用户名: 密码: 验证码:
副热带海区季节内Rossby长波及其对东海黑潮的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资料分析显示季节内Rossby长波是副热带海区最显著的波动信号,其对能量、动量和热量的变化、大中尺度过程的相互作用等都有重要的作用,尤其是在北太平洋副热带海区季节内Rossby长波对台湾以东黑潮的流量和流轴位置有影响,因而对于季节内Rossby长波的研究具有重要的科学意义和现实意义。本文通过资料分析、理论推导和数值模拟结果分析,重点研究了季节内Rossby长波在副热带海区的加强机制、波速特征及其对东海黑潮的影响。
     基于两层半海洋模式,导出了北太平洋副热带海域季节内Rossby长波的频散关系和对应的斜压不稳定判据,发现季节内Rossby长波在副热带海区的加强机制可能是斜压不稳定。根据该斜压不稳定判据和Levitus98气候态资料确定的北太平洋副热带海区斜压不稳定区与根据卫星高度计资料确定的季节内Rossby长波加强区的位置基本一致,进一步确证了斜压不稳定是副热带海区季节内Rossby长波的主要加强机制。北太平洋副热带海区斜压不稳定区与位涡池区的基本一致性在本文的工作中得到进一步的证实,从而可以推论北太平洋副热带海区季节内Rossby长波主要在位涡池区内加强。位涡池区随时间的变化导致波动加强区随时间的变化,北太平洋由于海盆尺度大,通风较弱,位涡池区的范围非常大,因而其波动加强区的范围也大;北大西洋由于海盆尺度小,通风较强,位涡池区的范围非常小,因而其波动加强区的范围也非常小。
     对卫星高度计资料的分析显示,太平洋副热带海区由东边界反射的季节内Rossby长波波速基本上与经典线性理论预测的波速一致,在位涡池区内加强的季节内Rossby长波波速大于经典线性理论预测的波速。根据边界反射Rossby波的阈值周期理论得到的东边界反射出来的季节内Rossby长波的周期大于根据卫星高度计资料得到的在位涡池区内加强的季节内Rossby长波的周期也佐证了上述两种季节内Rossby长波的波速差异。对两层半海洋模式结果的分析表明,东边界反射出来的季节内Rossby长波基本上处于影区,温跃层内几乎不存在西向基本流,因而波速基本上与经典线性理论所预测的波速一致;在位涡池区内加强的季节内Rossby长波,由于温跃层内基本流的作用,波速大于经典线性理论所预测的波速。
    
    副热带海区季节内Rossbv长波及其对东海黑潮的影响
     对验潮站海面高度资料、数值模拟结果、断面调查资料和浮标资料的分析显
    示,北太平洋副热带海区的季节内ROSsby长波对东海黑潮上游的流量和流轴影
    响较大,使得东海黑潮上游的流量变化规律主要是季节内变化,季节性变化规律
    不明显;由于通过琉球岛链庆良间水道进入东海流量的调节作用,大大削弱了季
    节内信号对东海黑潮下游的影响,使得东海黑潮下游流量的季节内变化信号不明
    显,主要变化规律是季节变化。对一个两层模式分析的结果表明,当季节内波动
    导致黑潮流量增大,流轴靠近地形比较平缓的陆架时,有利于东海黑潮不稳定波
    动的发生,使东海黑潮锋面发生弯曲。对卫星遥感资料的分析表明,由于平流和
    豁口尺度相对较大,季节内Rossby长波信号可以由台湾以东进入东海,其向下
    游的传播过程中可能演变为东海黑潮的锋面弯曲;而琉球岛链附近平流较弱,豁
    口尺度小,由岛链间进入东海的季节内Rossby长波信号较弱,对东海黑潮的影
    响较小。
     本文的主要创新和贡献主要有以下几点。首次提出并确证了副热带海区的季
    节内R。SSby长波是在位涡池区内加强的,而斜压不稳定是季节内Rossby长波加
    强的主要机制,并解释了北太平洋和北大西洋副热带海区季节内Rossby长波加
    强区不同的原因;首次发现并确证在副热带海区位涡池区内加强的季节内
    尺ossby长波波速大于经典线性理论预测的波速,东边界反射的季节内RoSS匕y长
    波波速基本与经典线性理论预测的波速一致,温跃层内的基本流是位涡池区内加
    强的季节内Rossby长波加速的原因;首次研究了季节内Rossby长波对东海黑潮
    的影响,特别是首次提出了通过庆良间水道的入流对东海黑潮上游流量季节内信
    号的调节作用,使得在东海黑潮上游非常显著的季节内信号在东海黑潮下游大大
    削弱,因而造成了东海黑潮上游和下游流量变化规律的不同。
The satellite altimeter data reveal that intraseasonal long Rossby wave is the most obvious wave signal in the subtropical ocean. Because it has a great effect on the variation of energy, momentum, and heat flux as well as the interaction of large and middle scale processes, and it also affects the Kuroshio in many ways, the study on the intraseasonal long Rossby wave is important and practical. Based on the data analysis, theoritic studies and numerical simulation, this paper will focus on the amplification mechanism, the character of wave speed and the effects to the Kuroshio of the intraseasonal long Rossby wave.
