用户名: 密码: 验证码:
大功率半导体激光器光束特性及应用的若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了半导体激光器光束特性及应用方面的若干问题。对半导体激光器光场特性的研究,有助于半导体激光器列阵光束整形和泵浦固体激光器应用。本文研究了大功率半导体激光器远场分布,分析了半导体激光器的远场误差和反源技术,还探讨了半导体激光器的光束质量评价方法,研究了异型棱镜整形技术和紧耦合泵浦技术。论文主要内容分为四部分:
     论文第一部分,研究了半导体激光器的远场光分布;讨论了源振幅扰动对远场分布的影响,对半导体激光器的远场误差和反源技术进行了深入分析。针对平面源,在非傍轴理论的基础上,详尽讨论了由于源振幅扰动而产生的远场误差,建立了一种恰当的描述远场误差的方法,即由“相对误差面积”、“离轴距离”和“判据点”相结合的描述方法。模拟试验表明,“离轴距离”和“判据点”是影响远场误差的重要因素。
     为了解半导体激光器的传播模近场分布,基于远轴光传播理论,利用远场分布的光强和逼近信赖域的局部优化方法,提出了一种新的计算传播模近场分布的方法,模拟实验表明,只需很少几个展开函数的线性组合,就能很好地逼近源场函数,是一种稳定性好,精度较高的方法。
     论文第二部分,探讨了用光束准直时所付出的代价来评价光束质量好坏的方法。研究结果表明:条形半导体激光器和堆积式半导体激光器列阵的输出光场随传输距离不同,远、中、近分布特性差异明显。光束质量参数(忽略"smile效应”)与单个发光点光束参数积、占空比以及发光点(或BAR条)数量密切相关。利用半导体激光器的自身参量(L,θ和As)组成的Q因子加强了参数L//、θ⊥的影响,兼顾了波长和像散因子As的影响,更能反映它们对准直难度的影响,Q因子较好地反映出光束准直的难易程度。
     论文第三部分,根据二维大功率半导体激光器输出光场的特点,提出一种新型堆积式半导体激光器列阵光束整形方案。该元件是棱锥形输出结构,可以压缩光束发散角和光斑尺寸。该系统具有结构简单、加工容易以及对准容差大的优点。根据器件的远场分布特征细致研究了异型棱镜的传输特性,利用光线追迹法计算了输出面的光强度分布和光束发散角,并给出棱镜参数的计算方法。通过适当选择棱镜的结构参量,可以在输出像面上得到较均匀的光斑,在这个范围内的光能量约占总辐射能量的80%,光强起伏小于5%。
     论文第四部分,研究了微型模块化DPL的关键技术之一——紧耦合泵浦技术的可行性。在半导体制冷器传导制冷的工作方式下,设计了双LD侧面泵浦板条Nd:YAG激光器的方案。理论分析并在室温条件下实现了连续激光输出,LD耦合效率>90%,达到了设计指标。
Several key issues of semiconductor lasers are discussed in this paper. Study on the characterizations of irradiance distribution is significant for the practical applications of laser beam shaping and solid-state laser pumping. The characterizations of irradiance distribution, the far-field error and the near-field distributions of semiconductor lasers, the discussion of evaluation on beam quality of semiconductor lasers, a new beam shaping device, and the tightly coupled pumping technology are discussed in this paper. The key issues discussed in this paper are divided into four parts:
     In the first part of this paper, the far-field error and the near-field distributions of semiconductor lasers are studied synthetically. "Relative error volume" gave the maximum error range of the far-field error. For practical work, it is important to provide an accurate description of the far-field error in terms of the source error. The "critical point" of the far-field phase error is derived, analyzed and proposed to decide the off-center source error. Numerical results show that the off-center distance should be used in describing the source error and analyzing the far-field errors, and the "critical point" is the useful parameter in analyzing the source error for the inverse problem.
     Based on the far-field data, a new approaching trust region local optimization algorithm has been used to determine the near-field distribution. Numerical results demonstrate that the field distribution function of the source could be approached by a sum of some simple functions, and our method is simple and of high efficiency.
     In the second part of this paper, the characterizations of irradiance distribution are studied, and the discussion of evaluation on beam quality of semiconductor lasers is mainly researched. The intensity expression of laser diode bar and laser diode stacked array have been derived and illustrated with numerical examples. The intensity changed obviously with distances. Based on the beam characteristics of semiconductor lasers, a new parameter for evaluating beam quality of high power semiconductor lasers is introduced. The shortcomings of M2 factor used in evaluating beam quality of semiconductor lasers are discussed and its limitations are pointed out. Moreover, some important aspects of the beam quality factor are discussed. The main factors to influence collimating the beam of semiconductor lasers are analyzed. Our results give us grounds to make the following conclusions:the smaller the value of the new parameter is, the more easily the beam is collimated.
