核心区流动失稳的角度进行了研究,计算中需要在叶轮出口给定射流-尾迹的边界条件。计算结果表明无叶扩压器内的确存在与边界层关系不大的,而与小流量下叶轮出口的射流-尾迹结构密切相关的一种旋转失速形式。从射流-尾迹的结构来说,射流与尾迹在周向所占据范围的比例对失速临界角具有很大的影响,而射流和尾迹的强度比则对失速几乎没有影响。文中同时还研究了其它参数对旋转失速起始和失速特性的影响;
     2.首先建立了基于实数编码遗传算法优化初始权值的小波神经网络,然后利用该工具对现有文献中有关无叶扩压器旋转失速研究的数据进行分析,从而发现在b3/D2≈0.05附近,无叶扩压器几何参数对失速特性的影响差异较大,这也就验证了上一章提出的不同宽度扩压器可能存在不同失速机理的假设;另外有关无叶扩压器失速特征的实验研究中在扩压器后均不存在后续部件蜗壳,因此作者认为还需要分析蜗壳的影响,在意大利佛罗伦萨大学学者的帮助下,作者对新比隆公司的某多级压缩级末级的失速数据进行分析,结果发现蜗壳的确对无叶扩压器的失速特性有影响,但这种影响与叶轮的出口宽度有关,当叶轮出口宽度较大时,失速临界角预测可以不考虑下游蜗壳的影响;
     3.尽管上述两部分对无叶扩压器的失速机理和影响因素进行了分析,然而可能更需要关注的是如何扩展给定的无叶扩压器的稳定性范围,即推迟失速临界角。作者对日本横滨国立大学所用的径向开槽方法进行了详细的数值模拟,并分析了开槽对扩压器流场的影响,在这些分析的基础上,建立了槽内流动的理论模型,并将其与实验结果进行了对比,随后作者建立了开槽参数的选取准则,从而为实际工业提供指导,最后是法国南特中央理工学院利用该准则进行的实验,实验结果验证了该准则的正确性;
     4.前述部分关注的是无叶扩压器的失速问题,而对于离心压缩机中的离心风机,由于叶轮出口的动压较小,同时处于制造成本的考虑,在叶轮和蜗壳之间一般并不采用无叶扩压器,因此此类风机的失速研究,必须要考虑叶轮和蜗壳的相互影响。本部分利用了数值模拟和实验研究手段分析了蜗壳+5种叶轮组合在不同流量下压缩机内部流场和动态速度信号的变化,得到了叶轮和蜗壳对系统稳定性的影响;此外还分析了叶轮内部各个通道的流量以及蜗壳内部流动结构随流量的关系,并提出了蜗舌内循环流量与有效增压的蜗壳出流量之比这一参数作为判断系统逼近失稳的依据;
     5.最后一部分从系统角度对课题组研发的转速为52000rpm的二级高速离心压缩机的喘振特性进行了研究,主要是采用复Morlet小波对不同位置采集到的压力信号从时频角度进行了分析,从而探讨了系统的喘振过程和引起失稳的可能部件,由于压力信号采集中采用了引压管,为此还对引压管的频率响应特性进行了理论和实验研究。在喘振信号分析的基础上,作者还提出了基于标准差变换系数的喘振先兆预警方法,并将该方法应用于本文的实验结果以及波兰Lord理工大学的某离心鼓风机实验台,结果表明该方法可用于喘振预警,但方法的有效性很大程度上取决于传感器的位置,故文中还探讨了压力传感器位置选取对喘振先兆的影响。
     本文上述五个方面分别从离心压缩机的部件和系统的角度研究了压缩机的旋转失速和喘振,研究方法包括实验和理论建模。尽管其不能彻底解决问题,但也是从某些角度丰富了离心压缩机失速和喘振的发生机理、预测与基于先兆信号的预警分析等诸多内容,并在一定程度上有助于指导带无叶扩压器的离心压缩机的扩稳设计与安全运行。
Centrifugal Compressor is a kind of general purpose machinery for improvinggas pressure, which is widely used in many fields, plays an important role and con-sumes huge amount of energy. In recent years, the energy situation also puts forwardstringent requirements on the design of centrifugal compressors, i.e., higher pressureratio, higher efficiency,and wider working range. In these factors, the last one is themost prominent one, if possible, which can decrease the matching difficulties of au-tomotive turbochargers and increase the heating and electricity ratio of CHP system.Besides choke, stall and surge are the main causes for the limitation of stable oper-ation, hinderance of stage matching of centrifugal compressors. If not properly con-trolled, they even can lead to catastrophic disasters. However, until now, there are stillno theoretical breakthroughs especially for radial compressors. Thus, there are stillneeds to do further research until the final a final solution was found. In the followingpart, the author sums the related works and contributions to this filed which were doneduring his study for pursuing doctor’s degree.
     1.Making new explanations about the occurrences of rotating stall. Researchmethods include numerical simulation and comparison between numerical results andexperimental results. Taking the limitations of computational resources and quanti-ties of adjusting parameters, two-dimensional simulation was adopted to investigaterotating stall from the point of core ?ow instability. The results indicate that theredoes exist a kind of stall mechanism which has little relationship with boundary layer.After the confirmation, the authors also studied the inffuences of geometry and ?owparameters on stall inception and mature stall characteristics.
     2. Establishing a neural network with genetic optimized initial weights and an-alyzing the experimental data on rotating stall in open literature. It was found thatdiffuser geometric parameters have distinct effects on rotating stall when the parame-ter b3/D2≈0.05. In this section, the in?uences of downstream component was alsoinvestigated with data from Florence University, Italy. It is shown that the in?uencesof volute should be considered with impeller outlet width to outlet diameter ratio lessthan a certain value.
     3. Adopting radial grooves on the diffuser walls for passive control of rotatingstall. Firstly, detailed numerical study was adopted to study the in?uences of grooveson the ?ow field in vaneless diffuser; then the groove ?ow was modeled theoretically;lastly, the author made a guideline for choosing groove parameters. Fortunately, theguidelines and the groove method were put into real industry turbocharger for test inEcole Centrale de Nantes. The initial findings agree well with our theoretical results.
