用户名: 密码: 验证码:
大容量光纤光栅传感解调系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅作为一种新型传感器,有成本低、重量轻、灵敏高等优点,因此在许多领域广泛应用[1]。本文提出并研究了一种基于有源可调谐环形光纤激光器的多通道光纤光栅传感解调系统,可实现32通道超过1000个光栅的实时监测。系统利用有源可调谐环形激光器作为扫描光源,用电压信号控制可调谐F-P滤波器,实现对多支路光纤光栅传感器阵列扫描。采用光纤梳状滤波器代替传统的参考光栅阵列,作为单独的校准支路实现波长的标定和校准,由于梳状滤波器体积小,对温度漂移不敏感,因此降低了F-P滤波器的温度漂移、非线性和蠕动性对测量精度的影响,与传统定标方法相比,光纤梳状滤波器的精度高,易操作,比较适合工程应用[16]。这种方案解决了传统波长扫描方案复用率低,定位与定标困难、系统成本高等问题,增加了系统复用传感光栅的数量,降低了单位光栅的检测成本。实验结果表明,光源输出的光功率大幅提高,扫描光源的线宽很窄,波长范围在1525-1585nm,对于32路的复用结构,可复用的光栅数目较传统宽带光源法大大增加,每路能达到30-50个FBG,整个系统可检测超过1000个光栅。根据监测距离的长短,系统可以在1秒钟对所有FBG实现100次测量。本文还针对这种多通道解调系统,提出了一种3dB中点波长解调算法,同时将数字信号处理技术运用于光信号解调。通过实验研究,分析该快速算法对信号的解调效果,比较了多种算法的精度。研究发现,在多通道光纤光栅传感实验系统中,该算法有效地降低了寻峰算法中输入信噪比对系统解调精度的影响,分辨率为0.1pm,解调精度可达2 pm,即应变测量精度可达1με,温度测量精度可达0.1℃。因此,该解调系统高精度大范围的性能特点,可以很好地适用于实际工程应用,具有较高的市场价值。
Fiber Bragg gratings (FBGS) have been widely applied as the sensing elements, which have a low cost, light weight and high detection sensitivity. To improve the capability and detection precision of the Fiber Bragg sensing system, the novel interrogation technique and detection algorithm based on the tunable ring laser and multiplexing technology are proposed for the multi-channel Fiber Bragg grating sensing system, which can realize the real-time monitoring of 32 channels more than 1,000 FBG sensors. In the scheme, a tunable optical filter controlled by a scanning voltage is used to scan through the working range of FBG spectra and detect the peak wavelength of each FBG sensor in multi-channels. Here, we use the comb filter as multi-wavelength reference instead of the traditional reference grating array. Because the small comb filter isn't sensitive to the temperature, the factors of temperature drift, nonlinear, and peristalsis can be greatly reduced, the measurement accuracy is greatly improved. Experimental results show that the power of laser source is improved greatly and has a narrow width. With the combination of the numerical simulation and experiment, it is demonstrated that the average precision of interrogation is improved over the working range of 1525-1585 nm. The system can realize the real-time monitoring of 32 channels more than 1,000 FBG sensors. In the experimental system, the reflection spectra of the FBG sensors in the multi-channel FBG system are recorded for 100 times within 1 minute. Moreover, a fast wavelength detection algorithm based on the half-power point is proposed. The present work shows that the algorithm described in this paper can reduce the signal noise ratio (SNR) at the input of the system which influences the precision of interrogation. Compared to other schemes, the interrogation method is greatly improved in the measurement precision, wavelength range, and working reliability. The resolution is 0.1pm and interrogation accuracy is 2pm, which means the strain measurement accuracy is 1μεand the temperature measurement accuracy is 0.1℃.The system of a wide scale and high precision can be well applied to practical engineering applications.
引文
[1]A. D. Kersey, M. A. Davis, H. J. Patrick, et al. Fiber grating sensors J. Lightw. Technol 15 1997 1442-1463
    [2]Pantelis Velanas, Adonis Bogris, Dimitris Syvridis. Impact of dispersion fluctuations on the noise properties of fiber optic parametric amplifiers. Journal of Lightwave Technology Vol.24 Issue 5 May 2006 2171-2178.