    Based on a two and half layer ocean model the long Rossby wave dispersion relation and the corresponding baroclinic instability criterion are derived. It can infer that the intraseasonal long Rossby wave may be amplified by the baroclinic instability. According to the baroclinic instability criterion the paper gives the baroclinic instability area of North Subtropical Pacific Ocean from the Levitus 98 climatic data. The baroclinic instability area is well in accord with the amplification area of the intraseasonal long Rossby wave, and this proves that the baroclinic instability is the main amplification mechanism of the intraseasonal long Rossby wave. The consistency between the baroclinic instability area and the potential vorticity (PV) pool is further proved in this paper, from which one could conjecture that the intraseasonal long Rossby wave is amplified in the PV pool. The changeable of PV pool with time leads to the variation of wave amplification area. Because the relatively large ocean basin and wea
    k ventilation, the PV pool
    
    
    The Intraseasonal Long Rossby Wave in the Subtropical Ocean and its Effect to the Kuroshio in
    the East China Sea
    is much larger in the North Pacific Ocean than in the North Atlantic Ocean. This is the reason why the wave amplification areas are much different in these two oceans.
    The analysis of the satellite altimeter data suggests that the propagating speed of intraseasonal long Rossby wave amplified in the subtropical Pacific ocean is faster than that of first-mode baroclinic free Rossby wave predicted by the liner theory and the propagating speed of intraseasonal long Rossby wave reflected in the eastern boundary of Pacific Ocean agrees basically with the liner theory speed of first-mode baroclinic free Rossby wave. According to the critical frequency theory this paper gives the period of intraseasonal long Rossby wave reflected in the eastern boundary of Pacific Ocean. The period of intraseasonal long Rossby wave reflected in the eastern boundary is longer than the period of intraseasonal long Rossby wave amplified in the subtropical ocean, and this also proves the speed differences of these two Rossby waves. The acceleration of the propagating speed of intraseasonal long Rossby wave amplified in the subtropical Pacific Ocean is due to the existence of westward thermolcline mean flow in the PV pool.
    The analysis of sea level data from tide stations and ocean general circulation model (OGCM) as well as the float data and section data shows that the intraseasonal long Rossby wave results in the intraseasonal variations of Kuroshio axis and transport in the upper reaches of the Kuroshio in the East China Sea (ECS). Due to the transport modulation induced by Ryukyu Islands, the intraseasonal variation is very weak in the lower reaches of the Kuroshio in the ECS. A two-layer model reveals the relation among Kuroshio unstable wave with topography, transport and the axis position of the Kuroshio, from which we can infer that the intrusion of intraseasonal long Rossby wave may stimulate the Kuroshio unstable wave in the upper reaches of the Kuroshio in the ECS. The
    
    The Intraseasonal Long Rossby Wave in the Subtropical Ocean and its Effect to the Kuroshio in
    the East China Sea
    altimeter data also shows that the sea level anomaly resulting from intraseasonal long Rossby wave could pass the channel between Taiwan and Ryukyu Islands and propagate northeastward in accord
引文
1.陈海英,太平洋Rossby波特征的时空分析,国家海洋局第一海洋研究所硕士学位论文,2003.
