用户名: 密码: 验证码:
结晶器内钢水搅拌液固温耦合数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效连铸技术是近年来世界各国钢铁企业竟相追求的目标。随着连铸速度
    的提高,通过浸入水口注入结晶器的钢水流速和流量都显著增加,如果控制不
    当就会造成弯月面处液面波动剧烈、冲击深度加深、夹杂物气泡不易上浮、卷
    渣、裂纹、凝固壳厚度不一、中心组织疏松等缺陷。液态金属通过浸入式水口
    从中间包到结晶器,本身具有很大的流动动能,目前人们利用电磁制动技术降
    低这部分能量,减轻冲击深度,控制钢液的流动状态。作者通过仔细研究发现,
    只要依靠浸入式水口内腔结构形状、出口倾角、浸入深度以及浇注速度就可以
    使方坯连铸结晶器内钢水为旋转的涡流流动,把液态金属的流动动能利用起来。
    在对结晶器内钢水流场、温度场数值分析和水模型试验研究的基础上,提出一
    种全新的搅拌原理——依靠钢水本身具有的流动动能驱动结晶器内的钢水自旋
    转搅拌原理,为钢铁冶金企业提供一种独特的X形浸入式水口,取代方坯连铸
    结晶器内电磁制动和电磁搅拌,极大地减少设备投资,节省能耗。
     连铸过程伴随着液态金属的流动、凝固传热、相态变化等。处理该问题的
    复杂性表现在必须同时处理包括质量、动量、能量方程以及湍流模式在内的一
    组方程,它们之间的耦合可以通过对流项、源项和热物性参数等发生。本论文
    应用SIMPLE法(Semi-Implicit Method for Pressure-Linked Equations),即
    求解压力耦合方程的半隐式法,开发了连铸过程液固温耦合数值模拟软件。应
    用该软件对方坯连铸钢液的流动状态、凝固规律和温度场进行耦合数值分析,
    对浇注方式、拉坯速度、浇注温度以及搅拌范围对温度场和流场的影响进行了
    深入研究,为防止连铸缺陷的产生提供对策。通过自旋转搅拌和电磁搅拌数值
    模拟,证明自旋转搅拌更有利于控制钢水的流动状态。
     由于异形坯连铸形状本身的复杂性,带来钢液流动、凝固传热和温度场分
    布的复杂性。目前关于异形坯连铸的研究集中在设备和现场操作方面。利用所
    开发的液固温耦合数值模拟程序,考察浸入式水口倾角、浸入深度、浇注速度、
    浇注温度、浸入式水口个数和形式对异形坯连铸钢液流动方式和凝固传热的影
    响,为异型坯连铸的工艺设计、浸入式水口设计及流场控施提供了重要依据。
     物理模拟不仅可以克服问题的复杂性、高温及测试手段的限制,而且可以
    验证数值模拟结果,完善数学模型。本论文采用二十世纪八十年代发展起来的
    PIV(Particle Image Velocimetry)技术就结晶器内钢水自旋转搅拌的流动状态和
    速度场分布进行了水模型物理模拟,与数值模拟结果基本一致。
     连铸坯的质量一直是钢铁企业最为关注的问题。本论文就方坯连铸X形浸
    入式水口和漏斗形浸入式水口浇注时,连铸坯的表面质量、低倍组织、高倍组
    