     4. Analyzing mutual interactions between impeller and volute on the inception ofrotating stall and surge. Research tools include CFD (computational ?uid dynamics),PIV and hot-wire anemometry. Through the research, the author not only answerthe question that why the optimized impeller configuration is the one with narrowestworking range but also the abnormal phenomenon that the efficiency of back-curvedimpeller configuration was even lower than the forward-curved one.
     5. Surge characteristics and pathology were analyzed through the pressure sig-nals acquired from different positions on a two-stage centrifugal compressor. Thefrequency response characteristics were also studied experimentally and theoretically.Based on the former research and understanding of the system, the author put forwarda new surge detection variable called coefficient of standard deviation which couldfind surge precursor and advance the time of warning.
     The above five sections investigated rotating stall and surge in centrifugal com-pressor. The research tools include experiments and theoretical modeling. Even itcouldn’t solve the problems completely, it does enrich the scenario of rotating stalland surge and is helpful for guiding the design of centrifugal compressor with vane-less diffuser and its production.
引文
[1] A. Whitfield, N.C. Baines. Design of Radial Turbomachines. Essex, England:Longman Scientific & Technical, 1990
    [2] H. Krain. Review of Centrifugal Compressor’s Application and Development.ASME Journal of Turbomachinery. 2005, 127(1):25–34
    [3] K.H. Lu¨dtke. Process Centrifugal Compressors. Berlin, Germany: Springer,2004
    [4] D. Eckardt. Detailed Flow Investigations within a High Speed CentrifugalCompressor Impeller. ASME Journal of Fluids Engineering. 1976, 98:390–402
    [5] R.C. Dean, Y. Senoo. Rotating Wakes in Vaneless Diffusers. ASME Journal ofBasic Engineering. 1960, 82:563–574
    [6] H. Krain. Swirling Impeller Flow. ASME Journal of Turbomachinery. 1988,110:122–128
    [7] M.D. Hathaway, R.M. Chriss, J.R. Wood, et al. Experimental and Compu-tational Investigation of the NASA Low Speed Centrifugal Compressor FlowField. ASME Journal of Turbomachinery. 1993, 115(3):527–542
    [8] J.T. Hamrick, A. Ginsburg, W. Osborn. Method of Analysis for Compress-ible Flow through Mixed Flow Centrifugal Compressor of Arbitrary Design.Cleveland,USA, 1950
    [9] Wu Chung Hua. A General Theory of Three-Dimensional Flow in Subsonic andSupersonic Turbomachines of Axial-,Radial-, and Mixed-Flow Types. NACATN 2604
    [10] W. Dawes. Development of a 3D Navier-Stokes Solver for Application to allTypes of Turbomachinery. ASME-Paper 88-GT-70. 1988
    [11] H. Krain. Unsteady Flow of a Transonic Centrifugal Compressor. Proceedingsof the 15th International Symposium on Air Breathing Engines. 2001
    [12] D. Japikse, N.C. Baines. Introduction to Turbomachinery. Vermont,USA: Con-cepts ETI Inc. and Oxford University Press, 1994
    [13] N.A. Cumpsty. Compressor Aerodynamics. USA: Krieger Publishing Com-pany, 2004. 2nd Edition
    [14] H.W. Emmons, C.E. Person, H.P. Grant. Compressor Surge and Stall Propaga-tion. Transactions of ASME. 1955, 77:453–467
    [15]徐忠主编.离心压缩机原理.西安:西安交通大学出版社, 1988
    [16] F.E. Marble. Propagation of Stall in a Compressor Blade Row. Journal ofAeronautical Sciences. 1955, 22(8):541–544
    [17] NASA 1965. Design of Axial Flow Compressors. NASA SP-36
    [18]唐狄毅.叶轮机非定常流.北京:国防工业出版社, 1992
    [19] L.J. Cheshire, M.Sc. Tech, A.M.I. Mech.E. The Design and Development ofCentrifugal Compressors for Aircraft Gas Turbines. Proceedings of the Institu-tion of Mechanical Engineers. 1945, 153:426–440
    [20] M.G. Rose, K. Irmler, M. Schleer, et al. Classic Surge in a Centrifugal Com-pressor. ASME Paper GT2003-38476. 2003
    [21] NACA. Engine Stall and Surge. NACA-TM-X-67600, 1955
    [22] A.H. Stenning, A.R. Kriebel, S.R. Montgomery. Stall Propagation in AxialFlow Compressors. NACA-TN-3580, 1956
    [23] H.W. Emmons, R.E. Kronauer, J.A. Rockett. A Survey of Stall Propagation-Experiment and Theory. ASME Journal of Basic Engineering. 1959, 81:409–416
    [24] W. Jansen. Rotating Stall in a Radial Vaneless Diffuser. ASME Journal of BasicEngineering. 1964, 86:750–758
    [25] W. Jansen. Steady Fluid Flow in a Radial Vaneless Diffuser. ASME Journal ofBasic Engineering. 1964, 86:607–619
    [26] E.C. Maskell. Flow Separation in Three Dimensions. Royal Aircraft Establish-ment,Report No.3565
    [27] R.C. Pampreen. The Laminar Incompressible Boundary Layer in a Constant-Area Vaneless Radial Diffuser. ASME Paper 66-WA/FE-3. 1966