     In the third part of this paper, a new beam shaping device of diode laser stack is presented. The shaping element consists of a glass pyramid with spherical or plane output surface. The large divergence angle and the overall aperture area are compressed by this beam shaping system. The transformation characteristics are presented and the optimization performance is investigated based on the ray-tracing method. Analysis shows that high irradiance can be obtained. This beam shaping system can be easily fabricated and has large alignment tolerance.
     In the fourth part of this paper, tightly coupled pumping technology of micro-modularization DPL is studied. An experimental equipment of laser diode symmetrically side-pumped Nd:YAG slab laser is designed. The influence of laser diode on pump distribution of gain medium is measured and analyzed. Study shows that more diodes lead to better pumping intensity distribution; the least absorption coefficient of laser medium, the best pumping intensity distribution; the smaller distance between diode and laser medium, the worse pumping intensity distribution. The efficiency of coupling,>90%, accords with the design index.
引文
[1]王启明.半导体激光器的进展[J].物理,1996,25(2):67-75.
    [2]黄德修,刘雪峰编著.半导体激光器及其应用[M].北京:国防工业出版社,1999,67-90.
    [3]王乐,曹玉莲,刘云等.高功率激光二极管阵列及其应用[J].吉林大学学报,2002,20(2):6-90.
    [4]张月清,王立军.半导体激光器进展[M].北京:科学出版社,2002,184-189.
    [5]江剑平编著.半导体激光器[M].北京:电子工业出版社,2000,52-98.
    [6]余金中,王杏华.大功率半导体激光器:分类、结构、特性、使用和应用[J].激光集锦,1996,6(5):1-8.
    [7]赵远,蔡喜平,刘剑波等.二极管泵浦固体激光雷达技术及其应用[J].红外与激光工程,2001,30(1):47-50.
    [8]刘颂豪,廖常俊,李春吉等.发光二极管(LED)半导体激光器(LD)的应用前景展望[J].华南师范大学学报,1996,5(1):3-11.
    [9]宋晓舒.高功率二极管激光器的技术现状、工业应用及未来展望[J].光机电信息,2003,8:29-41.
    [10]Chellappan, K.V. Erden, E. Urey, H. Laser-based displays:a review [J]. Applied Optics.2010,49(25):F79-98.
    [11]郑权,赵岭,钱龙生.大功率二极管泵浦固体激光器的应用和发展[J].光学精密工程,2001,9(1):6-9.
    [12]王立斌.各种激光器在生物医学领域的应用[J].光机电信息,2002,12:8-10.
    [13]余辉,谭胜.高能激光武器的发展和应用前景[J].红外与激光工程,2002,31(3):267-271.
    [14]王戎瑞.美国机载激光武器发展现状[J].激光与红外,1999,29(4):195-198.
    [15]王德,李学千.半导体激光器的最新进展及其应用现状[J].光学精密工程,2001,6(9):279-283.
    [16]王乐.激光在现代军事中的应用[J].光机电信息,2002,6:23-24。
    [17]Zhao, J.Q., Wang, Y.Z., Yao, B.Q., Ju, Y.L.. High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser [J]. Laser Physics Letters,2010, 7(2):135-138.
    [18]Toepfer, T.; Neukum, J.; Hein, J.; Siebold, M. SOLID-STATE LASERS: Very-large-scale DPSS lasers are coming [J], Laser Focus World 2010, V46(10):5-9.
    [19]X. A. Ovtchinnikov et al. Efficient high power reliable InGaAs (940nm) monolithic laser diode arrays [J]. Electronics letters.1999,35(20):1739-1740.
    [20]康香宁,宋国锋,孙永伟.等.极小孔半导体激光器近场区光场分布研究[J].光子学报,2003,32(12):1409-1412.
    [21]X.Zeng and A.Naqwi. Far-field distribution of double-heterostructure diode laser beams[J]. Appl. Opt.,1993,32(24):4491-4494.
    [22]Castiglia, A., Carlin, J.-F., Feltin, E., Cosendey, G., Dorsaz, J., Grandjean, N.Friberg A.T. and Sodol R. J. Emission characteristics of GaN-based blue lasers including a lattice matched A10.83In0.17N optical blocking layer for improved optical beam quality [J]. Applied Physics Letters,2010,97(11):104-106.