    
     O
     燕山大学工学博士学位论文
     一
     织、力学性能和断口形貌进行了对比分析,结果发现X形浸入式水口浇注能改
     善铸坯内外部质量、减少铸坯缺陷。与结晶器电磁搅拌相比,由于X形浸入式
     水口所产生的自旋转搅拌是由内向外搅拌,不会产生负偏析,而且能达到电磁
     搅拌同样的效果,可以有效地降低设备投资。
High active continuous casting has become the target being chased by one other
     in steel occupation in the most country of the world recently. With the increase of
     continuous casting speed, more dramatic enhance has been acquired in liquid steel
     speed and flux though model of SEN water pouring. If it-be controlled incorrectly
     maybe it can caused strenuous fluctuate on meniscus deepen in impact depth.
     uneasy rising above of air bubble in occlusions cinder~ crackle~ thickness disparity
     of freezing shell~ rarefaction of central structure etc. The liquid metal contain many
     of kinetic energy when overflow the model from midst through SEN. Usually people
     used electromagnetic braking to reduce this parts of energy to alleviate impact
     depth. control the flow state of molten steel. Through survey carefully, we find that if
     depend on pouring ve1ocity~ structural shape of SEN entocoele~ angle slope of
     outlet depth of infusion together to make the liquid steel in model revolution in an
     order flow then it can utilize this kind of energy completely. This paper ,under the
     base of experimental investigation on watering modal and the numeric analysis of
     flow field ?temperature field in model, present a new theory of stirring ,namely,
     depend on the flowing energy which the liquid steel hold can implement it抯 rotation
     and afford a kind of unique X type SEN to replace electromagnetism stir and
     electromagnetism braking in model ,thus it can save a lot of energy and much money
     in equipment investment.
     慦ith the process of continuous casting company the flow of liquid steel. the
     heat transfer in freezing~ the change of phase state. The complexity to solve this
     question is we must settle a equations set which include the equation about quality.
     momentum~ energy and turbulent current, and the coupling among them can be
     occurred through convection item source item and nature parameter of thermo
     physics.This paper adopt SIMPLE method(namely Semi-Implicit Method for
     Pr~ssure-Linked Equations) to exploit a coupled numeric analysis program for
     coupling among liquid~ solid-, temperature when continuous casting, by use this
     program proceed the coupled numeric analysis on temperature field and freezing
     rule ~flowing state about continuous casting liquid steel state for square and allotype
     billet, then it can supply a method to prevent the continuous cast deficiency. It can
     be approved that it is easier to curb the flow state by use rotation than use
     electromagnetic stir through the numerical simulation.
     For the complexity of the shape of allotype billet, flowage of liquid steel, heat
     transfer of freezing and distribution of temperature field also become complex.
     Presently most investigation of allotype billet focus on the equipment and fieldwork.
     By use this program to inve~tigate the effect of the declination of submerge nozzle,
    
    
     桰II?
    
    
    
    
    
    
    
    
    
     W I~M眫Li~
    
    
     submerge depth, pouring speed, pouring temperature and the number of submerge
     nozzle exert on liquid steel flowing mode in continuous casting of allotype billet,
     which afford an very important references for technological design of allotype billet
     continuous cast, design of submerge nozzle and the control of flow field.
    