    [28] H. Takata, S. Nagano. Nonlinear Analysis of Rotating Stall. ASME Journal ofEngineering for Power. 1972, 94:279–293
    [29] E. Lennemann, J. Howard. Unsteady Flow Phenomena in Rotating CentrifugalImpeller Passages. ASME Journal of Engineering for Power. 1970, 92(1):65–72
    [30] K. Toyama, P.W. Runstadler, R.C. Dean. An Experimental Study of Surge inCentrifugal Compressors. Centrifugal Compressor and Pump Stability, Stalland Surge,ASME Fluids and Gas Turbine Division. 1976, 69–89
    [31] P.F. Flynn, H.G. Weber. Design and Test of an Extremely Wide Flow RangeCompressor. ASME Paper No.79-GT-80. 1979
    [32] A.N. Abdel-hamid, J. Betrand. Distinction between Two Types of Self-excitedGas Oscillations in Vaneless Radial Diffusers. Canadian Aeronautics and SpaceJournal. 1980, 26(2):105–117
    [33] A.N. Abdel-hamid. Effects of Vaneless Diffuser Geometry on Flow Instabilityin Centrifugal Compression System. ASME Paper No.81-GT-10. 1981
    [34] N. Ka¨mmer, M. Rautenberg. An Experimental Investigation of Rotating Stallin a Centrifugal Compressor. ASME Paper No.82-GT-82. 1982
    [35] P. Frigne, R.V.D. Braembussche. Distinctions Between Different Types of Im-peller and Diffuser Stall in a Centrifugal Compressor with Vaneless Diffuser.ASME Paper No.83-GT-61. 1983
    [36] N. Ka¨mmer, M. Rautenberg. A Distinction between Different Types of Stall inCentrifugal Compressor Stage. ASME Journal of Engineering for Gas Turbinesand Power. 1986, 108(1):83–92
    [37] U. Haupt, A.N. Abdelhamid, N. Ka¨mmer, M. Rautenberg. Excitation of BladeVibrations by Flow Instability in Centrifugal Compressors. ASME PaperNo.86-GT-283. 1986
    [38] A.N. Abdel-hamid, U. Haupt, M. Rautenberg. Unsteady Flow Characteristicsin a Centrifugal Compressor with Vaned Diffuser. ASME Paper No.87-GT-142.1987
    [39] U. Haupt, K. Bemmert, M. Rautenberg. Blade Vibration on CentrifugalCompressors-Blade Response to Different Excitation Conditions. ASME PaperNo.85-GT-93. 1985
    [40] U. Haupt, U.and Seidel, A.N. Abdel-hamid, M. Rautenberg. Unsteady Flowin a Centrifugal Compressor with Different Types of Vaned Diffusers. ASMEPaper No.88-GT-22. 1988
    [41] D.A. Fink. Surge Dynamics and Unsteady Flow Phenomena in CentrifugalCompressor: Massachusetts Institute of Technology, 1988
    [42] Y.N. Chen, U. Haupt, M. Rautenberg. The Vortex-filament Nature of ReverseFlow on the Verge of Rotating Stall. ASME Journal of Turbomachinery. 1989,111(4):450–461
    [43] D. Jin, U. Haupt, H. Hasemann, M. Rautenberg. Excitation of Blade VibrationDue to Surge of Centrifugal Compressor. ASME Paper No.92-GT-149. 1992
    [44] S. Mizuki, Y. Oosawa. Unsteady Flow within Centrifugal Compressor Channelsunder Rotating Stall and Surge. ASME Journal of Turbomachinery. 1992,114:312–320
    [45] P.B. Lawless, S. Fleeter. Rotating Stall Acoustic Signature in a Low SpeedCentrifugal Compressor: Part 1-Vaneless Diffuser. ASME Paper No.93-GT-297. 1993
    [46] P.B. Lawless, S. Fleeter. Rotating Stall Acoustic Signature in a Low SpeedCentrifugal Compressor: Part 2-Vaned Diffuser. ASME Paper No.93-GT-254.1993
    [47] J. Chen, H. Hasemann, L. Shi, M. Rautenberg. Stall Inception Behavior in aCentrifugal Compressor. ASME Paper No.94-GT-159. 1994
    [48] R. Hunziker, G. Gyarmathy. The Operational Stability of a Centrifugal Com-pressor and Its Dependence on the Characteristics of the Subcomponents.ASME Journal of Turbomachinery. 1994, 116(1):250–259
    [49] G. Gyarmathy. Impeller-Diffuser Momentum Exchange During Rotating Stall.ASME Paper 96-WAM/PID-6. 1996
    [50] B. Ribi, G. Gyarmathy. Energy Input of a Centrifugal Stage into the AttachedPiping System During Mild Surge. ASME Journal of Engineering for GasTurbine and Power. 1999, 121(2):325–334
    [51] C. Roduner, P. Kupferschmied, P. Ko¨ppel, G. Gyarmathy. On the Devel-opment and Application of the Fast-Response Aerodynamic Probe Systemin Turbomachines-Part2:Flow,Surge and Stall in a Centrifugal Compressor.ASME Journal of Turbomachinery. 2000, 122(3):517–526
    [52] G. Gyamarthy, A. Inderbitzin, T. Staubli. Visualization of Rotating Stall inFull-size Water Model of a Single Stage Centrifugal Compressor. La HouilleBlanche. 2001, (3):40–45
    [53] M. Schleer, R.S. Abhari. In?uence of Geometric Scaling on the Stability andRange of a Turbo-Charger Centrifugal Compressor. ASME Paper 2005-GT-68713
    [54] M. Schleer, S.J. Song, R.S. Abhari. Clearance Effects on the Onset of In-stability in a Centrifugal Compressor. Journal of Turbomachinery. 2008,130:No.031002