    2.方国洪,魏泽勋,崔秉吴等,中国近海域际水、热、盐输运:全球变网格模式结果,中国科学,2002,32(12),969-977.
    3.郭炳火等,春季东海黑潮锋面涡旋的观测与分析,海洋学报,1995,17(1),13-23.
    4.胡瑞金,刘秦玉,热带太平洋海平面高度季节内震荡的小波分析,海洋与湖沼,2002,33(3),303-313.
    5.林葵,汤毓祥,土噶喇海峡黑潮流速结构和流量的研究,海洋与湖沼,1995,26(3),247-253.
    6.刘秦玉,王启,热带太平洋海平面高度季节内震荡的空间分布特征,青岛海洋大学学报,1999,29(4),549-555.
    7.刘秦玉,刘征宇,王韶霞等,北太平洋副热带逆流区长 Rossby波的动力特性,地球物理学报,2001,44(增刊),28-37.
    8.刘秦玉,潘爱军,刘征宇,太平洋北赤道流区上层海洋季节内震荡及斜压稳定性,海洋与湖沼,2003,34,94-100.
    9.刘勇刚,袁耀初,1992年的东海黑潮的变异,海洋学,1998,20(6),1-11.
    10.刘勇刚,袁耀初,1993年和1994年东海黑潮的变异,海洋学报,1999,21(3),15-29.
    11.罗义勇,吴德星,林霄沛,地形对东海黑潮锋面弯曲影响的研究,青岛海洋大学学报2001.31(3),305-312.
    12.潘爱军,刘秦玉,胡瑞金,王韶霞,北太平洋副热带逆流区海流的准90大振荡,青岛海洋大学学报,2002,32(1),18-24.
    13.乔方利,海洋波动和涡旋的研究,中国科学院研究生院博士学位论文,2003.
    14.苏纪兰,中国近海的环流动力机制研究,海洋学报,2001,23(4),1-16.
    15.汤毓祥等,东海黑潮锋三维结构的初步观测,黑潮调查研究论文选(四),海洋出版社,1992,4-42.
    16.袁耀初,苏纪兰,孙德桐等,东海黑潮与琉球群岛以东海流半诊断计算,海洋学报,1997,19(1),8-20.
    17.袁耀初,苏纪兰,1995年以来我国对黑潮及琉球海流的研究,科学通报,2000,45(22),2353-2356.
    18.赵保仁,方国洪,东海主要水道的流量估算,海洋学报,1991,13(2),169-178.
    19.郑全安和修树孟,黑潮流系卫星遥感信息研究——Ⅰ.东海黑潮春季中尺度动态过程,黑潮调查研究论文选(四),海洋出版社,1992,79-85.
    20.郑义芳等,东海黑潮锋面涡旋的观测,黑潮调查研究论文选(四),海洋出版社,1992.23-32.
    21. Anderson D. L. T., Gill A. E., Spin-up of a stratified ocean, with application to upwelling, Deep Sea Res., 1975,22, 593-596.
    22. Chelton D. B., Shlax M. G., Global observations of oceanic Rossby wave, Science,1996, 272, 234-238.
    23. Chen C., et al., The structure of the Kuroshio southwest of Kyushu: velocity,transport and potential vorticity fields, Deep-Sea Res., 1992, 39(2), 245-268.
    24. Chu P. C., J.Lan, C. W. Fan, Japan East Sea (JES) circulation and thermohaline structure, Part 2: A variational P-vector method, J. Phys. Oceanogr., 2001, 31,2886-2902.
