用户名: 密码: 验证码:
Cyanex923界面性质及其萃取稀土(Ⅲ)的动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土材料是重要的新型功能材料,同时稀土也是改善传统材料性能,使材料产生新特性的重要改性剂和掺杂元素。本论文的主要工作是研究Cyanex923在硝酸体系中萃取稀土La(Ⅲ)、Y(Ⅲ)、Sm(Ⅲ)和Yb(Ⅲ)及其动力学,以及Cyanex923在不同盐析剂浓度、pH值及温度条件下的界面性质。探讨Cyanex923的界面特性与萃取效率之间的相互关系,为稀土元素的萃取提供重要的理论依据。
     1、利用层流恒界面池,通过考察搅拌速度、温度和比界面积对初始萃取速率的影响,研究了用Cyanex923萃取稀土La(Ⅲ)、Y(Ⅲ)、Sm(Ⅲ)和Yb(Ⅲ)的传质模式。实验结果表明,用纯化Cyanex923萃取La(Ⅲ)、Y(Ⅲ)、Sm(Ⅲ)和Yb(Ⅲ)时,正向萃取表观活化能Ea分别为32.0KJ·mol~(-1)、16.4KJ·mol~(-1)、15.1KJ·mol~(-1)和19.2KJ·mol~(-1);用未纯化Cyanex923萃取Yb(Ⅲ)时,正向的萃取表观活化能为12.9kJ·mol~(-1)。纯化Cyanex923萃取La(Ⅲ)的过程为混合控制过程,对Y(Ⅲ)、Sm(Ⅲ)和Yb(Ⅲ)的萃取过程为扩散控制过程;未纯化Cyanex923萃取Yb(Ⅲ)过程也为扩散控制过程。萃取过程的化学反应主要发生在液—液界面上,而不是在本体相内。
     2、通过考察水相离子强度、酸度和有机相浓度对萃取速率的影响,获得了Cyanex923萃取La(Ⅲ)、Y(Ⅲ)和Yb(Ⅲ)的速率方程。实验结果表明,随着Cyanex923浓度的增加,萃取机理会发生改变。萃取剂Cyanex923中的杂质成份在萃取Yb(Ⅲ)的过程中,不仅具有热力学协萃作用,而且还具有很强的动力学协萃效应。
     3、利用Sigma701型界面张力仪,研究了温度、离子强度、pH值和不同稀释剂对萃取剂Cyanex923的界面性质的影响,得到了Cyanex923在不同条件下的界面吸附参数。
     4、根据用Cyanex923萃取稀土的界面特性和萃取动力学的相关信息,探讨了萃取上述RE(Ⅲ)的动力学机理,为进一步开发和利用我国的稀土资源提供了重要的基本数据和理论指导。
The materials of rare earth are important function materials. Rare earth elements are important modification agents and adulterate elements, which can improve the properties of traditional materials. The solvent extraction kinetics of La(Ⅲ), Y(Ⅲ), Sm(Ⅲ) and Yb(Ⅲ) with Cyanex923 in n-heptane from nitrate medium and the interfacial properties of Cyanex923 have been investigated. The goal of this work is to further understand the relationship between the interfacial properties of Cyanex923 and the initial extraction rate, and to offer evidences for extraction mechanism and fundamental information for the applications of solvent extraction of rare earth.
    1. Using a constant interfacial cell with laminar flow, mass transfer kinetics of La(Ⅲ), Y(Ⅲ), Sm(Ⅲ) and Yb(Ⅲ) has been studied. The effects of stirring speed, temperature and specific interface on extraction rate have been reviewed. The results show that the values of apparent activation energy (Ea) of purified Cyanex923 extraction are 32.0KJ.mor-1,16.4 KJ.mol-1, 15.1 KJ.mol-1 and 19.2 KJ-mol"1, respectively. Ea of Yb(IQ) with unpurified Cyanex923 extraction is 12.9 KJ.mol-1. The mass transfer of La(m) is controlled by mixed controlled process, the others are controlled by diffusion. The chemical reactions of extraction process occur at the interface.
    2. The equations of initial extraction rate of La (Ⅲ), Y (Ⅲ) and Yb (Ⅲ) have been obtained. The results show that the extraction mechanism may be changed with the increasing of concentration of Cyanex923. During the process of extraction Yb(Ⅲ), the impurities of Cyanex923 have better kinetic synergism.