    [23]Jiang W, Shealy D. L. Development and testing of a refractive laser shaping system[J]. Proc. SPIE.2000, (4095):165-175.
    [24]Buhling S, Wyrowski E. Solving tolerancing and three-dimensional beam shaping problem by multifunctional wave optical design[J]. Optical Engineering.2001, 40(8):1590-1597.
    [25]Bokor N, Davidson N. Beam shaping with diffuse light by use of a single reflection[J]. Applied Optics.2001(40):2132-2137.
    [26]Torsten possner, Bermhard Messerschmidt, Anke Kraeplin. Assembly of fast-axis collimating lenses with high power laser diode bars[J]. Proceedings of SPIE 2000, (3952):392-399.
    [27]黄伟.激光二极管阵列光束整形技术研究[D].西安电子科技大学学位论文.2004,25-37.
    [28]曾晓东,梁昌洪,安毓英.远轴高斯波的矢量场理论[J].物理学报,1999,48(7):1254-1260.
    [29]曹长庆,曾晓东,冯喆珺 等.大功率半导体激光器远场光分布特性[J].物理学报(已投).
    [30]陈万年,王树森,陈斌等.用于射线激光实验研究的列阵柱面透镜线聚焦系统[J],光学学报,1991,11:829-833.
    [31]黄关龙,王世绩等.凸柱面透镜列阵线聚焦系统[J], 光学学报,1999,19:713-717.
    [32]T. Possner, B. Messerschmidt, A. Kraeplin et al. Assembly of fast-axis collimating lenses with high power laser diode bars[J]. SPIE.2000, 3952:392-399.
    [33]石鹏,李小莉,张贵芬等.大功率激光二极管的微片棱镜堆光束整形和光纤耦合输出[J],光学学报,2000,20:1544-1547.
    [34]R. J. Beach. Theory and optimization of lens ducts[J]. Appl. Opt.,1996, 35(12):2002-2015.
    [35]Li Chaoyang, Bo Yong et al.,106.5 W high beam quality diode-side-pumped Nd:YAG laser at 1123 nm [J]. Optics Express,2010,18(8):7923-7928.
    [36]Ren Hong-Yan, Qian Lie-Jia, Yuan Peng et al., A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams [J]. Chinese Physics Letters,2010,27(5)54202-54205.
    [37]王乐,曹玉莲,刘云等.高功率激光二极管阵列及其应用[J].吉林大学学报,2002,20:13-17.
    [38]亨利·克雷歇尔,J.K.巴特勒.半导体激光器和异质结发光二极管[M].国防工业出版社.
    [39]陈难先.应用物理中的几类逆问题[J].自然科学进展,1994,4(1):16-24.
    [40]H. P. Baltes. Inverse Source Problems in Optics [M]. New York.1978.
    [41]H.C.凯西,M.B.帕尼什.异质结构激光器[M].国防工业出版社.
    [42]Yuxian Shi, Qinan Li et al.,. Comparison of 885 nm pumping and 808 nm pumping in Nd:CNGG laser operating at 1061 nm and 935 nm [J]. Optics Communications.2010.283(14):2888-2891.
    [43]Jochen Helms, Joachim Schmidtchen. Bernd Schuppert and Klaus Petermann. Error analysis for refractive-index profile determination from near-field measurements [J]. J. Lightwave Technology.1990. May.8(5).
    [44]G. L. Yip, P. C. Noutsios and L.Chen. Improved propagation-mode near-field method for refractive-index profiling of optical waveguides [J]. Appl. Opt.1996. April.35(12).
    [45]于英民,孙全,莫玮.计算机接口技术[J].电子工业出版社,1996.
    [46]曾晓东.远轴光传播理论新进展及其应用[D].西安电子科技大学.博士学位论文.1997.
    [47]朱星.近场光学与近场光学显微镜[J].北京大学学报(自然科学学报),1997,33(3):394-407.
    [48]周庆,朱星,李宏福.近场光学中光纤探针中的光强分布[J].物理学报,2000, 49(2):210-214.
    [49]王桂英,近场光学理论初探[J].物理学报.1997,46(11):2154-2159.
    [50]Ivan J. LaHaie. Inverse source problem for three-dimensional partially coherent sources and fields [J]. J. Opt. Soc. Am. A,1985,2(1):35-45.
    [51]William H. Carter. Inverse problem with quasi-homogeneous sources [J]. J. Opt. Soc. Am. A,1985,2(11):1994-2000.
    [52]Edwin A. Marengo. New aspects of the inverse source problem with far-field data [J]. J. Opt. Soc. Am. A,1999,16(7):1612-1622.