     Physical simulation can overcame not only the complexity of questions~ high
     temperature and limitation of testing facility but also can testify the numerical
     simulation results then perfect the mathematic model. The paper adopt PIV (Particle
     Im
引文
1 Frank A M.A study of light alloy techniques in steel making [dissertation] Montreal Canada McGill University, 1980
    2 殷瑞钰.连续铸钢在中国的发展和展望.CCC’93发展中国家连铸会议论文译文集.中国金属学会,1~3
    3 蒲海清.依靠科技进步促进结构调整.世界金属导报,2000.4.18
    4 蒋志良.达涅利高效连铸技术.钢铁科技动态,1998(1):36~38
    5 陈家详主编.连续铸钢手册.冶金工业出版社,1991.12
    6 蔡开科.连续铸钢.科学出版社,1990
    7 区勇铭,王志坚.高效连铸方坯连铸机的改造.炼钢 1999.15(3),4~9
    8 殷瑞钰.继续大力发展连铸推动钢铁工业结构优化促进两个根本转变.炼钢,1996,12(6):7~14
    9 张绍贤.薄板坯连铸连轧工艺技术发展的概况.炼钢2000.16(1),51~55
    10 松尾胜良等.连铸厚板向中炭钢高速铸造技术.铁钢.1994,80(5):T29
    11 莲沼纯一等.热延同期化操业目指无欠陷铸片制造技术-水岛第4连铸机.川崎制铁技报.1996,28(1):7~12
    12 安川登等.高品质高生产性连续性铸造新设备技术.川崎制铁技报.1996,28(1):20~24
    13 杉泽元达等.表面欠陷钢高速连续铸造技术-千叶第4连铸机.川崎制铁技报.1996,28(1):14~19
    14 G.H.盖格,D.R.波伊里尔.冶金中的传热传质现象.冶金工业出版社,1983
    15 J.舍克里.冶金中的流体流动现象.冶金工业出版社,1985
    16 S.V.帕坦卡.传热与流体流动的数值计算,科学出版社,1984
    17 郭宽良.计算传热学.中国科学技术大学出版社,1988.12
    18 徐敦乔.异形坯连铸设备及技术.重型机械,1996(5):47~51
    19 金仁杰.双辊液态铸轧凝固传热数学模型及其分析.硕士学位论文,1986
    20 巨东英.Analysis of Heat and Fluid Flow Incorporating Solidification and Its Application to Thin Slab Continuous casting process, 日本机械学会论文集(A编). 1993, 173~179
    21 马少武,赫冀成.异径双辊薄带铸轧熔池中钢液流动特性.东北大学学报,1999,20(3):290~293
    22 马少武,赫冀成.异径双辊薄带铸轧钢液初始凝固的传热特性.东北大学学报,1999,20(4):401~404
    23 金珠梅,赫冀成.双辊连续铸轧工艺中流场、温度场和热应力场的数值模拟.金属学报,2000,36(4):391~394
    
    
    24 M. REZA ABOUTALEBI, M. HAMAN, and R. I. L. GUTHRIE: Coupled Turbulent Flow,Heat, and Solute Transport in Continuous Casting Processes, Metal Trans. B, 1995, (26):731~744
    25 B. Farouk, D. Apelian, and Y. G. Kim: A Numerical and Experimental Study of the Solidification Rate in a Twin-Belt Caster, Metal. trans. B,1992, (23): 477~92.
    26 苗雨川,邸洪双,张晓明,鲍培玮,王国栋,刘相华.双辊薄带钢铸轧过程的流场温度场耦合数值模拟.钢铁研究,2000(2):32~35
    27 Mazumdar D.A Consideration about the Concept Effective Thermal Conductivity in Continuous Casting. ISIJ International. 1989, 29(6): 524~528
    28 史荣,崔小朝.铝带坯连续铸轧凝固过程数值模拟.中国有色金属学报,1996,6(2):98~101
    29 崔小朝,史荣.焓式有限元法模拟连续铸轧凝固过程.矿业工程,1996,16(2):65~47
    30 平野 聪.双式连铸机凝固间热传达系数算定.铁钢,1993,79(6):41~46
    31 R.P. TAVARES, M. ISAC AND R. I. L. Guthrie: Roll-strip Interfacial Heat Fluxes in Twin-roll Casting of Low-carbon Steels and Their Effects on Strip Microstructure. ISIJ international, 1998, (12):1353~1361
    32 Ari Jokilaakso. Computational fluid dynamics in process metallurgy. In: Proceedings of the 2nd Colloquium on Process Simulation. Espoo, Finland: Helsinki University of Technology, 1995. 233~255
    33 Ruottu S. Mathematical modeling of the outokumpu,flash smelting processes. Combustion and Flame, 1979, 34:1~11
    34 Szekely J, Henein H, Jarret N. Mathematical Processing Operations. Warrendale, PA: The Metallurgical Society, 1987
    35 Asai S. EPM-The state of the field and its prospects of international development. In: Int. Conf Proceedings on EPM'97,Paris-La-Defense, 1997, 1: 5~12
    36 Li You Zhang. Turbulent reacting flow equations of ψ-ω method with geral orthogonal curvilinear coordinates system. In: Transport Phenomena Science & Technology, 1992. 797
    37 李宝宽,毕春长,赫冀成.自然对流的涡量-流函数法计算.东北大学学报,1995,165:7~12
    38 Szekely J, Wang H J, Kiser K M. Flow pattern velocity and turbulence energy measurements and prediction in a water model of an Argon-Stirred ladle. Metal Trans B, 1976,7B:287~295
    39 DebRoy T, Majumdar A K. Flow phenomena in Argon-Stirred melts, room temperature measurements and analysis. J Met, 1981, November,42~47
    
    
    40 Grevet J H, Szekely J, E1-Kaddah N. An experimental and theoretical study of gas bubble driven circulation system. Int. J Heat Mass Transfer, 1982, 25(4): 487~497
    41 Sahai Y, Guthrie R I L. Hydrodynamics of gas stirred melts: part Ⅰ. gas/liquid coupling. Metal Trans B, 1982, 13B:193~202
    42 Sahai Y, Guthrie R I L. Hydrodynamics of gas stirred melts: part Ⅱ. Axis symmetric flows. Metal Trans B, 1982, 13B:203~211
    43 Salcudean M, Low C H, Hurda A, Guthrie R I L. Three-dimension of heat and mass flow phenomena in gas stirred reactor. Can J ChemEng, 1985, 63:51~61
    44 Joo S, Guthrie R I L. Modeling mixing in steel making ladle. Metal Trans B,1992, 23B:765~778
    45 李宝宽,赫冀成,陆钟武.偏心底吹熔池内三维流场的数值计算.金属学报,1992,28(11):B475
    46 李宝宽,赫冀成,陆钟武.底吹钢包内流动与混合过程的数学模拟.金属学报,1993,29(4):B143
    47 李宝宽,张红伟,赫冀成.底吹钢包内掷入合金的运动分析.北京科技大学学报,1995,17(增刊2):85~90
    48 Li Baokuan, Zhang Hongwei, Jicheng He. Motions of alloying additions in gas stirred ladles. In: Proceedings of The International Symposium on Metallurgy and Materials of Non-Ferrous Metals and Alloys. 1996.311~322
    49 李宝宽,赫冀成.底吹电弧炉流场及混合过程的研究.金属学报,1996,32(5):495~502
    50 Li Baokuan, He Jicheng. Numerical Simulation on Circulating Flow and Mixing of Molten Steel in RH Degassing System Employed A Coupled Domain-Splitting and Coordinate Interlocking. ISS, Steel making Conference Proceedings, 1994, 77:723~727
    51 李东辉,李宝宽,赫冀成.空度技术在复杂装置内流场计算中的应用.东北大学学报,1998,19(增刊)
    52 李宝宽,赫冀成.铁锰合金在底吹钢包中的运动分析.钢铁研究学报,1997,9(5):1~6
    53 Cross M, Markatos N C. Control'84 mineral/metallurgical processing. In: John A Herbst ed. Metallurgical and Petroleum Eng Inc. New York, NY, 1984. 291~297
    54 Johansen S T, Boysan F. Fluid modeling of plume flows in a gas stirred ladles: part Ⅱ. Mathematical modeling. Metal Trans B, 1988, 19:755~764
    55 Turkoglu H, Farouk B. Numerical computations of fluid flow and heat transfer in a gas-stirred liquid bath. Metal Trans B, 1990,771~781
    
    
    56 Li Baokuan, He Jicheng, Lu Zhongwu. Numerical computation of two-phase flow in gas stirring reactors. In: Transport Phenomena of Science and Technology. Higher Education Press, 1992. 314
    57 曲英,杨健,徐保美。底吹钢包内熔渣下流场的研究。金司学报, 1990,26(3B):157-163
    58 Laundar B E, Spalding D B. Computer. Methods in Applied Mechanics and Engineering, 1974, 3: 269-289
    59 Rodi W. Turbulence Models and Their Application in Hydraulics--A State of the Art Review. IAHR Edlft, The Netherlands, 1980
    60 Sheng Y Y, Irons G A. Measurement and modeling of turbulence in the gas/Iiquid two-phase zone during gas injection. Metal Trans B, 1993,248:695-705
    61 Asai S, Szekely J. Turbulent flow and its effects in continuous casting. Iron making and Steel making, 1975, 3:205-213
    62 Thomas B G, Mika L J, Najjar F M. Simulation of fluid flow inside a continuous slab-casting machine. Metal Trans B, 1990,21B: 387-400
    63 Flint P J. Fluid flow and heat transfer in slab continuous casting mold. Steel making Conf Proc, 1990,73:481-490
    64 Aboutalebi M R, Hasan M, Guthrie R I L. Coupled turbulent flow, heat and solute transport in continuous casting processes. Metal Trans B, 1995, 26B: 731-744
    65 Lam C K G, Bremhorst K. A modified form of the k-model for prediction wall temperature. Trans ASME, 1981,103:456-460
    66 Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. model formulation. Int J Heat Mass Transfer, 1987, 30(10) : 2161-2170
    67 Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-H. application to solidification in a rectangular cavity. Numerical Heat Transfer, 1988, 13: 277-296
    68 Aboutalebi M R, Hasan M, Guthrie R I L. Coupled turbulent flow, heat and solute transport in continuous casting processes. Metal Trans B, 1995, 26B: 731-74
    69 Najjar F M, Thomas B G, Hershey D E. Numerical study of steady turbulence flow through bifurcated nozzle in continuous casting. Metal Trans B, 1995,26B: 749-765
    70 Teshima T, Kubota J, Suzuki M. Influence of casting condition molten steel flow in continuous casting mold at high speed casting of slabs. Tetsu-to-Hagane,
    
    
    71 张炯明,赫冀成,李宝宽.吹入气体对连铸结晶器内流场的影响.金属学报,1995,31(6):561~566
    72 李宝宽,赫冀成.连铸机结晶器内气液两相流场的数值研究.见:第三届全国热工模型化会议论文集.包头.1994.9
    73 Sawada I, Kishida Y, Okazawa K, Tanaka H. Numerical analysis of molten steel flow in a continuous casting mold by use of large eddy simulation. Tetsu-to-Hagane, 1993, 79(2): 30~36
    74 Lehman A F, Tallback G R, Kollberg S G, Hackl H R. Fluid flow control in continuous casting using various configurations of static magnetic fields. Int. Symposium On EPM'94, Nagoya, ISIJ, 1994. 372~377
    75 Idogawa A, Tozawa H, Takeuchi S, Sorimachi K. Control of molten steel flow in continuous casting mold by two static magnetic fields imposed on whole width. Int Symposium OnEPM'94, Nagoya, ISIJ, 1994. 378~383
    76 Gardin P, Galpin J M, Regnie M C, Radol J P. Electro magnetic brake influence on molten steel and inclusion behavior in a continuous casting mold. Int. Symposium OnEPM'94, Nagoya, ISIJ, 1994. 390~395
    77 Tanaka T, Furuhashi S, Yoshida M. Flow control using high frequency magnetic field in continuous casting mold. Int. Symposium On EPM'94, Nagoya, ISIJ, 1994. 248~253
    78 雷方,赫冀成,李宝宽.连铸结晶器内钢液流动与传热过程的计算.东北大学学报,1994,15(4):408~412
    79 李宝宽,张永杰,赫冀成.电磁场作用下连铸结晶器内钢液流动与夹杂物轨迹的数值预测.北京科技大学学报,1995,17(增刊2):22~27
    80 李宝宽,赫冀成.电磁制动法缩短钢坯过程段的数值模拟.东北大学学报,1997,18(5):541~545
    81 李宝宽,赫冀成,贾光霖,高允彦.薄板坯连铸结晶器内钢液流场电磁制动的模拟研究.金属学报,1997,33(11):1207~1214
    82 李宝宽.双区制动对连铸机结晶器内夹杂物运动轨迹的影响.东北大学学报,1998,19(增刊)
    83 陈海清.铸件凝固过程数值模拟.重庆大学出版社,1991.4
    84 朱苗勇,萧泽强著.钢的精炼过程数学物理模拟.冶金工业出版社,1998.8
    85 李宝宽,赫冀成编著.炼钢中的计算流体力学.冶金工业出版社,1998.4
    86 查金荣,陈家镛著.传递过程原理及应用.冶金工业出版社,1997.6
    87 肖兴国,谢蕴国编著.冶金反应工程学.冶金工业出版社,1997.5
    88 郭鸿志,张欣欣,刘向军,李杰编著.传递过程数值模拟,冶金工业出版社,1998.4
    
    
    89 郭鸿志.矢性流函数涡量法充型过程数值模拟.北京科技大学学报,1999,21(1):23~25
    90 周尧和,胡壮麒,介万奇.凝固技术.机械工业出版社,1998.9
    91 朱苗勇.板坯连铸结晶器内钢液流动过程的模拟仿真.钢铁,1996,31(8):23~27
    92 朱苗勇,萧泽强.连铸中间包内三维湍流流动的数值模拟.金属学报,1997,33(11):1215~1221
    93 王恩刚.气隙对连铸坯凝固影响的有限元数值模拟.钢铁,1996,31(11):22~26
    94 李顶宜.连铸用钢水温度传热物理数学模型.钢铁,1996,31(11):17~21
    95 杨继进.电磁流体力学在直流电弧炉上的应用.钢铁,1996~31(6):14~17
    96 杨秉俭.板坯连铸结晶器中三维凝固壳厚度分布的数值模拟及实验研究.钢铁,1996~31(9):24~28
    97 李宝宽,赫冀成.计算流体力学在炼钢中的应用与发展.力学进展,1999,29(1):77~86
    98 冈泽健介.电磁制动技术利用连铸铸型内溶钢喷流举动.铁钢,1998~84(7):20~25
    99 八田夏夫,福井隆志.溶钢铸型内流动自由表面形状上流速的非定常举动.铁钢,1996~82(6):285~296
    100 横谷 真一郎.偏流对策用段付特性.铁钢,1996,82(7):581-586
    101 文光华等.薄板坯连铸结晶器内钢液凝固传热数值模拟.连铸,1995(5):14~20
    102 文光华等.薄板坯连铸结晶器内三维流场和温度场的数值模拟.炼钢,1997(8):25~29
    103 马范军,文光华.板坯连铸结晶器内钢液流动数值模拟.金属学报,2000,36(4):399~402
    104 王恩刚,赫冀成.结晶器内连铸小方坯凝固过程及应力分布的有限元数值模拟,金属学报,1999,35(4):433~438
    105 荆德君,蔡开科.连铸结晶器内热—力耦合状态有限元模拟.金属学报,2000,36(4):403~406
    106 周德光.工艺参数对连铸轴承钢坯碳偏析的影响.钢铁,1999,34(6):22~26
    107 周德光.轴承钢连铸坯碳偏析的形成机理及影响因素.北京科技大学学报,1999,21(2):131~134
    108 纪振双.连铸过程采用电磁搅拌时的负偏析带的形成机理.钢铁研究学报,1993,5(2),9~15
    109 郑贤淑.电磁铸造大板坯半连铸过程温度场的数值模拟.金属学报,1999,35(8):861~864
    110 横谷 真一郎.连续铸造用浸渍旋回流吐出流分布制御.铁钢,1994,80(10):20~24
    
    
    111 横谷 真一郎.连续铸造用浸渍内内旋回流持吐出流数值解析.铁钢,1994,80(10):2~30
    112 三木佑司.远心分离溶钢中介在物分离.铁钢,1994,82(6):498~503
    113 池田郁夫.铸型内溶钢流动数值解析.铁钢,1993,79(2):160~166
    114 杨江.连铸凝固仿真的进展.钢铁,1998,33(9):66~68
    115 陈海耿.冶金工业中的计算传热问题和计算传热学的应用.钢铁,1998,33(9):57~61
    116 黄军涛,赫冀成.方坯结晶器电磁制动夹杂物运动轨迹的数值模拟.东北大学学报,2000,21(1):97~100
    117 黄军涛,赫冀成.方坯结晶器电磁制动的数值模拟.东北大学学报,2000,21(6):622~425
    118 邓安元,赫冀成.小方坯初始凝固三维数值模拟.钢铁研究,2000,1:14~18
    119 陈永范.大板坯连铸结晶器内的流场实验研究.炼钢,1998(2),25~28
    120 包燕平.薄板坯结晶器内卷渣现象的研究.北京科技大学学报,1999,21(6)
    121 沈昶,周俐,李建中.异形坯连铸结晶器流场的水模型研究.炼钢,2000,16(1),30~33
    122 阮小东,基于BICC算法的PIV技术.实验力学,1998,13(4),514~519
    123 李振林,董守平.应用PIV技术研究重力式油、气、水分离器的内部流场.实验力学,1999,14(4),492~497
    124 梁宝社.旋转浅水系统Rossby孤立涡选的实验研究.实验力学,1998,13(1),15~19
    125 董守平,双凯.PIV图像粒子像斑定位偏差综合评估试验及其测速误差评估.实验力学,1997,12(1),98~104
    126 汪健生.用热线风速仪同时测量流场速度和温度.实验力学,1998,13(3),393~398
    127 姚仁太,张茂栓.环境风洞中流动的PIV测量.流体力学实验与测量,1999,13(3):91~96
    128 魏同.连铸用耐火材料的现状及今后的发展趋向.国外耐火材料,1999(11):3~12
    129 廖建国译.连铸用耐火材料的评价技术.国外耐火材料,1998(1):3~8
    130 李存弼译.连铸用浸入式水口A1_2O_3堵塞的防范.国外耐火材料,1999(6):39~44
    131 张薇译.浸入式水口在连铸中的侵蚀.国外耐火材料,1999(2):13~19
    132 金荣译.连铸用长寿Al_2O_3-C质长水口的开发.国外耐火材料,1999(5):27~31
    
    
    133 李庭寿.特种耐火材料制品开发的进展.耐火材料,1999,33(11):5~8
    134 廖建国译.连铸用无碳和SiO_2质水口的开发.国外耐火材料,1999(10):58~59
    135 姚全灵,王义长译.连铸用抗氧化铝堵塞水口的研制.国外耐火材料,199(10):59~61
    136 黄锦亮,李文超,钟香崇.ZrO2-CaO-BN复合材料的研制.耐火材料,1999,33(5):257~258
    137 荻林成章,池本 正.连续铸造浸渍内壁付着机构防止对策.耐火物,1994,46(4),166~178
    138 冢本 升,仓科幸信,柳川浩洋.段差型浸渍开发适用.耐火物,1994,46(4),215~223
    139 宫川信夫.ZrO2-CaO-Graphte耐火物难付着性改善.耐火物,1994,46(4),230~237
    140 连铸过程中喷嘴对流型的控制,《世界金属导报》,1999.5.25
    141 蔡廷书.控制连铸坯夹杂物工艺技术的进步.炼钢,1997(12):49~53
    142 Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Pub Corp. 1980
    143 陶文栓.数值传热学.西安:西安交通大学出版社,1988
    144 Launder B E. Spalding D B. Mathematical Models of Turbulence. London: Academic Press; 1972
    145 Patankar. S V. Spalding D B. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. Int. J. Hert Mass Transfer, 1972; 15(8): 1787~1805
    146 苗雨川,邸洪双,张晓明,王国栋,刘相华.双辊铸轧不锈纲带的三维有限元数值模拟.金属学报,2000(36):1109~1111
    147 文光华,祝明妹,何范军,李刚,韩志为,丁培道.双辊铸轧不锈纲带的三维有限元数值模拟.金属学报,2000(36):1001~1004
    148 徐广军,赫冀成.流动控制结晶器磁场分布的实验测试,金属学报,2000(36):1005~1008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700