    
    
    25. Chu T., Study of the Kuroshio current between Taiwan and Ishigakijima. Acta Oceanographica Taiwanica, 1976, 6, 1-24.
    26. Cipollini P., D. Cromwell, M. S. Jones, et al., Concurrent altimeter and infrared observations of Rossby wave propagation near 34°N in the Northeast Atlantic,Geophysical Research Letters, 1997, 24(8), 889-892.
    27. Clarke A. J., The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 1983, 13, 1193-1207.
    28. Clarke A.J., C. Shi, Critical frequencies at ocean boundaries, J. Geophys. Res.,1991, 96, 10-731——10-738.
    29. De Szoeke R. A., Chelton D. B., The modification of long planetary waves by homogeneous potential vorticity layers, J. Phys. Oceanogr., 1999, 29, 500-511.
    30. F. Kobashi, H. Kawamura, Seasonal variation and instability nature of the north Pacific subtropical countercurrent and the Hawaiian Lee countercurrent, J. Geophys.Res., 2002, 107, 6-1——6-18.
    31. Fu L. L., D. B. Chelton, Large Scale Ocean circulation, in Satelli?e Altimetry and Earth sciences, 2001, eds.
    32. Fu L. L., Qiu B., Low-frequency variability of North Pacific Ocean: The roles of boundary-and wind-driven baroclinic Rossby waves, J. Geophys. Res.. 2002, 107,13-1——13-10.
    33. Gent P. R., J. C. Mc Williams, Isopycnal mixing in ocean circulation models,J. Phy. Oceanogr., 1990, 20, 150-155.
    34. Gent P. R., J. Willebrand, T. J. Mcdougall, et al., Parameterizingeddy-induced tracer transports in ocean circulation models, J. Phys. Oceanogr.. 1995, 25,463-474.
    35. George Platzman, The Rossby wave, Quart. J. Roy. Meteorol. Soc., 1968, 94-248.
    36. Grimshaw R., J. S. Allen, Low-frequency baroclinic waves of coastal boundaries,J. Phys. Oceanogr., 1988, 18, 1124-1143.
    37. Guo B., et al., Kuroshio warm filament and the source of the warm Tater of the Tsushima current, Acta Oceanologica Sinica, 1991,10(3), 325-340.
    38. Guo B., Kuroshio frontal eddy, warm filament and warm ring in the East China Sea, In: Proceedings of the Symposium on the Physical and Chemical Oceanography of the China Seas, China Ocean Press, 1993,193-203.
    39. Hill K. L., I. S. Robinson, P. Cipollini, Propagation characteristics of extratropical planetary wavesobserved in the ATSR global sea surface temperature record, J. Geophys. Res., 2000, 105(C9), 21-927——21-945.
    40. H. L. Kuo, Dynamics of quasigeostrophic flows and instability theory, Advances in Applied Mech., 1973,13-330.
    41. H. L. Simmons, D. Nof, The squeezing of eddies through gaps, J. Phys. Oceanogr.,2002, 32, 314-335.
    42. Hough S., On the application of harmonic analysis to the dynamical theory of the tides, Part Ⅰ. On Laplace's 'oscillations of the first species'.and on the dynamics of ocean currents, Philos. Trans. Roy. Soc., A, 1897, 189, 201-257.
    43. Huang Ruixin, Wang Wei, Gravitational potential energy sinks in she oceans,Manuscript submitted to J. Phys. Oceanogr., 2003.
    
    
    44. Ichikawa H., Short period variations of the Kuroshio volume transport in the East China Sea, Umi to Sora, 1993, 69, 135-148.
    45. Ichikawa, Hiroshi, Robert C. Beardsley, Temporal and spatial variability of volume transport of the Kuroshio in the East China Sea, Deep Sea Res., 1993, 40(3),583-605.
    46. Imawaki S., Uchida H., Ichikawa H., et al., Satellite altimeter monitoring the Kuroshio transport south of Japan, Geophysical Research Letters, 2001, 28, 17-20.
    47. Jacobs G. A., Born G. H., Parke M. E., et al., The global structure of the annual and semiannual sea surface height variability from Geosat altimeter data, J. Geophys.Res., 1992, 97,17-813——17-828.
    48. Jacobs G. A., W. J. Emery, G. H. Born, Rossby waves in the Pacific Ocean extracted from Geosat altimeter data, J. Phys. Oceanogr., 1993, 23, 1155-1175.
    49. James C., Wimbush M., Ichikawa H., Kuroshio meanders in the East China Sea, J.Phys. Oceanogr., 1999, 29, 259-272.
    50. Kaneko A., W Koterayama, H Honji, et al., Cross-stream survey of the upper 400m of the Kuroshio by an ADCP on a towed fish, Deep-Sea Res., 1990, 37, 875-889.
    51. Kawabe M., Variability of Kuroshio velocity assessed from the sea-level difference between Naze and Nishinoomote, J. Oceanogr. Soc., Japan, 1988,44,293-304.
    52. Kawabe M., Variations of current path,velocity ,and volume transport of' the Kuroshio in relation with the large meander, J. Phy. Oceanogr., 1995,25, 3103-3117.
    53. KefferT., The ventilation of theworld' soceans: maps of potential vorticity.J. Phys. Oceanogr., 1985, 15, 509-523.
    54. Killworth P. D., D. B. Chelton, R. A. de Szoeke, The speed of observed and theoretical long extratropical planetary wave, J. Phys. Oceanogr., 1997, 27,1946-1966.
    55. Killworth P, D., Jeffrey R. B., Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part Ⅰ: The local problem, J. Phys. Oceanogr., 2003, 33, 784-801.
    56. Killworth P. D., Jeffrey R. B., Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part Ⅱ: Ray prop agation and comparison with observations, J. Phys. Oceanogr., 2003, 33, 802-821.
    57. Lee T. N., W. E. Johns, R. J. Zantopp, et al., Moored observations of Western Boundary Current variability and thermohaline circulation at 26. 5deg. N in the Subtropical North Atlantic, J. Phys. Oceanogr., 1996, 26, 962-983.
    58. Lee T. N., W.E. Johns, C. T. Liu, D. X. Zhang, et al., Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current, J. Geophys. Res., 2001, 106, 22-143——22-158.
    59. Le Traon P. Y., J. F. Minster, Sea Level Variability and Semiannual Rossby Waves in the South Atlantic Subtropical Gyre, J. Geophys. Res., 1993,98, 12-315——12-326.
    60. Liu C. T., Cheng S. P., Chuang W. S., et al., Mean structure and transport of Taiwan current (Kuroshio), Acta Oceanographica Taiwanican, 1998, 36(2), 159-176.
    61. hiu Zhengyu, Planetary wave modes in the thermocline: Non-Doppler-Shift mode,advective mode and Green mode, Q. J. R. Meteorol. Soc., 1999, 125, 1315-1339.
    
    
    62. Liu Zhengyu, Forced planetary wave response in a thermalcline gyre, J. Phys.Oceanogr., 1999,29, 1036-1055.
    63. Mitchum G. T., The source of 90-ay oscillations at Wake Island, J. Geophys. Res., 1995, 100(C2), 2459-2475.
    64. Nerem R. S., Schrama E. J., Koblinsky C. J., et al., A preliminary evaluation of ocean topography from the TOPEX/POSEIDON mission, J. Geophys. Res., 1994,99, 24-565——24-583.
    65. Parke M. E., G. Born, R. Leben, et al., Altimeter sampling characteristics using a single satellite, J. Geophys. Res., 1998, 103, 10-513 10-526.
    66. Paulo S. P., Liu W. T., Global Characterization of Rossby Waves at Several Spectral Bands, J. 6eohpys. Res., 2003, 108(C1), 18-1——18-18.
    67. Pedlosky J. Geophysical Flufd Dynamics. New York: Springer-Verlag, 1987.
    68. Pedlosky J. Ocean Circulation Theory. New York: Springer-Verlag, 1996.
    69. Qiu B., R. Lukas, Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current and the Kuroshioalong the Pacific Western Boundary,J. Geophys. Res.,1996, 101,12-315——12-330.
