用户名: 密码: 验证码:
基于光栅F-P腔的双参数传感技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅传感技术具有强抗干扰能力、高安全性、较多测量特征量、大测量动态范围、可分布式监测等特点,在传感领域有着广泛的应用。利用光纤光栅法布里-珀罗腔作为传感器,可以结合光纤光栅和法布里-珀罗腔的特点,实现高精度传感,并且具有解调方法灵活,便于复用的优点。利用傅里叶解调法,能够将波分复用与频分复用结合起来,在不同的波长范围内实现具有不同腔长的光纤光栅法布里-珀罗传感器的频分复用,可大大提高传感器的复用数量。并且,本解调方法只需利用计算机即可对多路信号进行同时解调,无需复杂的鳃调装置,可简化系统结构,提高稳定性。
     本论文分析了光栅F-P腔的透射谱在傅里叶频域的特性以及光栅F-P腔对温度和差分应变测量的机理,提出了一种利用光纤布拉格光栅法布里-珀罗腔传感器和傅里叶变换法实现温度和差分应变双参数同时检测的方法。制作了光纤布拉格光栅法布里-珀罗腔(FBG-FP)传感器,利用对绝对应变的测量代替对温度的测量,并进行了温度和差分应变的传感特性实验。实验结果表明,该传感器能够同时测量温度的绝对变化值和应变的相对变化值,对温度变化和差分应变的测量精度分别达到±191με和0.24℃,取得了较好的测量结果。
     为了提高光栅法布里珀罗腔传感器的测量范围,在对布拉格光栅法布里-珀罗腔的理论研究基础上,针对啁啾光栅具有大带宽的特点,本论文提出了利用两个啁啾光栅制作啁啾光纤光栅法布里-珀罗腔传感器进行双参数传感的方法。并通过数值仿真分析了其可行性,结果表明啁啾光栅法布里-珀罗腔(CFBG-FP)能实现较大范围内的温度和差分应力测量。此方法简单,稳定性好,具有较大的使用前景。
Fiber grating sensor has the characteristic of anti-jamming capability, Fiber grating sensor has the advantages of anti-jamming capability, high security, more measurement characteristic quantities, large measurement dynamic range and so on. It can be widely applied in distributed sensing. The fiber grating Fabry-Perot cavity sensors, combining the characteristics of fiber gratings with Fabry-Perot cavity, have the advantages of high precision sensing, flexible demodulation method, easy to reuse. The application of Fourier transform demodulation,can bring about the frequency division multiplexing use fiber grating Fabry-Perot sesnors of different cavity length in different wavelength ranges, which can greatly increase the number of sensors multiplexed. Besides that, because this method completes the multiple signal demodulation by computer, we can simplify the structure and improve stability for demodulation system.
     In this dissertation, the mechanism of fiber grating F-P cavity on temperature and differential strain measurement has expounded and the transmission spectra of fiber grating F-P cavity in Fourier frequency domain is analyzed. The method to detect temperature and differential strain simultaneously by fiber Bragg grating Fabry-Perot cavity sensor and with Fourier transform demodulation is proposed., The fiber Bragg grating F-P cavity sensor is fabricated. The experiment on the measurement of absolute strain and differential strain is carried out.. Experimental results show that the sensor is able to measure the absolute change in temperature and the differential strain with the accuracy of0.24℃and±19με, respectively.
     In order to enlarge the measuring range, the method to detect dual parameter by chirped grating Fabry-Perot cavity.sensor is presented. Its feasibility is analyzed by numerical simulation. The results show that the method can achieve a wide range measurement of temperature and the differential strain.
引文
[1]Alan D.Kersey,Michael A.Davis.Heather J.Patrick et al.Fiber grating sensors. Lightwave Technolog,15(8),1997:1442-1463.
    [2]姜德生,何伟.光纤光栅传感器的应用概况.光电子激光,13(4),2002:420-428.
    [3]Zhou Da-Peng, Wei Li, Liu Wing-Ki, John W. Y. Lit. Simultaneous Strain and Temperature Measurement With Fiber Bragg Grating and Multimode Fibers Using an Intensity-Based Interrogation Method.Photonics Technology Letters, 21(7),2009:468-471.
    [4]Lee Sang-Mae, Jeong Myung-Yung, Simarjeet S. Saini.Etched-Core Fiber Bragg Grating Sensors Integrated With Micro fluidc Channels.Journal of Light Wave Technology,30(8),2012:1025-1032
    [5]Lee Byoungho. Review of the present status of optical fiber studies on transmission characteristics of fiber grating Fabry-sensors.Optical Fiber Technology, 9(2),2003:57-79.
    [6]张乐,吴波,叶雯等Highly Sensitive Fiber-Optic Vibration Sensor Based on Frequency-Locking of a FBG Fabry-Perot光学学报,3l(4),2011:0406006-l-5.
    [7]C. Gouveia, P. A. S. Jorge, J. M. Baptista, O. Frazao.Fabry-Perot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement.IEEE Sensors Journal,12(1),2012:17-22.