    3. Using Sigma 701 interfacial tension instrument, the effects of temperature, ion strength, pH value and different thinner on the properties of Cyanex923 have been studied. The interfacial parameters on extractant are obtained.
    4, According to the interfacial adsorption properties of Cyanex923 and the information of extraction kinetics, the mechanisms of extraction RE(Ⅲ) have been analyzed.
引文
[1] 徐光宪,袁承业.稀土的溶剂萃取.北京:科学出版社,1987,1. 7.
    [2] 李德谦.稀土湿法冶金中的化工问题.化学进展,1995,7(3) :209-213.
    [3] Dziwinski, Szymanowski. Composition of Cyanex923, Cyanex925, Cyanex921 and TOPO. Sol. Extr. Ion Exch., 1998, 16(6) : 1515-1525.
    [4] W A Rickelton, R J Boyle. Solvent extraction with organophosphines: commercial & potential applications. Sep. Sci. Tech., 1998, 23(12&13) : 1227-1250.
    [5] E. K. Watson, W. A. Rickelton, A. J. Robertson, et al., A liquid phosphine oxide:solvent extraction of phenol, acetic acid and ethanol. Solvent Extr. Ion Exch, 1988, 6(2) , 207-220.
    [6] J. W. Anthouse, L. L. Tavalarides, Chem. Res., 1992, 31(8) , 1971.
    [7] A.Garea, A.M.Urtiaga, M.I.Ortiz, Phenol Recovery with SLM Using Cyanex923. Chem. Eng. commun., 1993,120. 85-97.
    [8] Kitazaki H, Ishimaru M, Inoue K, Yoshida K. Separation of baicalein from baicalin by means of solvent extraction. Kagaku Kogaku Ronbunshu,1996, 22 (2) :287-293.
    [9] F.J. Alguacil, F.A.Lopez, The extraction of mineral acids by the phosphine oxide Cyanex923. Hydrometallurgy, 1996,42(2) , 245.
    [10] David Dreisinger, Berend Wassink, Keren Ship, et al., Cyanide Recovery By Solvent Extraction, in Proceedings of ISEC2002, Edited by K. C. Sole, P. M. Cole, J.S. Preston and D. J. Robinson, South African Institute of Mining and Metallurgy Johannesburg, 2002, 798-803.
    [11] M. Wisniewski, Extraction of arsenic from sulphuric acid solutions by Cyanex923. Hydrometallurg , 1997 , 46 , 235-245.
    [12] Bogacki MB, Wisniewski M, Szymanowski J. Effect of extractant on arsenic(V) recovery from sulfuric acid solutions. Journal of Radioanalytical and Nuclear Chemistry, 1998, 228 (1-2) : 57-61.
    [13] Wisniewski M. Removal of arsenic from sulphuric acid solutions. Journal Of Radioanalytical And Nuclear Chemistry, 1998,228 (1-2) : 105-108.
    [14] W. A. Rickelton, Solvent Extr. Ion Exch,l988, 6(6) , 1137.
    [15] Sahu SK, Reddy MLP, Ramamohan TR, Chakravortty V. Solvent extraction of uranium(Ⅵ) and thorium(Ⅳ) from nitrate media by Cyanex923. Radiochimica Acta, 2000, 88 (1) : 33-37.
    [16] Bina Gupta, Poonma Malik and Akash Deep. Separations And Recovery Of Uranium,
    
    Thorium And Lanthanides From Monazite using Cyanex923. in Proceedings of ISEC2002, Edited by K. C. Sole, P. M. Cole, J. S. Preston and D. J.Robinson, South African Institute of Mining and Metallurgy Johannesburg, 1089-1094.
    [17] Dietz ML, Horwitz EP, Sajdak LR, Chiarizia R. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta, 2001,54 (6) : 1173-1184.
    [18] Chun, Kaixi Jiang, Daxing Liu and Haibei Wang. Purification of Copper Electrolyte With Cyanex923. in Proceedings of ISEC2002, Edited by K. C. Sole, P.M. Cole, J. S. Preston and D. J. Robinson, South African Institute of Mining and Metallurgy :Johannesburg, 1039-1044.
    [19] M. Cox, D. S. Flett, T. Velea and C. Vasiliu. Impurity Removal From Copper Tankhouse Liquors By Solvent Extraction, in Proceedings of ISEC2002, Edited by K. C. Sole, P. M. Cole, J. S. Preston and D. J. Robinson, South African Institute of Mining and Metallurgy Johannesburg, 995-1000.