    70. Qiu B., Miao Weifeng, Muller P., Propagation and decay of forced and free Rossby waves in off-Equatorial ocean, J. Phys. Oceanogr., 1997, 27, 2405-2417.
    71. Qiu B., Seasonal eddy field modulation of the north Pacific subtropical countercurrent:TOPEX/POSEIDON observations and theory, J. Phys. Oceanogr., 1999,29, 2471-2486.
    72. Qiu B., T. Toda, N. Imasato, On Kuroshio front fluctuations in the East China Sea using satellite and in situ observational data, J. Geophys. Res., 1990, 95(C10),18-191——18-204.
    73. Rhines P. B., Young W. R., A theory of the wind-driven circulation. I.Mid-ocean gyres, J. Fluid Mech. 1982 a, 40(supplement), 559-596.
    74. Rhines P. B., Young W. R., Homogenization of potential vorticity in planetary gyres, J. Fluid Mech. 1982 b, 122,347-367.
    75. Robert E. Dickinson, Rossby waves-long-period oscillations of oceans and atmospheres, Ann. Rev. Fluid Mech., 1978,10-195.
    76. Rossby C. O., Collaborators, Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of Zhe semi-permanent centers of action, J. Mar. Res., 1939,2, 38-55.
    77. Rossby C. G., Planetary flow patterns in the atmosphere. Q. J. Roy. Meteor. Soc.,1940,66, 68-87.
    78. Sugimoto T., S. Kimura, K. Miyaji, Meander of the Kuroshio front and current variability in the East China Sea, J. Oceanogr. Soc. Japan, 1988, 44, 125-135.
    79. Tokmakian R. T., P. G. Challenor, Observations in the Canary Basin and the Azores Frontal Region Using Geosat Data, J.Geophys. Res., 1993,98, 4761-4773.
    80. Toshimichi Ito, A Kaneno, H Furukawa, et al., A structure of Kuroshio and its related upwelling on the East China Sea shelf slope, J. Oceanogr. Soc., Japan,1995,51, 267-278.
    81. Wang L., Koblinsky C. J., Low-frequency variability in regions of the Kuroshio Extension and the Gulf Stream, J. Geophys. Res., 1995,100, 18-313——18-331.
    
    
    82. Wang L., Koblinsky C. J., Low-frequency variabili?y in the region of the Agulhas Retroflection, J. Geophys. Res., 1996,101, 3597-3614.
    83. White W., Observations of long Rossby waves in the northern tropical Pacific J. Phys. Oceanogr., 1977, 7, 50-61.
    84. W. E. Johns, T. N. Lee, Zhang Dong xiao, et al., The Kuroshio east of Taiwan Moored transport observations from the WOCE PCM-1 array, J. Phys. Oceanogr., 2001,31, 1031-1053.
    85. White W. B., Tai C. T., DiMento J., Annual Rossby wave characteristics in the California Current region from the Geosat exact repeat mission, J. Phys. Oceanogr.,1990,20, 1297-1311.
    86. White W. B., Chao Yi, Chang Kou Tai, Coupling of biennial oceanic Rossby waves with the overlying atmosphere in the Pacific basin, J. Phys. Oceanogr., 1998, 28,1236-1251.
    87. Yuan Yao chu, Arata Kaneko, Su Jilan, et al., The Kuroshio east of Taiwan and in the East China Sea and the currents east of Ryukyu Islands during early summer of 1996, Journal of Oceanography, 1998, 54(3), 217-226.
    88. Yang Y., Liu C. T., Hu J. H., et al., Taiwan current (Kuroshio) and impinging eddies, Journal of Oceanography, 1999, 55, 609-617.
    89. Zang Xiao yun, C. Wunsch, The observed dispersion relationship for North Pacific Rossby wave motions, J. Phys. Oceanogr., 1999, 29, 2183-2190.
    90. Zhang Dong xiao, W. E. Johns, T. N. Lee, et al., The Kuroshio east of Taiwan:Modes of variability and relationship to interior mesoscale eddies, J. Phys. Oceanogr.,2001, 31, 1054-1074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700