    [8]李家方,吕可诚,韩群.基于光纤光栅FP腔的一种新颖传感系统的理论研究.光电子技术,24(1),2004:21~27
    [9]关柏鸥,余有龙,葛春风等.光纤光栅法布里珀罗腔透射特性的理论研究.光学学报,20(1),2000:34~38.
    [10]Christophe Caucheteur,KarimaChah,Frederic Lhomme,Michel Blondel,Patrice Megret. Autocorrelation Demodulation Technique for Fiber Bragg Grating Sensor.Photonics Technology Letters,16(10),2004:2320-2322.
    [11]Minho Song, Shizhuo Yin, and Paul B. Ruffin.Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer.Applied Optics,39(7),2000:1106-1111.
    [12]沈震强,赵建林,张晓娟.光纤光栅法布里一珀罗传感器频分复用技术.光学学报,27(7),2007:1173-1177
    [13]牛嗣亮,饶伟,马丽娜,胡永明.光纤Bragg光栅FP腔长测量的理论与实验研究,3 l(6),2010:945-948
    [14]成振龙,赵建林,周王民.一种基于光纤光栅法布里-珀罗腔的低频振动传感器.光子学报,39(1),2010:47~52.
    [15]王燕花,任文华,简水生等.用于光纤布拉格光栅法布里珀罗腔的改进的Rouard算法.光学学报,28(5),2008:840~845.
    [16]杨颖.基于F-P腔的光纤光栅传感器波长移位量的检测.半导体光电,2011,32(3):439~441.
    [17]Morey, W. W; Meltz, G, and welss,J. M.:"Evaluation of a fiber Bragg grating hydrostatic pressure sensor, Proc. OFS8,1992, PD-4.4
    [18]Wei-Chong Du,Xiao-Ming Tao; Huaw Yaw Tam; Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature, Photonic Technology,11(1),1999:105-107
    [19]王琦,光纤EFPI/FBG传感测井系统关键技术研究,[学位论文],大连,大连理工大学,2009
    [20]饶云江.非本征型法布里珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用,光学学报,22(1),2002:85-88
    [21]李红民,光纤光栅传感器拓展应用研究,[学位论文],天津,南开大学,2006
    [22]石丹,光纤光栅动态称重传感器研究,[学位论文],武汉,武汉理工大学,2007
    [23]尤旭鹏,基于ARM的光纤光栅传感网络F-P解调器的测试系统的研究,[学位论文],哈尔滨,哈尔滨理工大学,2007
    [24]吴国庆,基于MZ干涉仪的光纤光栅温度传感解调系统的研究,[学位论文],秦皇岛,燕山大学,2005
    [25]马永杰,光纤光栅传感器解调技术的研究,[学位论文],北京,北京邮电大学,2007
    [26]郭丹,啁啾光纤光栅动态称重技术研究,[学位论文],武汉,武汉理工大学,2008
    [27]田大伟,光纤光栅传感系统及对温度传感的研究,[学位论文],北京,北京工业大学,2003
    [28]孙磊,光纤光栅的制作及应用研究,[学位论文],天津,南开大学,2004
    [29]徐中辉,邱复生,牛海波等,分布式光纤光栅测温系统的理论分析,西南民族大学学报,2(13),2006:132-135
    [30]成振龙.一种基于光纤光栅法布里-珀罗腔的低频振动传感器,光子学报,39(1).2010:47-5l
    [31]李进涛.啁啾光栅压力传感器的研究,[学位论文],武汉,武汉理工大学,2007
    [32]Young-Geun Han, Sang Bae Lee.Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities, OPTICS EXPRESS,11(5),2003:476-481
    [33]Y.J Rao, Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system, ELECTRONICS LETTERS,33(24),1997:2063-2064
    [34]Faramarz Farahi. Simultaneous Measurement of Temperature and Strain: Cross-Sensitivity Considerations, Journal of LightWave Technology, 8(2),1998:138-141
    [35]J.P. Dakin. Sensor Network for Structural Strain and High Hydraulic Pressure,Using Optical Fiber Grating Pairs, Interrogated in Coherence Domain, For Optical, 1999,pp:1730-1732
    [36]Yun-Jiang Rao. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors, Optical Fiber Technology,2005,pp:228-239
    [37]YJ. Rao. Recent progress in applications of in fiber Bragg grating sensors, Optical and Lasers Engineering,31 (1999),1999:297-324
    [38]H. J. Patrick, G. M. Williams, Hybrid Fiber Bragg GratingLong Period Fiber Grating Sensor for Strain/Temperature Discrimination, Photonics Technology Letters, 8(9):1223-1225
    [39]W.W. Morey. Fiber optic Bragg grating sensors,SPIE Fiber Optic and Laser Sensors VII,1169(1),1989:98-105
    [40]M.G Xu, J.P.Dakin. Fiber Grating Pressure Sensor with Enhanced Sensitivity Using a Glass-Bubble housing, Electronics Letters,1996,1115-1117
    [41]M.G. Xu. Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors, Electronic Letters,30(13),1999:1085-1086
    [42]WeiChong Du. Fiber Bragg Grating Cavity Sensor for Simultaneous Measurement of Strain and Temperature, Photonics Technology Letters,11(1),1999:105-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700