    [53]张工力,白永林,J. D. White等.一种高透过率光纤探针的制作[J].光子学报,1999,28(5):436-439.
    [54]张东玲,白永强,冯晓强等.FDTD方法对固体浸没透镜的光场分析[J].光子学报,2004,33(7):884-888.
    [55]X. Zeng. Far-Field solution of the Helmholtz equation for double heterostruciure diode lasers[J]. Appl. Phys.1993,A57:243-247.
    [56]M. Born and E. Wolf. Principles of Optics [M]. Pergamon. Oxford.1986.
    [57]M. Nieto-Vesperinas. Scattering and Diffraction in Physical Optical Optics [M]. Wiley, New York,1991.
    [58]D. Marcuse. Light Tranmission Optics [M]. Van Nostrand Reinhold. New York. 1982.
    [59]X. Zeng. Error analysis for the far-field of a small plane source [J]. Opt. Commun.,2003,222:137-141.
    [60]黄婉云.傅里叶光学教程[M],北京师范大学出版社,1985.
    [61]Ch. Cao, X. Zeng and Y. An. Accurate evaluation of the far-field error for a small plane source [J]. Acta Photonica Sinica,2008,37(4):794-798.
    [62]I. Horsch, R. Kush and O. Marti. Spectrally resolved near-field imaging of vertical cavity semiconductor lasers [J]. J. Appl. Phys.,1996,15:3831.
    [63]曾晓东,梁昌洪.光学源问题的矩量方法[J].1995,全国微波会议论文集.
    [64]曾晓东,梁昌洪.测定半导体激光器源分布的一种有效方法[J].半导体学报,1996,21:236.
    [65]杨继松,傅君眉.选取矩量法基函数的一种新设想[J].中国空间科学技术,1996,10(5):18-24.
    [66]高会生,李新叶,胡智奇等译,Edward B. Magrab等著.MATLAB原理与 工程应用[M],电子工业出版社,2002.
    [67]POWELL M J D. A new algorithm for constrained optimization[A]. ROSEN J B. MANGASARIAN O L, RITTER K, et al. Nonlinear Programming[C]. New York:Academic Press,1970,31-66.
    [68]X. Zeng, Y. An. Far-field expression of a high-power laser diode [J]. Appl. Opt., 2004,43:5168.
    [69]曹长庆,曾晓东,安毓英.基于局部优化方法的半导体激光器反源技术[J].光子学报,2008,37(3):435-438.
    [70]Jun Dong, Akira Shirakawa, Ken-ichi Ueda et al.. Neardiffraction-limited passively Q-switched Yb:Y3 A15 O12 ceramic lasers with peak power>150 kW[J]. Appl. Phys. Lett.,2007,90(13):101-105.
    [71]Jay Marmo, Hagop Injeyan, Hiroshi Komine et al.. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE,2009,7195: 719507.
    [72]J. V. Sheldakova, A. V. Kudryashov, V. Y. Zavalova et al.. Beam quality measurements with Shack—Hartmann wavefront sensor and M2-sensor: comparison of two methods[C]. SPIE,2007,6452:645207.
    [73]Hongru Yang, Lei Wu, Xuexin Wang et al.. Evaluation of beam quality for high—power lasers[C]. SPIE,2007,6823:682316.
    [74]W. Li, G. Feng, Y. Huang et al.. Matrix formulation of the beam qualitv of the Hermite-Gaussian beam[J]. Laser Physics,2009,19(3):1-6.
    [75]Yuqing Fu, Guoying Feng, Dayong Zhang et al.. Beam quality factor of mixed modes emerging from a multimode step-index fiber[J]. Optik,2009.
    [76]Amiel lshaaya, Vardit Eckhouse, Liran Shimshi et al.. Improving the output beam quality of multimode laser resonators[J]. Opt. Exrpress,2005, 13(7):2722-2730.
    [77]蔺敬平.激光二极管光束质量评价方法研究[D].西安电子科技大学学位论文.2005,25-37.
    [78]吕百达.M2因子概念和激光光束质量控制[J].激光技术,1992,16(5):278-282.
    [79]王云萍.高能激光光束质量的评价方法[J].光电子·激光,2001,12(10):1029-1032.
    [80]吴晗平.激光光束质量的评价与应用分析[J].光学精密工程,2000,8(2):128-133.
    [81]刘泽金,陆启生,赵伊君.高能非稳腔激光器光束质量评价的探讨[J].中国激 光.1998,25(3):193-198.
    [82]玻恩M,沃尔夫E.光学原理[M].北京:科学出版社.1981,494-510.
    [83]D. Wright, P. Greve, J. FIeischer et al.. Laser beam width, divergence and beam propagation factor-an international standardization proach[J]. Opt. and Quantum Electron.,1992,24(9):993-1000.
    [84]Anthony E, Siegman. Defining, measuring, and optimizing laser beam quality[C]. SPIE,1993,1868:2-12.
    [85]Ongstad, A.P. et al. High brightness from unstable resonator mid-IR semiconductor lasers [J. Journal of Applied Physics,2010,107(12): 123113-123116.
    [86]张宪亮,严高师,曹远生He-Ne激光束远场发散角的精确测量及误差分析[J].光电子技术,2007,27(1):66-70.
    [87]Zhang, Y., et al. A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique [J]. Laser Physics Letters.2010,7(1):17-20.
    [88]A. E. Siegman, How to (maybe) measure laser beam quality[J]. OSA Trends in Optics and Photonics Series,1998,17(2):184-199.
    [89]ISO/TC 172/SC9/WG1 N14,1991.
    [90]ISO/TC 172/SC9/WG1 N15,1992.
    [91]IS0/TC 172/SC9/WG1 N16,1993.
    [92]International Standard. Lasers and laser-related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios-Part 1:Stigmatic and simple astigmatic beams[s]. ISO,2005,11146-1.
    [93]International Standard. Lasers and laser-related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios-Part 2:General astigmatic beams[s]. ISO,2005,11146-2.
    [94]International Standard. Lasers and laser—related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios-Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods[s]. ISO/TR,2004,11146-3.
    [95]A. E. Siegman. New developments in laser resonators[c]. SPIE,1990,1224:2-14.
    [96]C. Gao, H. Weber. The problems with M2[J]. Optics & Laser Technology,2000, 32:221-224.
    [97]Baida 1v, Xiaoling Ji, Shirong Luo. The beam quality of annular lasers and related problems[J]. J. Modern Optics,2001,48(7):1171-1178.
    [98]吕百达,康小平.对激光光束质量一些问题的认识[J].红外与激光工程,2007,36(1):47-51.
    [99]吕百达,季小玲,罗时荣等.激光的参数描述和光束质量[J].红外与激光工程,2004,33(1):14-17.
    [100]M. A. Porras. Experimental investigation on aperture-diffracted laser beam characterization[J]. Opt. Commun.,1994,109(l):5-9.
    [101]Xiangwan Du. Four factors describing of the beam quality of high-power lasers[C]. SPIE,2005,5777:650-653.
    [102]王芳.ICF驱动器3ω光学系统光束质量变化特性研究[D].中国工程物理研究院,硕士论文,2007.
    [103]J. K. Lawson, J. M. Auerbach, R. E. English et al.. NIF optical specifications-The importance of RMS gradient[C]. SPIE,1999,3492:336-343.
    [104]J. M. Elosn, J. M. Bennett. Calculation of the power spectral density from surface profile data[J]. Appl. Opt.,1995,43(1):201-208.
    [105]D. M. Aikens, C. R. Wolfe, J. K. Lawson. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility[C]. SPIE,1995, 2576:281-291.
    [106]J. K. Lawson, D. M. Aikens, R. E. English Jr. et al.. Power spectral density specifications for high-power laser systems[C]. SPIE,1996,2775:345.
    [107]P. J. Wegner, M. A. Hnesian, J. T. Salmon et al.. Wavefront and divergence of the beamlet prototype laser[C]. SPIE,1999,3492:1019-1030.
    [108]杜祥琬,实际强激光远场靶面上光束质量的评价因素[J].中国激光,1997,A24(4):327-332.
    [109]Zhao, J.Q. et al. High efficiency, single-frequency continuous wave Nd:YVO4/YVO4 ring laser [J]. Laser Physics Letters,2010,7(2):135-138.
    [110]G. D. Goodno, H. Komine, S. J. McNaught et al.. Coherent combination 01 high power zig-zag slab lasers[J]. Opt. Lett.,2006,31(9):1247-1249.
    [111]Toepfer, T., Neukum, J., Hein, J., Siebold, M.H. Weber. SOLID-STATE LASERS:Very-large-scale DPSS lasers are coming [J]. Laser Focus World, 2010,46(10):1025-1029.
    [112]R. Simon, E. C. G. Sudarshan, N. Mukunda, Generalized rays in first-order optics:Transformation properties of Gaussian Schell—model fields[J]. Phys. Rev. A,1984,29(6):3273-3279.
    [113]陈培锋,丘军林.各种实际光束的肝参数特性比较[J].中国激光,1995,A22(2):139-143.
    [114]吕百达,新一代ICF固体激光驱动器和光束质量研究的进展[J],激光杂志,1999,20(1):1-8.
    [115]Li-Jin Chen et al.. Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers [J]. Optics Letters,2010,35(17):2916-2918.
    [116]S. Amarande, A. Giesen, H. H tigel. Propagation analysis of self-convergent beam width and characterization of hard-edge diffracted beams[J]. Appl. Opt., 2000,39(22):3914-3924.
    [117]M. Ibnchaikh, L. Dalil-Essakali, Z. Hricha et al.. Parametric characterization of truncated Hermite-cosh-Gaussian beams[J]. Opt. Commun.,2001,190(1-6):29-36.
    [118]Castiglia, A. et al. Emission characteristics of GaN-based blue lasers including a lattice matched A10.83In0.17N optical blocking layer for improved optical beam quality s[J]. Applied Physics Letters,2010,97(11):104-106.
    [119]Li Chaoyang et al..106.5 W high beam quality diode-side-pumped Nd:YAG laser at 1123 nm [J]. Optics Express,2010,18(8):7923-7928.
    [120]Laurain, A. et al... Multiwatt-power highly-coherent compact single-frequency tunable Vertical-External-Cavity-Surface-Emitting-Semiconductor-Laser [J]. Optics Express,2010,18(14):627-636.
    [121]Zhang, Y. et al.. A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique [J]. Laser Physics Letters,2010,7(1):17-20.
    [122]陈家斌,郑忠坚,唐道远.提高腔靶激光能量注入的新途径[J].强激光与粒子束,1998,10(2):239-242.
    [123]R. A. Zacharias, N. R. Beer, E. S. Bliss et al.. Alignment and wavefront control system of the National Ignition Facility[J]. Opt. Eng.,2004,43(12):2873-2884.
    [124]Ongstad, A.P. et al.. High brightness from unstable resonator mid-IR semiconductor lasers [J]. Journal of Applied Physics,2010,107(12):113-116.
    [125]赵军普.高功率固体激光光束质量诊断方法研究[D].四川大学,硕上论文,2006.
    [126]高卫.激光束衍射极限倍数口的确定方法[J].光子学报,2003,32(9): 1038-1040.
    [127]冯国英,周寿桓.激光光束质量综合评价的探讨[J].中国激光,2009,36(7):1643-1653.
    [128]曹长庆,曾晓东.半导体激光器光束质量评价方法探讨[J].红外与毫米波学报.(已录用)
    [129]朱晓鹏,韦欣,叶晓军等.条形半导体激光器光束质量因子M2的理论计算[J].光学学报,2003,23(1).
    [130]Ch. Cao, X. Zeng. Discussion of Evaluating Beam Quality of Semiconductor Lasers[J]. Appl. Opt., Received.
    [131]吴振华,易新建,麦志洪.微透镜阵列的计算机模拟设计[J].红外技术,1998,20:23-26.
    [132]薄报学.高功率阵列半导体激光器的光纤耦合输出[J].光电子.激光,2001,12(5):468-470.
    [133]王晓薇,方高瞻,马骁宇等.出纤功率30W的激光二极管线列阵光纤耦合器件[J].半导体学报,2004,25(5):579-582.
    [134]H. G. Treusch, A. Ovtchinnikov, X. He, et al. High-brightness semiconductor laser sources for materials processing:stacking, beam shaping, and bars[J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000,6(4):601-614.
    [135]牛岗,樊重维,王家赞等.大功率半导体激光光纤耦合技术进展[J],激光与光电子学进展,2004,41(3):34-38.
    [136]Rolf. Gring, Peter Schreiber. Micro-optical beam transformation system for high-power laser diode bars with efficient brightness conservation[J]. SPIE,1997, 3008:203-210.
    [137]Yan Xing-Peng ety al.. A novel orthogonally linearly polarized Nd:YVO4 laser [J]. Chinese Physics B,2010,19(8):202-207.
    [138]Daisuke Shimura, Masahiro Uekawa, Ryo Sekikawa, et al. Ultra compact optical subassembly using integrated laser diode and silicon microlens for low-cost optical component[J]. IEEE ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE,2004,4:219-224.
    [139]严瑛白,王超,邬敏贤等.半导体激光器的二元光学消像散准直器件[J].红外与激光工程,1996,25(5):36-42.
    [140]周崇喜,邱传凯.半导体激光器列阵二元光学准直器的设计和制作[J].光电工 程,1998,25:38-41.
    [141]Friedhhelm Dorsch, Franz X.Daiminger, Petra Henning.2kw cw Fiber-coupled Diode Laser System[J]. SPIE,2000,3889:45-53.
    [142]X. Zeng, Ch. Cao, Y. An. Asymmetrical prism for beam shaping of laser diode stacks[J]. Applied Optics,2005,44(26):5408-5414.
    [143]Xu, J.-L. et al.. Performance of diode pumped Yb:Y2Ca3B4O12 laser with V3+:YAG as saturable absorber for passively Q-switched mode-locking operation [J]. Laser Physics Letters,2010,7(3):198-202.
    [144]Gaponenko, M.S. et al. Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass [J]. Laser Physics Letters,2010, 7(4):286-289.
    [145]Coluccelli, N. et al. Passive mode-locking of a diode-pumped Tm:GdLiF [J]. Applied Physics B:Lasers and Optics,2010,101(2):75-78.
    [146]S. C. Tidwell, J. F. Seamans, M. S. Bowers. High efficiency 60-W TEM00 cw diode-end-pumped Nd:YAG laser[J]. Optics Letters,1993,18(2):116-118.
    [147]Susumu Konno, Shuichi Fujikawa, Koji Yasui.80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser[J]. Appl. Phys. Lett.1997,70(20):2650-2651.
    [148]Eric C. Honea, Raaymond J. Beach, Scott C. Mitchell et al. High-power dual-rod Yb:YAG laser[J]. Optics Letters,2000,25(11):805-807.
    [149]Randall J. St. Pierre, David W. Mordaunt, Hagop Injeyan et al. Diode Array Pumped Kilowatt Laser[J]. IEEE Journal of Selected Topics in Quantum Electronics,1997,3(1):53-58.
    [150]Project yields a pair of 3.3-kW solid-state lasers[J]. Laser Focus World,1999, 35(7):38-40.
    [151]先进固体激光会议报道[C].激光与光电子学进展,2001,3:58.
    [152]陈云生.输出功率11.3kW的全固体激光装置[J].激光与光电子学进展,2002,39(5):61.
    [153]陈日升,席学武.输出功率大于100W的脉冲绿光激光振荡器[J].激光与光电子学进展,2002,39(5):45-48.
    [154]许祖彦.光电子晶体与全固态激光器及其应用—光电子技术发展的一个重大方向[J].中国工程科学,第一卷第2期。
    [155]T Graf et al. General analytical model for the thermal effects in high-power solid-state lasers[C]. Conference on Lasers and Electro-Optics Europe,2000.
    [156]W J Xie et al. Thermal and optical properties of diode side-pumped solid state laser rods[J], Optics and Laser Technology,2000,32:193-198.
    [157]Chen, Y.J. et al.805-nm diode-pumped continuous-wave 2-μm laser performance of Tm3+:BaGd2(MoO4)4 cleavage plate [J]. Applied Physics B: Lasers and Optics,2010,98(1):55-60.
    [158]J Wallace. Commercial disk laser reaches 4-kW output[J], Laser Focus World, 2004,40:19-20.
    [159]Y Akiyama, H Takada, M Sasaki et al. Efficient 10 kW diode-pumped Nd:YAG rod laser[C]. First International Symposium on High-Power Laser Macroprocessing, Osaka, Japan,2003.
    [160]Sˇulc, J. et al. Dysprosium-doped PbGa2S4 laser excited by diode-pumped Nd:YAG laser [J]. Optics Letters,2010,35(18):3051-3053.
    [161]Zhang, Y. et al. A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique [J], Laser Physics Letters,2010,7(1):17-20.
    [162]L E Zapata, R J Beach, and S A Payne. High power Yb:YAG/YAG composite thin-disk laser[C]. Lasers and Electro-Optics,2001.
    [163]Besotosnii, V. et al. Diode end-pumped acousto-optically Q-switched compact Nd:YLF laser [J]. Applied Physics B:Lasers and Optics,2010,101(1):71-74.
    [164]M D Rotter, C B Dane, S A Gonzales et al. The Solid-State Heat-Capacity Laser[C]. Nineteenth Topical Meeting and Tabletop Exhibit, Santa Fe, New Mexico,2004.
    [165]M Sato, S Naito, N Iehisa et al. Thermal analysis of high power LD pumped slab Nd:YAG laser[J], SPIE, Advanced High-Power Lasers,2000,3889:182-189.
    [166]W M Tulloch et al. A cw, high-power, conduction-cooled, edge-pumped slab laser[J]. SPIE,1999, Vol.3613:2-7.
    [167]G D Goodno, S Palese, and J Harkenrider. Yb:YAG power oscillator with high brightness and linear polarization[J]. Opt Lett,2001,26:1672-1674.
    [168]L Zapata, R Beach, and S Payne。Composite thin-disk laser scaleable to 100kW average power output and beyond[J]. Solid State and Diode Laser Technology Review,2000:UCRL-JC-138786.
    [169]C Tang, C L Yang, and J Chen. Design of diode-pumped 10-kW high-power Nd:YAG disc laser[C]. ⅩⅣ International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers,2003.
    [170]Liu, J. et al... Efficient diode-pumped self-mode-locking Yb:LYSO laser [J]. Laser Physics Letters,2010,7(2):104-107.
    [171]Lu", Y.F. et al. Diode-laser-pumped continuous-wave doubly linear resonator sum-frequency mixing orange laser at 600 nm [J]. Laser Physics Letters,2010, 7(1):21-24.
    [172]C. Yin, L. Huang, M. Gong et al. A novel compact side-pumped bonded slab microchip laser[J]. Laser Phys. Lett.4(8):584-587 (2007).
    [173]Eric P. Ostby, Richard A. Ackerman. Ceramic Yb:YAG Microchip Laser[J]. SPIE Vol.6100,610004, (2006).
    [174]Y. Li, Samuel M. Goldwasser, Peter R. Herczfeld et al. Dynamics of an Electrooptically Tunable Microchip Laser[J]. IEEE J. Quant. Elec., Vol 42(2):208-217,2006.
    [175]John J. Zayhowski, L. Wilson, Pump-Induced Bleaching of the Saturable Absorber in Short-Pulse Nd:YAG/Cr4+:YAG Passively Q-Switched Microchip. Lasers[J]. IEEE J. Quant. Elec., Vol 39(12):1588-1593,2003.
    [176]Z. Wang, H. Zhang, D. Hu et al. High-power, continuous-wave, Nd:LuVO4 microchip lasers[J]. Laser Phys. Lett.,1-4,2007.
    [177]H. Lei, M. Gong, Y. Ping, L. Qiang. Repetition rate continuously controllable passively Q-switched Nd:YAG bonded microchip laser[J]. Laser Phys. Lett., 4(8):572-575,2007.
    [178]J. Sulc, H. Jelinkova, K. Nejezchleb et al. Nd:YAG/V:YAG microchip laser operating at 1338 nm[J]. Laser Phys. Lett.,2(11):519-524,2005.
    [179]J. Sulc, H. Jelinkova, K. Nejezchleb et al. Nd:YAG/V:YAG Microchip Laser[J]. SPIE, Vol.6190,61900B,2006.
    [180]J. Sulc, H. Jelinkova, K. Nejezchleb et al. Microchip Laser Operating at 1338 nm[J]. SPIE, Vol.6100,610005,2006.
    [181]M. Tsunekane, T. Taira. High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3A15O12 microchip laser[J]. Appl. Phys. Lett.,90,121101 (2007).
    [182]H. Lei, M. Gong, Y. Ping, L. Qiang. Repetition rate continuously controllable passively Q-switched Nd:YAG bonded microchip laser[J]. Laser Phys. Lett., 2007,4(8):572-575.
    [183]高晓萍.超小型微片YAG激光器[J].光机电信息,2000,17(10):27-30.
    [184]高晓萍.高质量小型微片激光器的研制[J].光机电信息,2000,17(11):19-20.
    [185]Masao Sato et al. LD pumped slab Yb:YAG laser[J]. SPIE 2000,3889:208-215.
    [186]李适民.激光器件原理与设计[M].北京:国防工业出版社,2005。
    [187]张玲玲.高功率板条激光器的研究进展[J].激光与光电子学进展,2005,42(4):33-37.
    [188]Schmidt, A. et al.. Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration [J]. Optics Letters,2010,35(4):511-513.
    [189]胡文涛.二极管激光侧面泵浦腔内倍频Nd:YAG板条激光器研究[J].光学学报,1995,15(7):845-850.
    [190]王志敏.新一代大功率固体板条激光器的技术进展[J].激光与光电子学进展,2007,44(2):18-24.
    [191]温娇娟.固体板条激光器的半导体激光抽运结构[J].激光与光电子学进展,2007,44(4):44-49.
    [192]胡定坤.Nd:YAG晶体泵浦光强分布研究[D].西安电子科技大学学位论文.2010,25-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700