    [55] Y. Senoo, M. Ishida. Deterioration of Compressor Performance Due to TipClearance of Centrifugal Impellers. ASME Journal of Turbomachinery. 1987,109(1):55–61
    [56] G.L. Arnulfi, P. Giannattasio, G. Giusto, et al. Multistage Centrifugal Com-pressor Surge Analysis: Part I-Experimental Investigation. ASME Journal ofTurbomachinery. 1999, 121(2):305–311
    [57] M.P Wernet, M. Bright, G.J. Skoch. An Investigation of Surge in a High-SpeedCentrifugal Compressor Using Digital PIV. ASME Journal of Turbomachinery.2001, 123(2):418–428
    [58] G. Ferrara, L. Ferrari, L. Baldassarre, et al. Experimental Investigation andCharacterization of the Rotating Stall in a High Pressure Centrifugal Compres-sor Part 1: In?uence of Diffuser Geometry on Stall Inception. ASME PaperNo.GT2002-30389. 2002
    [59] G. Ferrara, L. Ferrari, L. Baldassarre, et al. Experimental Investigation andCharacterization of the Rotating Stall in a High Pressure Centrifugal Compres-sor Part 2: In?uence of Diffuser Geometry on Stage Performance. ASME PaperNo.GT2002-30390. 2002
    [60] A. Cellai, G. Ferrara, L. Ferrari, et al. Experimental Investigation and Charac-terization of the Rotating Stall in a High Pressure Centrifugal Compressor Part3: In?uence of Diffuser Geometry on Stall Inception and Performance. ASMEPaper No.GT2003-38390. 2003
    [61] A. Cellai, G. Ferrara, L. Ferrari, et al. Experimental Investigation and Charac-terization of the Rotating Stall in a High Pressure Centrifugal Compressor Part4: Impeller In?uence on Diffuser Stability. ASME Paper No.GT2003-38394.2003
    [62] G. Ferrara, L. Ferrari, L. Baldassarre. Experimental Investigation and Charac-terization of the Rotating Stall in a High Pressure Centrifugal Compressor Part5: In?uence of Diffuser Geometry on Stall Inception and Performance. ASMEPaper No.2006-GT-90693
    [63] E.A. Carnevale, G. Ferrara, L. Ferrari, L. Baldassarre. Experimental Investi-gation and Characterization of the Rotating Stall in a High Pressure Centrifu-gal Compressor Part 6: Reduction of Three Impeller Results. ASME PaperNo.2006-GT-90694
    [64] Z.S. Spakovszky. Backward Travelling Rotating Stall Waves in CentrifugalCompressors. ASME Journal of Turbomachinery. 2004, 126(1):1–12
    [65] K.B. Abidogun. Effects of Vaneless Diffuser Geometries on Rotating Stall.Journal of Propulsion and Power. 2006, 22(3):542–549
    [66] Z.S. Spakovszky, C.H. Roduner. Spike and Modal Stall Inception in an Ad-vanced Turbocharger Centrifugal Compressor. Journal of Turbomachinery.2009, 131:No.031012
    [67]楚武利.离心风机扩压器旋转失速特征的研究[硕士学位论文].西安:西安交通大学, 1987
    [68]楚武利,姜桐.离心压气机无叶扩压器旋转失速实验研究.航空动力学报. 1990, 5(2):163–165
    [69]楚武利,姜桐.离心压气机叶片扩压器的不稳定流动特征.应用力学学报. 1992, 9(2):9–13
    [70]戴冀.离心压缩系统喘振的理论和实验研究[博士学位论文].西安:西安交通大学, 1994
    [71]戴冀,谷传纲,苗永淼.深度喘振倒流在离心压缩机系统中的发生特征.航空动力学报. 1996, 11(1):7–10
    [72]戴冀,谷传纲,苗永淼.离心压缩机系统喘振的实验研究.气动实验与测量控制. 1996, 10(1):39–42
    [73]戴冀,聂超群,陈静宜.低压离心压缩系统喘振发生过程的实验观测.工程热物理学报. 1997, 18(5):574–579
    [74]聂超群,戴冀,廖生芳,陈静宜.离心压缩系统喘振先兆的实验研究.工程热物理学报. 1997, 18(3):306–310
    [75]聂超群,蒋浩康,王维琮,等.多级离心压缩机械的系统稳定性分析.工程热物理学报. 1997, 20(6):711–715
    [76]李美林,张春梅,王尚锦,席光.用小波和分维数方法处理喘振实验数据.工程热物理学报. 2002, 23(2):175–178
    [77]顾春伟,山口和夫,长岛立夫.离心压气机不稳定特性的研究.动力工程.2006, 26(2):196–200
    [78]童志庭.轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究[博士学位论文].北京:中国科学院工程热物理研究所,2006
    [79] F.K. Moore, E.M. Greitzer. A Theory of Post-Stall Transients in Axial Com-pressors,Part I: Development of the Equations. ASME Journal of Engineeringfor Gas Turbines and Power. 1986, 108(1):68–97
    [80] N.M. McDougall, N.A. Cumpsty, T.P. Hynes. Stall Inception in Axial Com-pressors. ASME Journal of Turbomachinery. 1990, 112(1):116–125
    [81] V.H. Garnier, A.H. Epstein, E.M. Greitzer. Rotating Waves as a Stall InceptionIndication in Axial Compressors. ASME Journal of Turbomachinery. 1991,113(2):290–302
    [82] I.J. Day. Stall Inception in Axial Flow Compressors. ASME Journal of Turbo-machinery. 1993, 115(1):1–9
    [83] M. Inoue, M. Kuroumaru, T. Tanino, M. Furukawa. Propagation of MultipleShort-Length-Scale Stall Cells in an Axial Compressor Rotor. ASME Journalof Turbomachinery. 2000, 122(1):45–54
    [84] M. Tryfonidis, O. Etchevers, J. Paduano, et al. Prestall Behavior of Several HighSpeed Compressors. ASME Journal of Turbomachinery. 1995, 117(1):62–80
    [85] S.F. Liao, J.Y. Chen. Time-Frequency Analysis of Compressor Rotating Stallby Means of Wavelet Transform. ASME Paper No.96-GT-57. 1996
    [86]程晓彬,陈静宜.基于小波变换的离心压气机旋转失速先兆时频分析.工程热物理学报. 2000, 21(3):289–293