    [3]Galtarossa,A., Palmieri,L., Pizzinat,A., et al. Polarization Optical Time Domain Reflectrometry Measurements. Lasers and Electro-Optics 2005 CLEO/Pacific Rim2005.Pacific Rim Conferenceon30-02 Ang.2005 1490-1491.
    [4]张治国 光纤传感应用中若干关键技术及系统方案的研究 [博士学位论文],北京,北京邮电大学,2007
    [5]Menyuk,C.R., Marks,B.S.. Interaction of polarization mode dispersion and nonlinearity in Optical fiber transmission systems. Journal of Lightwave Technology Vol.24 Issue7 July 2006 2806-2826
    [6]Akbulut,M. Weiner.A.M., Miller,PJ.. Broadband all-order Polarization mode dispersion compensation using liquid-crystal modulator arrays. Journal of Lightwave Technology Volume24 Issue 1 Jan.2006 251-261.
    [7]吴薇大容量光纤光栅传感解调系统的研究与应用 [博士学位论文],武汉:武汉理工大学,2009
    [8]赵勇 光纤传感原理与应用技术清华大学出版社2007 221-249
    [9]张志鹏,W. Gambling光纤传感器原理 中国计量出版社 1991 1-50
    [10]廖延彪 光纤传感发展近况 光电子技术与信息 13卷03期 2000.627-29
    [11]廖延彪 光纤光学 清华大学出版社2003 30-50
    [12]江毅 高级光纤传感技术科学出版社2009 1-5 48-62 137-160
    [13]李川,张以谟,赵永贵等 光纤光栅:原理、技术与传感应用科学出版社2005 1-6 105-130
    [14]张或峰 光纤光栅技术在高速铁路防灾系统中的应用研究 铁路通信信号06期2009 1-4
    [15]杨亦飞 工程化光纤光栅传感系统的设计与应用研究 [博士学位论文], 天津,南开大学,2005
    [16]于效宇基于可调谐法布里-珀罗滤波器的光纤光栅解调技术研究 [博士学位论文],哈尔滨,哈尔滨理工大学,2008
    [17]R. B. Wagreich, W. A. Atia, H.Singh et al.. Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber. Electron. Lett.32(13) 1996 1223-1224
    [18]曾祥楷 光纤光栅传感理论及多参数传感技术研究 [博士后研究工作报告], 重庆,重庆大学,2002
    [19]Yu Y, Tam H, Chung W. Fiber Bragg grating sensor system with interferometric demodulation technique. Guangxue Xuebao/Acta Optica Sinica 21 2001987-989
    [20]Rao Y J, Zeng X K, Zhu Y, et al. Temperature-strain discrimination sensor using a WDM chirped in-fiber Bragg grating and an extrinsic Fabry-Perot. Chinese Physics Letters 18(5) 200143-645.
    [21]JIANG D S, Fan D, Mei J C. Multiplexing/Demultiplexing technology based on fiber Bragg grating sensors. Laser & Optoelectronics Progress 42(4) 2005 14-19
    [22]饶云江等 光纤光栅原理及应用 科学出版社 2006 页码 1-40
    [23]林军 分布式的光纤光栅反射信号的解调研究 [硕士学位论文],武汉,武汉理工大学,2008
    [24]Weis R S, Kersey A D, Berkof T A. A four-element fiber grating sensor array with phase-sensitive detection. Photonics Technology Letters 6(12) 1994 1469-1472
    [25]Davis M A, Bellemore D G. Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability. Electron.Lett.32(15) 1996 1393-1394
    [26]Rao Y J, Jackson D A, Zhang L. Strain sensing of modern composite materials with a spatial/wavelength multiplexed fibre grating network. Opt. Lett. 21 1996 683
    [27]鲍吉龙,章献民,陈抗生等 FBG传感网络技术研究 光通信技术22001 84-89
    [28]Berkoff T A, Davis M A, Bellemore D G, et al. Hybird time and wavelength division multiplexed fiber grating array. In proc, SPIE 2444 1995 288
    [29]Davis M A, Bellemore D G, Kersey A D. Structure strain mapping using a wavelength/time division addressed fiber Bragg grating array. In Proc,2nd Euro.Conf. On Smart Structures and materials 1994 342