    [20] Caravaca, C. Gold(I) Extraction Equilibrium in Cyanide Media by the Synergic Mixture Primene-81r-Cyanex-923. Hydrometallurgy, 1994,35, 27-40.
    [21] F. J. Alguacil, C.C. aravaca, S. Martfnez. et al., The phosphine oxides Cyanex923 and Cyanex925 as extarctants for gold(#) cyanide aqueous solutions. Hydrometallurg, 1994, 36, 369-384.
    [22] Alguacil FJ, Caravaca C, Martinez S. Extraction of gold from cyanide or chloride media by Cyanex 923. Journal of Chemical Technology and Biotechnology, 1998,72 (4) : 339-346.
    [23] Martinez S, Sastre A, Miralles N, Alguacil FJ. Gold(Ⅲ) extraction equilibrium in the system Cyanex923-HCL-Au(Ⅲ). Hydrometallurgy, 1996, 40 (1-2) : 77-88.
    [24] F. J. Alguacil, C. C. aravaca, J. Mochun. et al., Solvent extraction of Au(CN)2-with mixtures of the amine Primene JMT and the phosphine oxide Cyanex923. Hydrometallurg, 1991,44,359-369.
    [25] Alguacil FJ. Solvent extraction of Au(CN)(2) (-) by mixtures of the primary amine tridecylamine and the phosphine oxide Cyanex923. Journal of Chemical Research-S, 1998, (12) : 792-793.
    [26] Alguacil FJ, Coedo AG, Dorado MT, Padilla I. Phosphine oxide mediate transport: modelling of mass transfer in supported liquid membrane transport of gold (Ⅲ) using Cyanex923. Chemical Engineering Science 2001,56 (10) : 3115-3122.
    [27] Saji J, Rao TP, Iyer CSP, Reddy MLP. Extraction of iron(Ⅲ) from acidic
    
    chloridesolutions by Cyanex923. Hydrometallurgy, 1998, 49 (3) : 289-296.
    [28] John KS, Saji J, Reddy MLP, Ramamohan TR, Rao TP. Solvent extraction of titanium(Ⅳ) from acidic chloride solutions by Cyanex923. Hydrometallurgy, 1999, 51 (1) :9-18.
    [29] Duche SN, Dhadke PM. Comparative study of the determination of platinum by extraction with Cyanex923 and Cyanex471X from bromide media. Journal Of Chemical Technology And Biotechnology 2001 76 (12) : 1227-1234 .
    [30] Duche SN, Dhadke PM. Extraction of palladium(Ⅱ) with Cyanex-923 and Cyanex-471X from bromide media and its separation from Pt(Ⅳ), Rh(Ⅲ) and Ir(Ⅲ). Journal of The Chinese Chemical Society 2001, 48 (6B): 1115-1122.
    [31] Alguacil FJ, Martinez S. Solvent extraction equilibrium of zinc(Ⅱ) from ammonium chloride medium by CYANEX 923 in Solvesso 100. Journal of Chemical Engineering of Japan, 2001, 34 (11) : 1439-1442.
    [32] Martinez S, Alguacil FJ. Solvent extraction of zinc from acidic calcium chloride solutions by Cyanex923. Journal of Chemical Research-S, 2000, (4) : 188-189.
    [33] Alguacil FJ, Navarro P. Permeation of cadmium through a supported liquid membrane impregnated with CYANEX 923. Hydrometallurgy, 2001, 61 (2) : 137-142.
    [34] Alguacil FJ, Martinez S. Permeation of iron(Ⅲ) by an immobilised liquid membrane using Cyanex923 as mobile carrier. Journal of Membrane Science, 2000, 176 (2) : 249-255.
    [35] Gupta B, Deep A, Malik P. Extraction and recovery of cadmium using Cyanex923. Hydrometallurgy, 2001, 61 (1) : 65-71.
    [36] Bina Gupta, S. N. Tandon and Akash Deep. Recovery of Cobalt And Nickel From Spent Catalysts using Cyanex923. in Proceedings of ISEC2002, Edited by K. C.Sole, P. M. Cole, J. S. Preston and D. J. Robinson, South African Institute of Mining and etallurgy : Johannesburg, 793-797.