    [87] F. Lin, J.Y. Chen, M.L. Li. Practical Issues of Wavelet Analysis of UnsteadyRotor Tip Flows in Compressors. AIAA-2002-4082. 2002
    [88]孙涛,徐光华,张四聪,张春梅.经验模式分解法结合相关积分法的离心风机喘振先兆辨识.动力工程. 2006, 26(6):849–853
    [89]孙涛,徐光华,张春梅.基于喘振频率特性的失稳预警技术研究.西安交通大学学报. 2007, 41(11):1321–1325
    [90] M.M. Bright, H.K. Qammar, L.Z. Wang. Investigation of Pre-stall Mode andPip Inception in High-Speed Compressors through the Use of Correlation Inte-gral. ASME Journal of Turbomachinery. 1999, 121(4):743–750
    [91]吴云,张朴,李应红,等.基于相关积分法的压气机启动不稳定检测.中国工程热物理学会热力气动热力学学术会议论文集.西安, 2004, 434–439
    [92]孙涛,徐光华,张春梅.基于相关积分法的离心压气机喘振过程的非线性监测.航空动力学报. 2006, 21(6):1092–1097
    [93]高坤华.基于混沌理论的压气机失速预测及分析[博士学位论文].西安:西北工业大学, 2007
    [94] C.A. Amann, G.E. Nordensen, G.D. Skellenger. Casing Modification for In-creasing the Surge Margin of a Centrifugal Compressor in an Automotive Tur-bine Engine. ASME Journal of Engineering for Power. 1975, 97(3):329–336
    [95] W. Jansen, A.F. Carter, M.C. Swarden. Improvements in Surge Margin forCentrifugal Compressors. AGARD CP-282. 1980
    [96] F.B. Fisher. Application of Map Width Enhancement Devices to TurbochargerCompressor Stages. SAE Paper No.88-0794. 1988
    [97]高鹏,楚武利,吴艳辉,邓文剑.带周向槽机匣处理的离心压气机扩稳机理分析.推进技术. 2007, 28(4):383–387
    [98]高闯,谷传纲,王彤,肖军.无叶扩压器内的射流-尾迹型扰动分析.动力工程. 2009, 29(4):326–329,341
    [99] A. Stein. Computational Analysis of Stall and Separation Control in CentrifugalCompressors[Dissertation]. USA: Georgia Institute of Technology, 2000
    [100] Y. Kinoshita, T. Matsumura. Direct Numerical Simulation of Rotating Stall andStall Induced in Centrifugal Vaneless Diffusers. ASME Paper 2000-GT-0452.2000
    [101] Y. Senoo, Y. Kinoshita. Limits of Rotating Stall and Stall in Vaneless Diffuserof Centrifugal Compressors. ASME Paper No.78-GT-19. 1978
    [102] T. Sano, Y. Yoshida, Y. Tsujimoto, et al. Numerical Study of Rotating Stallin a Pump Vaned Diffuser. ASME Journal of Fluids Engineering. 2002,124(4):363–370
    [103]郭强.带无叶扩压器的离心压缩机失速现象的实验和数值研究[博士学位论文].上海:上海交通大学, 2007
    [104]高闯,谷传纲,王彤,戴正元.大宽度无叶扩压器旋转失速特征的数值模拟.上海交通大学学报. 2007, 41(9):1518–1521
    [105] W. Huang, S. Geng, J. Zhu, H. Zhang. Numerical Simulation of Rotating Stallin a Centrifugal Compressor with Vaned Diffuser. Journal of Thermal Science.2007, 16(2):115–120
    [106] Raymond Andrew. Simulation of Spike Stall Inception in a Radial Vaned Dif-fuser[Master’s Thesis]. USA: Massachusetts Institute of Technology, 2007
    [107] K. Iwakiri, M. Furukawa, S. Ibaraki, I. Tomita. Unsteady and Three-Dimensional Flow Phenomena in a Transonic Centrifugal Compressor Impellerat Rotating Stall. ASME Paper No.2009-GT-59516
    [94] C.A. Amann, G.E. Nordensen, G.D. Skellenger. Casing Modification for In-creasing the Surge Margin of a Centrifugal Compressor in an Automotive Tur-bine Engine. ASME Journal of Engineering for Power. 1975, 97(3):329–336
    [95] W. Jansen, A.F. Carter, M.C. Swarden. Improvements in Surge Margin forCentrifugal Compressors. AGARD CP-282. 1980
    [96] F.B. Fisher. Application of Map Width Enhancement Devices to TurbochargerCompressor Stages. SAE Paper No.88-0794. 1988
    [97]高鹏,楚武利,吴艳辉,邓文剑.带周向槽机匣处理的离心压气机扩稳机理分析.推进技术. 2007, 28(4):383–387
    [98]高闯,谷传纲,王彤,肖军.无叶扩压器内的射流-尾迹型扰动分析.动力工程. 2009, 29(4):326–329,341
    [99] A. Stein. Computational Analysis of Stall and Separation Control in CentrifugalCompressors[Dissertation]. USA: Georgia Institute of Technology, 2000
    [100] Y. Kinoshita, T. Matsumura. Direct Numerical Simulation of Rotating Stall andStall Induced in Centrifugal Vaneless Diffusers. ASME Paper 2000-GT-0452.2000
    [101] Y. Senoo, Y. Kinoshita. Limits of Rotating Stall and Stall in Vaneless Diffuserof Centrifugal Compressors. ASME Paper No.78-GT-19. 1978
    [102] T. Sano, Y. Yoshida, Y. Tsujimoto, et al. Numerical Study of Rotating Stallin a Pump Vaned Diffuser. ASME Journal of Fluids Engineering. 2002,124(4):363–370
    [103]郭强.带无叶扩压器的离心压缩机失速现象的实验和数值研究[博士学位论文].上海:上海交通大学, 2007
    [104]高闯,谷传纲,王彤,戴正元.大宽度无叶扩压器旋转失速特征的数值模拟.上海交通大学学报. 2007, 41(9):1518–1521
    [105] W. Huang, S. Geng, J. Zhu, H. Zhang. Numerical Simulation of Rotating Stallin a Centrifugal Compressor with Vaned Diffuser. Journal of Thermal Science.2007, 16(2):115–120
    [106] Raymond Andrew. Simulation of Spike Stall Inception in a Radial Vaned Dif-fuser[Master’s Thesis]. USA: Massachusetts Institute of Technology, 2007
    [107] K. Iwakiri, M. Furukawa, S. Ibaraki, I. Tomita. Unsteady and Three-Dimensional Flow Phenomena in a Transonic Centrifugal Compressor Impellerat Rotating Stall. ASME Paper No.2009-GT-59516
    [120] Svetlana Ljevar. Rotating Stall in Wide Vaneless Diffusers[Dissertation].Netherlands: Eindhoven University of Technology, 2007
    [121] P.A.Davidson. Turbulence:An Introduction for Scientists and Engineers. Lon-don, UK: Oxford University Press, 2004
    [122] A.N. Abdelhamid. Effects of Vaneless Diffuser Geometry on Flow Instabilityin Centrifugal Compression System. Canadian Aeronautics and Space. 1983,29(1):259–266
    [123] Y. Senoo, M. Ishida. Behavior of Severely Asymmetric Flow in a VanelessDiffuser. ASME Journal of Engineering for Power. 1975, 97(2):375–387
    [124] C. Gao, C.G. Gu, T. Wang, B. Yang. Analysis of Geometries’Effects on Ro-tating Stall in Vaneless Diffuser with Wavelet Neural Networks. InternationalJournal of Rotating Machinery. 2007:Artile ID 76476
    [125] Q.H. Zhang, A. Benveniste. Wavelet Networks. IEEE Transaction on NeuralNetworks. 1992, 3(6):889–898
    [126]苑希民,李鸿雁,刘树坤,崔广涛.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社, 2002
    [127] H.S. Dou. Investigation of the Prediction of Losses in Radial Vaneless Diffuser.ASME Paper No.91-GT-323. 1991
    [128] F.K. Moore. Theory of Finite Disturbances in a Centrifugal Compression Sys-tem with a Vaneless Radial Diffuser. NASA-CR-187094, 1990
    [129] Y. Kinoshita, Senoo.Y. Rotating Stall Induced in Vaneless Diffusers of VeryLow Specfic Speed Centrifugal Blowers. ASME Journal of Engineering forGas Turbines and Power. 1985, 107(2):514–521
    [130] M.V. O¨tu¨gen, R.M.C. So, B.C. Hwang. Diffuser Stall and Rotating Zones ofSeparated Boundary Layer. Experiments in Fluids. 1988, 6:521–533
    [131] M. Ishida, D. Sakaguchi, H. Ueki. Suppression of Rotating Stall by WallRoughness Control in Vaneless Diffusers of Centrifugal Blowers. ASME Jour-nal of Turbomachinery. 2001, 123(1):64–72
    [132] H. Nishida, H. Kobayashi, T. Takagi, Y. Fukushima. A Study on Rotating Stallof Centrifugal Compressors(1st Report). Transactions of Japan Society of Me-chanical Engineerings. 1988, 54(499):123–127
    [133] D. Japikse, K.N. Oliphant. Turbomachinery Modeling:Explicit and ImplicitKnowledge Capturing. ASME Paper No.2005-GT-68099
    [134] R.A. Van den Braembussche, P. Frigne. Rotating Non Uniform Flow in RadialCompressors. AGARD CP-282. 1980
    [135] T. Steglich, J. Kitzinger, J.R. Seume, et al. Improved Diffuser/Volute Com-binations for Centrifugal Compressors. Journal of Turbomachinery. 2008,130:No.011014
    [136] E.M. Greitzer. Some Aerodynamic Problems of Aircraft Engines: Fifty YearsAfter -The 2007 IGTI Scholar Lecture. Journal of Turbomachinery. 2009,131(3):No.031101
    [137] C. Rodgers, H. Mnew. Rotating Vaneless Diffuser Study. US Army MERDC,Report ER2249, 1970
    [138] A.N. Abdel-hamid. Control of Self-excited Flow Oscillations in Vaneless Dif-fuser of Centrifugal Compression System. ASME Paper No.82-GT-188. 1982
    [139] C. Gao, C.G. Gu, T. Wang, J. Xiao. Computational Investigation for Compres-sor Operating Range Extension by using Ring at outlet of Vaneless Diffuser.The 9th Asian International Conference on Fluid Machinery, Jeju,Korea. 2007,AICFM9–279
    [140] A.N. Abdel-hamid. A New Technique for Stabilizing the Flow and ImprovingPerformance of Vaneless Radial Diffusers. ASME Journal of Turbomachinery.1987, 109:36–40
    [141] Y. Senoo, H. Hayami, H. Ueki. Low Solidity Tandem-cascade Diffusers forWide Flow Range Centrifugal Blowers. ASME Paper No.83-GT-3. 1983
    [142] J. Kurokawa, S.L. Saha, J. Matsui, T. Kitahora. Passive Control of RotatingStall in a Parallel-wall Vaneless Diffuser by Radial Grooves. ASME Journal ofFluids Engineering. 2000, 122(1):90–96
    [143] S.L. Saha. Suppression of Several Anomalous Phenomena in Turbomachineryby use of J-groove[Dissertation]. Japan: Yokohama National University, 2000
    [144] H. Tsurusaki, T. Kinoshita. Flow Control of Rotating Stall in Radial VanelessDiffuser. ASME Journal of Fluids Engineering. 2001, 123(1):281–286
    [145] D.C. Prince, D.C. Wisler, D.E. Hilvers. Study of Casing Treatment Stall MarginImprovement Phenomena. NASA CR-134552, 1974
    [146] S.L. Saha, J. Kurokawa, J. Matsui, H. Imamura. Passive Control of RotatingStall in a Parallel-Wall Vaned Diffuser by J-Grooves. ASME Journal of FluidsEngineering. 2001, 123(3):507–515
    [147] R. Van den Braembussche, B. Hande. Experimental and Theoretical Studyof the Swirling Flow in Centrifugal Compressor Volutes. ASME Journal ofTurbomachinery. 1990, 112(1):38–43
    [148] E. Ayder, Van den Braembussche, J.J. Brasz. Experimental and TheoreticalAnalysis of the Flow in a Centrifugal Compressor Volute. ASME Journal ofTurbomachinery. 1993, 115(4):582–589
    [149] E. Ayder, R.A. Van den Braembussche. Numerical Analysis of the Three-Dimensional Swirling Flow in Centrifugal Compressor Volutes. ASME Journalof Turbomachinery. 1994, 116(3):462–467
    [150] D. Hagelstein, K. Hillewaert, R.A.and et al Van den Braembussche. Experi-mental and Numerical Investigation of the Flow in a Centrifugal CompressorVolute. ASME Journal of Turbomachinery. 2000, 122(1):22–31
    [151] J. Fukutomi, A. Itabashi, Y. Senoo. Pressure Recovery in Centrifugal BlowerCasing. JSME International Journal, Series B. 2006, 49(1):125–130
    [152]杨敏,闵思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力数值模拟.农业机械学报. 2009, 40(11):83–88
    [153]曹淑珍,祁大同,张义云,闻苏平.小流量工况下离心风机蜗壳内部的三维流动测量分析.西安交通大学学报. 2002, 36(7):688–692
    [154]舒信伟.基于CFD流场分析的多工况多约束条件的叶片优化设计方法与实验研究[博士学位论文].上海:上海交通大学, 2009
    [155]谷传纲,王彤,杨波等.用于锦纶化纤聚合热泵循环干燥系统中超低比转速离心鼓风机的研究与应用.上海交通大学, 2006
    [156] A. Fatsis, S Pierret, Van den Braembussche. Three-Dimensional Unsteady Flowand Forces in Centrifugal Impellers with Circumferential Distortion of the Out-let Static Pressure. ASME Journal of Turbomachinery. 1997, 119(1):94–102
    [157] Z.S. Spakovszky. Applications of Axial and Radial Compressor DynamicSystem Modeling[Dissertation]. USA: Massachusetts Institute of Technology,2000
    [158] D. Japikse. Centrifugal Compressor Design and Performance. Vermont, USA:Concepts ETI Inc., 1996
    [159]蔡亦钢.流体传输管道动力学.杭州:浙江大学出版社, 1990
    [160]朱明武,梁人杰,柳光辽等.动压测量.北京:国防工业出版社, 1983.第一版
    [161] A. Yoshida, Y. Tamura, T. Kurita. Effects of Bends in a Tubing System for Pres-sure Measurement. Journal of Wind Engineering and Industrial Aerodynamics.2001, 89:1701–1716
    [162]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社, 1998
    [163]何正嘉,訾艳阳,张西宁.现代信号处理及工程应用.西安:西安交通大学出版社, 2007
    [164] E.M. Greitzer. Surge and Rotating Stall in Axial Flow Compressor,Part I: The-oretical Compression System Model. ASME Journal of Engineering for Power.1976, 98(1):190–198
    [165] L. Horodko. Investigation of Centrifugal Compressor Surge with WaveletMethods. 6th European Conference on Turbomachinery,Fluid Dynamics andThermodynamics. Lille,France, 2005, vol. 2, 635–644
    [166] W.R. Sears. Asymmetric Flow in an Axial Flow Compressor Stage. Journal ofApplied Mechanics. 1955, 20(3):442–443
    [167] R.C. Dean. The Fluid Dynamic Design of Advanced Centrifugal Compressors.Creare TN-185. July 1974
    [168] C. Rodgers. A Diffussion Factor Correlation for Centrifugal Compressor Im-peller Stalling. ASME Journal of Engineering Power. 1980, 100(4):592–603
    [169] E.M. Greitzer. The Stability of Pumping Systems. ASME Journal of FluidsEngineering. 1981, 103(1):193–242
    [170] K. Ludtke. Aerodynamic Tests on Centrifugal Process Compressors-the In?u-ence of Vaneless Diffuser Shape. ASME Journal of Engineering for Power.1983, 105(4):902–909
    [171] R.L. Elder, M.E. Gill. A Discussion of the Factors Affecting Surge in Centrifu-gal Compressors. ASME Journal of Engineering for Gas Turbines and Power.1985, 107(3):499–506
    [172] A.H. Epstein. Smart Engine Components: A Micro in Every Blade? AerospaceAmerica. 1986, 24:60–64
    [173] H. Simon, T. Wallmann, T. Monk. Improvements in Performance Characteris-tics of Single-stage and Multi-stage Centrifugal Compressors by SimultaneousAdjustment of IGVs and Diffuser Vanes. ASME Journal of Turbomachinery.1987, 109(1):41–47
    [174] A. Whitfield, A. Sutton. The Effect of Vaneless Diffuser Geometry on the SurgeMargin of Turbocharger Compressors. Proceeding of IMECH Part D:Journalof Automobile Engineering. 1989, 203:91
    [175] A.H. Epstein, J.E. Ffowcs-Williams, E.M. Greitzer. Active Suppression ofAerodynamic Instabilities in Turbomachines. AIAA Journal of Propulsion andPower. 1989, 5(2):204–211
    [176] J.E. Ffowcs-Williams, X. Huang. Active Stabilization of Compressor Surge.Journal of Fluid Mechanics. 1989, 204:245–262
    [177] F.E. McCaughan. Bifurcation Analysis of Axial Flow Compressor Stability.SIAM,Journal of Applied Mathematics. 1990, 50(5):1232–1253
    [178] J.E. Pinsley, G.R. Guenette, A.H. Epstein, et al. Active Stabilization ofCentrifugal Compressor Surge. ASME Journal of Turbomachinery. 1991,113(4):723–732
    [179] D.L. Gysling, J. Dugundji, E.M. Greitzer, A.H. Epstein. Dynamic Control ofCentrifugal Compressor Surge using Tailored Structures. ASME Journal ofTurbomachinery. 1991, 113(4):710–722
    [180]孙晓峰,胡宗安,冯琉诚,周盛.压气机旋转失速的一个气动声学模型.航空学报. 1991, 12(9):31–37
    [181] I.J. Day. Stall Inception in Axial Flow Compressors. ASME Journal of Turbo-machinery. 1991, 113:1–9
    [182] J.D. Paduano, A.H. Epstein, L. Valavani, et al. Active Control of Rotating Stallin a Low-Speed Axial Compressor. ASME Journal of Turbomachinery. 1993,115(1):48–56
    [183] I.J. Day. Active Compressors Performance during Surge. ASME Journal ofTurbomachinery. 1994, 116:629–634
    [184] K.K Botros, J.F. Henderson. Developments in Centrifugal Compressor SurgeControl-A Technology Assessment. ASME Journal of Turbomachinery. 1994,116(1):240–249
    [185]聂超群,陈静宜,乔晓辉,等.压缩系统喘振现象主动控制的实验研究.工程热物理学报. 1995, 16(2):166–171
    [186]聂超群,陈静宜.喘振主动控制模式的研究.工程热物理学报. 1996,17(4):423–427
    [187]赵晓路,王巍.离心压气机低稠度串列叶栅扩压器流场数值分析.工程热物理学报. 1997, 18(2):186–189
    [188] L. Cao. Practical method for determining the minimum embedding dimensionof a scalar time series. Physcal D. 1997, 110:43–50
    [189] H.J. Weigl, J.D. Paduano, L.G. Frechette, et al. Active Stabilization of RotatingStall and Surge in a Transonic Sigle Stage Axial Compressor. ASME Journalof Turbomachinery. 1998, 120(4):625–636
    [190] R.A. Van den Braembussche, E. Ayder, D. Hagelstein, et al. Improved Modelfor the Design and Analysis of Centrifugal Compressor Volute. Journal ofTurbomachinery. 1999, 121(4):619–624
    [191] K. Hillewaert, R.A. Van den Braembussche. Numerical Simulation of Impeller-Volute Interaction in Centrifugal Compressors. ASME Journal of Turboma-chinery. 1999, 121(4):603–609
    [192] G.L. Arnulfi, P. Giannattasio, G. Giusto, et al. Multistage Centrifugal Com-pressor Surge Analysis: Part II-Numerical Simulation and Dynamic ControlParameters Evaluation. ASME Journal of Turbomachinery. 1999, 121(2):312–320
    [193] K.L. Suder, M.D. Hathaway, S.A. Thorp, et al. Compressor Stability Enhance-ment using Discrete Tip Injection. ASME Journal of Turbomachinery. 2001,123(1):14–23
    [194]王汉良,周凯元,夏昌敬.气体爆轰波在弯曲管道中传播特性的实验研究.火灾科学. 2001, 10(4):209–212
    [195] C.Q. Nie, G. Xu, X.B. Cheng, J.Y. Chen. Micro Air Injection and Its UnsteadyResponse in a Low-Speed Axial Compressor. ASME Journal of Turbomachin-ery. 2002, 124(4):572–579
    [196] A. Engeda. Experimental and Numerical Investigation of the Performance of a240kW Centrifugal Compressor with Different Diffusers. Experimental Ther-mal and Fluid Science. 2003, 28(1):55–72
    [197] G.J. Skoch. Experimental Investigation of Diffuser Hub Injection to ImproveCentrifugal Compressor Stability. ASME Journal of Turbomachinery. 2005,127(1):107–117
    [198] C. Xu, M. Mu¨ller. Development and Design of a Centrifugal Compressor Vo-lute. International Journal of Rotating Machinery. 2005, (3):190–196
    [199] C. Rodgers, L. Sapiro. Design Considerations for High Pressure Ratio Cen-trifugal Compressors. ASME Paper No.72-GT-91. 1972
    [200] D. Japikse. The In?uence of Diffuser Inlet Pressure Fields on the Range andDurability of Centrifugal Compressor Stage. AGARD Conference Proceedings282. 1980
    [201] P.M. Came, M.V. Herbert. Design and Experimental Performance of SomeHigh Pressure Ratio Centrifugal Compressors. AGARD Conference Proceed-ings 282. 1980
    [202] A.H. Epstein, J.E. Ffowcs Williams, E.M. Greitzer. Active Suppression ofAerodynamic Instabilities in Turbomachines. AIAA Paper No.86-1994. 1986
    [203] J. Dugundji, A.H. Epstein, V. Garnier, et al. A Progress on Active Control ofFlow Instabilities:Rotating Stall Stabilization in Axial Compressors. AIAA-1989-1008
    [204] W. Jahnen, W.P. Breugem, B. Ribi. Instability Analysis of a Centrifugal Com-pressor Stage Near Peak Pressure Rise. ASME Paper No.2001-GT-0318. 2001
    [205] H. Schlichting. Boundary Layer Theory,7th Edition. New York,USA: McGraw-Hill, 1979
    [206] N.A Cumpsty. Compressor Aerodynamics. Essex: Addison Wesley LongmanLimited, 1989. First Edition
    [207]陆亚钧主编.叶轮机非定常流动理论.北京:北京航空航天大学出版社,1990
    [208] R.C. Pampreen. Compressor Surge and Stall. Vermont, USA: ConceptsETI,Inc., 1992
    [209] Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs.AI Series. New York,USA: Springer-Verlag, 1994
    [210] J.T. Gravdahl, O. Egeland. Compressor Surge and Rotating Stall:Modeling andControl. Britain: Springer-Verlag, 1999
    [211]韩力群.人工神经网络理论、设计与应用.北京:化学工业出版社, 2007
    [212] S. Leiblein. Experimental Flow in Two Dimensional Cascades. NASA SP-36
    [213] C.R. Houck, J.A. Joines, M.G. Kay. A Genetic Algorithm for Function Op-timization: a Matlab Implementation,Technical Report 95-09. Department ofIndustrial Engineering,North Carolina State University, 1995
    [214]张慧.武器压力测试中传压管道的动态特性分析[硕士学位论文].南京:南京理工大学, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700