    [30]董波,何士雅,胡曙阳等 基于可调谐激光器的复用传感系统的研究激光技术29 2005 608-610
    [31]张侠 多通道光纤光栅解调系统研究 [硕士学位论文],武汉,武汉理工大学,2010
    [32]王玉田,郑龙江,张颖等光纤传感技术及应用 北京航空航天大学出版社2009 1-10 182-229
    [33]赵晓华 分布式光纤光栅传感系统的应用 [硕士学位论文],西安,西安理工大学,2008
    [34]黄章勇 光纤通信用新型光无源器件 北京邮电大学出版社2003100-150
    [35]陈海星,李海峰,顾培夫基于法布里珀罗腔反射光相位特性设计的梳状滤波器光学学报23(1)2003 37-40
    [36]Liu Karen, Ryan J, RHK Inc. All the Animals in the Zoo:The Expanding Menagerie of Optical Components. IEEE. Communication Magazine July,2001 112
    [37]Cypress Semiconductor EZ-USB FX2 Technical Reference Manual Verision 2.120011-79178-321
    [38]余润 光纤光栅传感系统中基于FPGA的数据采集与解调控制方法研究[硕士学位论文],北京,北京邮电大学,2011
    [39]张锦龙 基于光纤光栅的传感和解调技术研究 [博士学位论文],北京,北京邮电大学,2009
    [40]尚秋峰,林炳花光纤Bragg光栅传感典型寻峰算法的比较分析 电测与仪表47(530)2010 1-4
    [41]Rao Y J, Kail K, Brady G, et al. Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection. Electron Lett 31 1995 1009
    [42]李营,张书练基于可调谐F-P激光器的光纤光栅解调系统 激光技术29 2005 237-240
    [43]付建伟,肖立志,张元中等提高光纤Bragg光栅波长测量精度的方法 光电工程33(2)2006 123-126
    [44]Xu M G, Geiger H, Dakin J P. Modeling and performance analysis of a fiber Bragg grating interrogation system using a acousto-optic tunable filter. IEEE Journal of Lightwave Technology 14 1996 391-396
    [45]A. Othonos, K. Kalli, Fiber Bragg Gratings. Fundamentals and Applications in Telecommunications and Sensing. Norwood, MA:Artech House 1999
    [46]L. Bjerkan, D. R. Hjelme, K. Johannessen. Bragg grating sensor demodulation scheme using semiconductor laser for measuring slamming forces of marine vehicle models. In Proc.11th Int. Conf. Optical Fiber Sensors 1996 236-239.
    [47]Chan C C, Jin W, Demokan M S. Enhancement of measurement accuracy in fiber Bragg grating interrogation system using digital processing. Optics and Laser Technology 31 1999 299-307
    [48]靳伟,阮双琛等 光纤传感技术新进展 科学出版社 2005 74-76192-212
    [49]Ifeachor E C, Jervis B W. Digital Signal Processing:A Practical Approach. Addison-Wesley publishing company 1993
    [50]Xilinx IP LogiCORE FIR Compiler v5.0 DS534 April 19,2010 1-14 63-67
    [51]Xilinx LogiCORE IP Clocking Wizard vl.6 DS709 July 23,20102-5
    [52]Xilinx LogiCORE IP Divider Generator v3.0 DS53O March 1,2011 3-6
    [53]余有龙,谭华耀,钟永康等 基于可调F-P滤波器的光纤光栅传感器阵列查询技术 中国激光A27(12)2000 1103-1106
    [54]柏俊杰,王立新,冉昌艳等 基于F-P滤波器的光纤光栅解调和标定 传感器与微系统03 2006 9-11
    [55]T. Bodendorfer, M. S.Muller, F. Hirth, et al. Comparison of different peak detection algorithms with regards to spectrometic fiber Bragg grating interrogation systems. In Proceedings of the International Symposium on Optomechatronic Technologies 2009
    [56]毕婕,王拥军,张琦等 多通道光纤光栅传感系统解调技术及算法研究中国激光38卷s1期2011 pp.s105002 1-5
    [57]Jie Bi, Xiaolei Zhang, Yongjun Wang, et al. Novel Technique and Algorithm of Signal Interrogation in Multi-Channel Fiber Bragg Sensing System. Asia Communications and Photonics 2011 Vol.8311 831125 1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700