    [37] D. Thierry , S. J. Louis, Eur. Pat. Appl, 284, 504 ( Cl. C 22B3/00) .
    [38] Reddy MLP, Varma RL, Ramamohan TR, Sahu SK, Chakravortty V. Cyanex923 as an extractant for trivalent lanthanides and yttrium. Solvent Extraction and Ion Exchange, 1998,16 (3) : 795-812.
    [39] 王春,中国科学院长春应用化学研究所博士学位论文,1995.
    [40] 储德清,中国科学院长春应用化学研究所硕士学位论文,1998.
    [41] K. H. Soldenhoff, Value Adding Through Solvent Extraction (ISEC'96 ) edited by D. C. Shallcross, R. Paimin, L. M. Prvcic, The university of Melbourne, 1996,469.
    
    
    [42] 李德谦,陆军,魏正贵等,中国专利,一种从氟碳铈矿浸出液中萃取分离铈(Ⅳ)、钍的工艺,申请号:98122348.6。
    [43] Kizim N F. The dynamic separation of substances by liquid- liquid extraction. Russian Chemical Review, 1992, 61(8): 830-850.
    [44] Barnes H. The determination of mercury by means of Dithi-zone. Analyst (London), 1947, 72: 469-472.
    [45] US P. 2955913, Ref. Zh. Khim. 1961, (19) 19K66.
    [46] Kizm N Ph, Davidov Yu P and Larkov A P. Dynamic separa-tion of some d-and felements by liquid-liquid extraction. ISEC'96, Vol. 1: 575-580.
    [47] Daoud J A and Aly H F. Kinetic approach for Er(Ⅲ) and Am(Ⅲ) separation using selective thenoy ltrifluoroacetone-triphenylarsine oxide systems. ISEC'96, Vol. 1: 475-480.
    [48] 郑重,中国科学院长春应用化学研究所博士学位论文,1996.
    [49] Moelwin-Hughes, E.A., The Kinetics of Reaction in Solution, Oxford University Press, 1950, 7.
    [50] Forst, A.A., Kinetics and Mechanism, Wiley Interscience, 1956, 1077.
    [51] Danesi P R. Armolex: an apparatus for solvent extraction kine-tic measurements. Sep. Sci. Tech., 1982, 17(7): 961-968.
    [52] Lewis J B. The mechanism of mass transfer of solutes across liquid-liquid interfaces. Chem. Eng. Sci., 1954, 3: 248-259.
    [53] 朱屯,陈长庆,新型恒界面池系统及其应用.化学通报,1988,2:32-33.
    [54] 郑重,李德谦.层流型恒界面池(专利号:ZL94220491.3;专利批准日:1995年3月31日;专利申请日:1994年9月6日).
    [55] Zhong Zheng, Jun Lu, Deqian Li and Genxiang Ma. The kinetics study in liquid-liquid systems with constant interracial area cell with laminar flow. Chem. Eng. Sci., 1998, 53(13):2327-2333.
    [56] 王玉洁,张淑敏,李德谦.中空纤维膜萃取分离混合稀土中的钍.中国稀土学报,1998,16(3):193-198.
    [57] 王玉洁,张淑敏,李德谦.铈与RE(Ⅲ)的中空纤维膜基萃取分离.高等学校化学学报,1998,19(6):970-972.
    [58] 张凤君,李德谦.HEHEHP在中空纤维膜器中萃取钕钐及传质的研究.高等学校化学学报,1998,19(1):514-516.
    [59] 陆军,中国科学院长春应用化学研究所博士学位论文,1998.
    [60] S. Muralidharan and H. Fresier. CPC: Tool for practical separation of metals and
    
    fundamental investigations of chemical chemical mechanisms. ISEC'96, Vol. 1:427-432.
    [61] Genxiang Ma, H. Freiser and S. Muralidharan. Interfacial catalysis of formation and dissociation of tervalent lanthanide complexes in two-phase systems. Anal. Chem., 1997, 69:2827-2834.
    [62] H. Fresier. New tools for old questions in solvent extraction chemistry. ISEC'96, Vol.1:11-16.
    [63] D. Homer. Interphase trasfer kinetics of uranium using the drop method, Lewis cell and kenics mixer. Ind. Eng. Chem. Fundam., 1980,19(1):103-109.
    [64] Fresier H. New tools for old questions in solvent extraction chemistry. ISEC'96, Vol.1:11-16.
    [65] Yulizar Y., