用户名: 密码: 验证码:
基于光纤光栅系统的流量测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流量测量在当今工业生产中有着重要的作用,基于光纤系统的流量测量方法已成为其研究的主要方向。当光在光纤中传输时,光的特性如强度、相位、频率等会受到被测量的调制,利用适当的光检测方法可以把调制量转换成电信号。光纤光栅传感器是一种能测量多种参数的传感器,其中心波长漂移量可用于检测流量,具有结构简单、测量精确、量程宽等诸多优点,正逐渐成为流量测量的主要方式之一。光纤布拉格光栅(FBG)传感器以其优异的抗电磁干扰、抗腐蚀、灵敏度高、小巧等特点,被广泛应用于工程监测。
     论文将光纤光栅传感理论与流量测量相结合,设计了一种新型的流量测量装置。通过对光纤光栅传感器原理,流量传感器原理分析和研究,设计了一套比较完备的光纤光栅流量传感系统,其设计包括光源选择、光电探测器设计、解调装置、信号分离滤波电路、前置放大电路、信号处理电路。
     在分析光纤布拉格光栅传感原理及信号解调原理的基础上研究设计了一种圆形靶结合粘贴光纤布拉格光栅(FBG)悬臂梁式流量检测装置;研究了传感光栅中心反射波长的变化量与参考光栅中心反射波长变化量的关系式;建立了基于圆形靶流量测量系统的数学模型;
     提出了基于步进电机调控的等强度悬臂梁光纤布拉格光栅传感信号解调方案;步进电机将电脉冲信号转变为角位移或线位移,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,并编写了步进电机及单片机的运行程序;该系统具有结构简单,精度较高,成本低等特点;提出了小波变换用于信号的处理、多尺度平滑去噪的思想以及线性模板与多尺度平滑去噪相结合的方法,用于流量信号的消噪,效果明显;
     设计了一种基于悬臂梁调谐和匹配光栅解调技术的光纤布拉格光栅传感信号解调方法;设计了基于匹配FBG可调滤波检测法的分布式测量系统,大大改善了系统的使用成本、复杂度及信噪比,并根据以上原理设计了系统的各个部分;匹配光纤布拉格光栅可调滤波检测法可以按照自身要求,在需要测量的点装配传感光栅,而只需要制作与其中心反射波长等性质相同的匹配参考光栅,形成测量阵列,匹配参考光栅的波长漂移就可以反映传感光栅的变化;通过对几种常见的流量测量方法进行比较实验测试,由实验数据误差分析可以得出相关结论,验证该设计方案的可行性和精度。
Flow measurement plays an important role in modern industrial production. Flowmeasurement methods based on optical fiber system have become the main direction ofthe research. Optical properties such as intensity, phase, and frequency and so on arecontrolled by the measurement when the light transmits in the optical fiber, andappropriate optical detecting methods can convert it into electrical signals. Fiber gratingsensors can measure many parameters, such as flow measurement which develops on thechange of center wavelength, and it has many advantages such as simple structure,accurate measurement, wide measuring range and many other advantages, which isgradually becoming the main mode of flow measurement. Fiber Bragg Grating(FBG)sensor is widely used in engineering monitoring of optical fiber sensing with its excellentresistance to electromagnetic interference, corrosion resistance, high sensitivity, compactand other characteristics.
     In this paper, we combine the principle of FBG sensor with flow measurementprinciple, and design a kind of new flow measuring device. We design a set of relativelycomplete fiber grating flow sensing system based on the principle of fiber grating sensorand flow sensor’s analysis and research, including light selection, photoelectric detector,demodulation device, signal filtering circuit, preamplifier circuit, and signal processingcircuit.
     On the basis of analyzing and researching the principle and demodulation techniquefor FBG, a flow measuring device of the circular target binding Fiber Bragg Grating withthe cantilever is designed. The relation between the wavelength shift of sensing FBG andthe wavelength shift of reference FBG is studied and the mathematical model based on acircular target flow measurement system is established.
     Stepping motor transforms the electricity pulse signal into angle-displacement orline-displacement, in the non-overload situation, the electrical machinery’s rotationalspeed and the stopping position is only decided by the pulse signal’s frequency and thepulse number, and is not influenced by the variation of load. Then it has the preparation of the running program of the stepping motor and single-chip microcomputer. This systemhas the characteristics of simply structure, high precision and low cost. The denoisingmethod of wavelet transform for signal processing, multiscale smoothing and thecombination of the linear template and multiscale smoothing denoising have obviouseffect on flow signal denoising.
     A scheme of demodulation technique for FBG based on the cantilever controlled bythe stepping motor is proposed, and the demodulation technique based on a pair ofmatching FBG is designed. Distributed measurement system with matching FBG filteringhas greatly improved the cost, complexity and signal-to-noise ratio of the system. Everypart of the system is designed based on the above. Matching FBG filtering detectingmethod can install sensing FBG on the measuring points according to their ownrequirements, and we only need to make the matching reference FBG with the same centerreflective wavelength to it. From the measurement array, wavelength change of matchingreference FBG can reflect the sensing FBG. Several common methods of flowmeasurement are compared by experimental tests, while, experimental data error analysiscan be concluded to verify the feasibility and precision of the design.
引文
[1]胡玉瑞,唐源宏,李川.光纤Bragg光栅流量传感器[J].传感技术学报,2010,23(4):471-474.
    [2] K.O.Hill, D.C.Johnsn, B.S.Kawasaki, et al. Photosensitivity in Optical Fiber Wave Guides:Application to Reflection Filter Fabrication[J]. Appl.Phys.Lett.,2009,32:647-649.
    [3]赵栋,吴红艳,唐璜.基于白光干涉原理的全光纤涡街流量测量方法[J].仪器仪表学报,2011,32(5):1038-1042.
    [4]孙雨南,王茜蒨,伍剑,等.光纤技术[M].北京:北京理工大学出版社,2006:71-73.
    [5] Ross, R, Song Wang. Toward Refocused Optical Mouse Sensors for Outdoor Optical FlowOdometry[J]. Sensors Journal, IEEE,2012,12(6):1925-1932.
    [6] Masayuki Yahiro, Chihaya Adachi, Nobuaki Soh. Performance of an organic photodiode as anoptical detector and its application to fluorometric flow-immunoassay for IgA[J]. Talanta,2012,96(0):132-139.
    [7]邢娟,张涛.利用涡街流量计测量油水两相流流量[J].仪器仪表学报,2009,30(4):882-886.
    [8]徐科军,陈智渊.一种涡街流量计数字信号处理方法研究和系统设计[J].电子测量与仪器学报,2005,19(4):91-94.
    [9] Robert W. Applegate, Jeff Squier, Tor Vestad. Fiber-focused diode bar optical trapping formicrofluidic flow manipulation[J]. Applied Physics Letters,2008,92(1):013904-1-013904-3.
    [10]禹大宽,贾振安,乔学光,等.光纤Bragg光栅流量传感器的研究及进展[J].光通信研究,2008,150(6):37-39.
    [11] Xun Zhu, Cheng-Long Guo, Yong-Zhong Wang. A feasibility study on unsaturated flow bioreactorusing optical fiber illumination for photo-hydrogen production[J]. International Journal ofHydrogen Energy,2012,37(20):15666-15671.
    [12] Sven Hungerer, Dirk Nolte, Beate Elstner. Fiber Optical Spatial Filter Anemometry–IntravitalMeasurement of Red Blood Flow Velocity (RBCV) in the Microcirculation[J]. Artificial Cells,Blood Substitutes, and Biotechnology,2010,38(3):119-128.
    [13] Cahill R. T.. Combining NASA/JPL One-Way Optical-Fiber Light-Speed Data with SpacecraftEarth-Flyby Doppler-Shift Data to Characterise3-Space Flow[J]. Progress in Physics,2009,4(0):50-64.
    [14] Ji í Vejra ka, Marek Ve e, Orvalho. Measurement accuracy of a mono-fiber optical probe in abubbly flow[J]. International Journal of Multiphase Flow,2010,36(7):533-548.
    [15] Chuan Li, Yi-Mo Zhang, Tie-Gen Liu et al. Distributed Optical Fiber Bi-directionaStrain Sensorfor Gas Trunk Pipelines[J]. Optics and Lasers in Engineering,2001,36:102-105.
    [16] Harada, Toshio, Kamoto, Kenji, Abe, Kyutaro. Development of an optical fiber flow velocitysensor[J]. Water Science&Technology,2009,60(9):2291-2299.
    [17] Sang-Yeoun Yoo, Yogesh Jaluria. Fluid flow and heat transfer in an optical fiber coating process[J].International Journal of Heat and Mass Transfer,2007,50(5-6):1176-1185.
    [18] Anu Vijayan, Vishal Thakare, R. N. Karekar, et al. OPTICAL FIBER-BASED MACROBENDFREE AIR FLOW SENSOR USING A HINGE JOINT: A PRELIMINARY REPORT[J].Microwave and Optical Technology Letters,2008,50(10):2543-2546.
    [19]李明,刘志愿,傅海威,等.一种光纤Bragg光栅流量传感器二维数值模拟研究[J].光器件,2009,10:41-42.
    [20]袁中林,梁君英.靶式流量计的分类及应用[J].自动化仪表,2008,29(4):67-70.
    [21]李川等编著.光纤光栅原理技术与传感应用[M].北京:科学出版社,2005:10-15.
    [22] Mohd Zafran bin Abdul Aziz,Petrus Simon Anak Ibai,Syed Farid Syed Adnan. Accelerated OpticalFlow Function Algorithm Using Compute Unified Device Architecture[J]. Procedia Engineering,2012,41(0):1343-1352.
    [23]卓峰,王均宏,李唐军,等.用于分析双波长光纤光栅的矩阵运算法[J].光电子.激光,2001,12(4):354-357.
    [24] Y. H. Jung, G. H. Jang. Reduction of windage loss of an optical disk drive utilizing air-flowanalysis and response surface methodology[J]. Microsystem Technologies,2012,18(9-10):1445-1453.
    [25]郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,25(4):45-48.
    [26] S. Otani, H. Hiraishi, M.Midorikawa, et al. Development of smart systems for buildingstructures[C]. SPIE,2008,3988:2-9.
    [27] R.Maaskant, T.Alavie, M.R.Measures, et al. Fiber-optic Bragg Grating Sensors for BridgeMonitoring[J]. Cement and Concrete Composites,2007,19:21-33.
    [28] R.L.Idriss, M.B.Kodindouma, A.D.Kersey, et al. Multiplexed Bragg Grating Optical Fiber Sensorsfor Damage Valuation in Highway Bridges[J]. Smart.Mater.Struct.,2008,(7):209-216.
    [29] P. R. Medwell, Q. N. Chan, B. B. Dally. Flow seeding with elemental metal species via an opticalmethod[J]. Applied Physics B: Lasers and Optics,2012,107(3):665-668.
    [30] Thakur, Anup, Kang, et al. Effect of Oxygen/Argon Flow Ratio on the Optical Properties of RFSputtered a-GaInZnO Thin Film[J]. AIP Conference Proceedings,2011,1349(1):709-710.
    [31] Mayo Miyake, Hizuru Nakajima, Akihide Hemmi. Low-cost optical detectors and flow systemsfor protein determination[J]. Talanta,2012,96(0):121-126.
    [32]王昱,李川,胡玉瑞,等.双孔平行梁光纤Bragg光栅传感器[J].光学技术,2008,34(5):678-680.
    [33]黄建辉,曹芒,李达成,等.用于干涉型光纤传感器的相位生成载波解调技术[J].光学技术,2000,26(3):228-231.
    [34] A.D.Kersey, T.A.Berkoff, W.W.Morie. Multiplexed Bragg Grating Fiber-laserStrain-sensorSystem with a Fiber F-P Wavelength Filter[J]. Opt.Lett.,2008,18(16):1370-1372.
    [35] Svetislav Savovi, Ana Simovi, Alexandar Djordjevich. Explicit finite difference solution of thepower flow equation in W-type optical fibers[J]. Optics&Laser Technology,2012,44(6):1786-1790.
    [36]樊昌信,徐炳祥,詹道庸,等.通信原理[M].北京:国防工业出版社,2008:53-54.
    [37] K.O.Hi11, Y.Fuji, D.C.Johnson and B.S.Kawasaki. Photosensitivity in Optical fiber waveguides:Applciation to reflection filter fabrication[J]. Appl.phys.Lett.,2008,32:647-649.
    [38] K.O.Hi11, B.Malo, F.Bilodeau, et al. Bragg grating fabrieated in monomode Photosensitive opticalfiberby UV exposurethrough a phase mask[J]. Appl. Phys. Lett.,2003,62:1035-1037.
    [39] W.W.More, G.A.Ball, H.Singh. Applications of fiber grating sensors[C]· Proc.of SPIE,2006,2839:2-7.
    [40] A.D.Kersey, M.A.DaviS, T.A.Berkoff, et al. Progress towards the development of practical fiberBragg grating Instrumentation systems[C]. Proc.of SPIE,2006,2839:40-63.
    [41] P.Ferdinand, S.Magne, V.Dewynter.Marty, et al. Applications of Bragg Grating Sensors inEurope[C]. Proceeding of the12th international conference on Optical Fibre Sensors,Williamsburg, USA,2007:14,19.
    [42] Othomos, K.Kalli. Fiber Bragg Grating: Fundumenta1s and Application in Telecommunicationsand Sensing[M]. Boston, London: Artech House,2009:105-110.
    [43]王惠文.光纤传感技术与应用[M].北京:国防工业出版社,2001,24-25.
    [44] Weis RS, Kersey A D, Berkoff T A. A four-element fiber grating sensor array with phase-sensitivedetection[J]. IEEE Photonics Technology Lett.,2004,6(12):1469-1472.
    [45]万里冰,武湛君,张博明,等.应用光纤Bragg光栅传感器测量混凝土结构内部压力[J].光电子.激光,2002,13(7):722-725.
    [46] Ferreira L A, Santos J L, and Farahi F. Pseudoheterodyne demodulation technique for fiberBragg grating sensors using two matched gratings[J]. IEEE Photonics Technology Letters,1997.487-489.
    [47]余有龙,潭华耀,锺永康.基于可调F-P滤波器的光纤光栅传感器阵列查询技术[J].中国激光,2000,27(12).1103-1106.
    [48]余永龙,谭华耀.基于干涉解调技术的光纤光栅传感系统[J].光学学报,2001,21(8):987-989.
    [49]余永龙,谭华耀.有源波空分复用光纤光栅传感网络[J].中国激光,2002, A29(2):131-134.
    [50]董孝义编.光波电子学[M].天津:南开大学出版社,1987:201-210.
    [51]王目光,李唐军.光纤光栅传感器应变和温度交叉敏感问题分析[J].光通信研究,2001,108:50-53.
    [52]焦明星,赵恩国.光纤Bragg光栅应变温度交叉敏感问题解决方案[J].应用光学,2003,24(2):20-33.
    [53]邹自立.光复用技术谈[J].光通信技术,2001,25(3):172-175.
    [54]余有龙,刘志国.基于悬臂梁的光纤光栅无惆啾线性调谐[J].光学学报,1999,19(7):745-749.
    [55]王廷云.用压电陶瓷实现的光纤相位调制理论与实验分析[J].光子学报,1999,2(28):28-32.
    [56]余有龙,李凤敏.光纤光栅调谐技术[J].黑龙江大学自然科学学报,2001,3(18):72-75.
    [57]武峰,陈新建编. PIC单片机C语言开发入门[M].北京:北京航空航天大学出版社,2005:271-277.
    [58]饶云江等编著.光纤光栅原理及应用[M].北京:科学出版社,2006:8-15.
    [59]禹大宽,乔学光,贾振安,等.光纤光栅传感系统的现状及发展趋势[J].传感器技术,2003,25(6):34-38.
    [60]张志鹏, W A Gamblin.光纤传感器原理[M].北京:中国计量出版社,2001:189-219.
    [61]梁国伟,蔡武昌.流量测量技术及仪表[M].机械工业出版社,2002:6-10.
    [62]蔡武昌,孙淮清,纪纲.流量测量方法和仪表选用[M].北京:化学工业出版社,2001:1-2.
    [63]刘培勋.光纤传感器的发展和研究动向[J].红外技术,2003,15(5):633-636.
    [64]周晓军,刘文达.光纤涡街流量计的研究[J].传感器技术,2004,13(3):367-369.
    [65]蔡武昌,孙淮清,纪纲.流量测量方法和仪表选用[M].北京:化学工业出版社,2001:1-2.
    [66]林晓琳.光纤式涡街流量测量技术的研究[D].秦皇岛:燕山大学仪器科学与技术博士学位论文,2011,45-49.
    [67]刘卫东,刘延冰,刘建国.检测微弱光信号的PIN光电检测电路的设计[J].电测与仪表,1999,27(4):409-411.
    [68]徐科军,陈智渊.一种涡街流量计数字信号处理方法研究和系统设计[J].电子测量与仪器学报,2005,19(4):91-94.
    [69]安毓英,曾小东编.光学传感与侧量[M].北京:电子工业出版社,2001:88-90.
    [70] Chuan Li, Yi-Mo Zhang, Tie-Gen Liuetal Distributed Optical Fiber Bi-direction Strain Sensor forGas Trunk Pipelines[J]. Optics and Lasers in Engineering,2001,36:25-28.
    [71]王明玉,王卫前,张广华,等.光纤流量计量仪的研制及应用[J].科技传播,2010,7(下):156,147.
    [72] P. Bonaldi. Developments in automated dam monitoring in Italy[J]. International journal onHydropower&Dams,2008,4(2):60-63.
    [73] W.I.Schulz, J. Seim, E. Udd et al.Traffic monitoring/control and road conditionmonitoring usingfiber opticb ased systems[C]. SPIE,2008:1011-1015.
    [74]饶云江,王义平,朱涛.光纤光栅原理及应用[M].科技出版社,2006:1-6.
    [75] Hill K O, Fujii Y, Johnson D C, et al. Photosentivity in Optical fiber waveguide: Application toreflection fitter fabrication[J]. Appl. Phys. Lett,2008,32(10):647-649.
    [76] Erodogan T. Fiber grating spectra[J]. Lightwave Techol,2007,15(8):1277-1294.
    [77]廖延彪.光纤光学[M].清华大学出版社,2000:156-159.
    [78]禹大宽,乔学光,贾振安,等.光纤光栅传感系统的现状及发展趋势[J].电气行业网,2006,15(8):145-149.
    [79]赵勇.光纤光栅传感技术及其应用[M].国防工业出版社,2007:30-32,45-49,71-74,179-180,183-184.
    [80]孟克.光纤干涉测量技术[M].哈尔滨工程大学出版社,2004:123-128.
    [81]姜德生,梁磊,南秋明.光纤Bragg光栅传感特性的实验研究[J].武汉理工大学学报,2003,7:15-19.
    [82]李川,张以谟,赵永贵,等.光纤光栅原理技术与传感应用[M].科学出版社,2005:108.
    [83]王祖明.光纤布拉格光栅传感信号解调技术研究[J].燕山大学,2005:22-23,33-36,41-43,50-51.
    [84]唐炜,史仪凯. Bragg光纤传感技术应用研究[J].光学精密工程,2002,10(1):79-82.
    [85] S.Otani, H.Hiraishi, M.Midorikawa et al. Development of smart systems for building structures[C].SPIE,2000,3988:2-9.
    [86]梁国伟,蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社,2002:5-10.
    [87]雷肇棣.光电探测器及应用[J].光通信技术,2002,23(4):491-495.
    [88] R.M.Measure. Advances towards Fiber Optic Based Smart Structure[J]. Optical Engineering,2002,31(1):34-47.
    [89] J.S.Sirkis. Unified Approach to Phase-strain-temperature Models for SmartStructureInterferometric Optical Fiber Sensors[J]. Optical Engineering,2003,32(4):752-761.
    [90] C.G.Askins, M.A.Putnam, G.M.Williams,et al. Stepped-wavelength Optical-fiber Bragg GratingArrays Fabricated in Line on a Draw Tower[J]. Optics Letters,2004,19:147.
    [91]廖延彪.我国光纤传感技术现状和展望[M].光电子技术与信息,2003,16(5):1-6.
    [92]周少玲.相移光纤光栅应变传感特性的实验研究[J].光纤与光缆及其应用技术,2003,1:16-17,22.
    [93]廖延彪.光纤光学[M].北京:清华大学出版社,2000:197-204.
    [94]北京品傲光电科技有限公司建设国内最大的光纤光栅传感系统: http://www.pioptics.com/jgl.htm
    [95]余有龙,谭华耀.基于干涉解调技术的光纤光栅传感系统[J].光学学报,2001,21(8):987-989.
    [96]安毓英,曾小东.光学传感与测量[M].北京:电子工业出版社,2001:154-155.
    [97] G.W.Yoffe,P.A.Krug,F.Ouellette,et al. Passive temperature-compensating package foroptical fibergratings[J]. Appl.Optics,2005,6(4):15-19.
    [98]刘彬,张秋掸.光电检测前置放大电路的设计[J].燕山大学学报,2003,27(3):321-324.
    [99]姚文娟.基于光纤布拉格光栅的流量传感器研究[D].大连:大连理工大学光学工程硕士学位论文,2012,60-66.
    [100]黄建辉,赵洋.光纤布拉格光栅传感器实现应力测量的最新进展[J].光电子.激光,2000,11(2):217-220.
    [101] Chen Li-Ping and Lü Xiao-Xu. The recording of digital hologram at short distance andreconstruction using convolution approach[J]. Chinese Physics B,2009,18(1):189-194.
    [102] Hu Ben-Qiong and Pang Chao-Yang. A quantum search algorithm of two entangled registers torealize quantum discrete Fouriertransform of signal processing[J]. Chinese Physics B,2008,(9):3220-3226.
    [103] Javidi B, Kim D. Three-dimensional object recognition by use of single-exposure on-axis digitalholography[J]. Opt Lett.,2005,30(3):236-238.
    [104]ZHOU Wen-jing, YU Ying-jie, NI Ping. Aberration and its reduction of phase reconstructed basedon Fresnel approximation in digital holography[J]. Optics and Precision Engineering,2008,16(5):899-906.
    [105]GE Bao-zhen, CUI Peng, Lu Qie-ni, et al. Implement of phase unwrapping of digital holographicreconstruction image by discrete cosine transform least square method[J]. Journal of ChinaUniversity of Petroleum,2008,32(6):169-173.
    [106]Ma Qiming,Wang Xuanjin.Method and application of wavelet shrinkage denoising based ongenetic algorithm. Journal of Zhejiang University Science,2006,7(3):361-367
    [107]FEIP ei-yan,GUO Bao-long.Infrared Image Denoising Based on Single-wavelet andMultiwavelets.Infrared Technology,2005,27(3):235-239
    [108]Hongjun Sun, Tao Zhang. Digital Signal Processing Based on Wavelet and Statistics Method forVortex Flowmeters.IEEE,2004:3160-3163
    [109]Yan Yunyi,Guo Baolong.Two image denoising approaches based on wavelet neural network andparticle swarm optimization.Chinese Optics Letters,2007,5(2):82-85
    [110]Yin Shirong,Wang Weiran.Denoising lidar signal by combing wavelet improved threshold withwavelet domain spatial filtering.Chinese Optics Letters,2006(4)649-696
    [111]Tan Yihua,Tian Jinwen,Liu Jian.Adaptively wavelet-based image denoising algorithm with edgepreserving. Chinese Optics Letters,2006,4(2):80-83
    [112]YU Ying-jie, NI Ping, ZHOU Wen-jing. Micro-structure measurement of phase object by digitalmicroholography based on magnified hologram[J]. Optics and Precision Engineering,2008,16(5):827-831.
    [113]Lv Qie-ni. Applied research of digit holographic technology in granule field. Tianjin Universitydoctor paper,2008.
    [114]QIU Pei-zhen, WANGHui, JIN Hong-zhen, et al. Maximum Information Recording andSimplified Phase-shifting Technique in Digital Holography[J]. Opto-Electronic Engineering,2009,36(3):146-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700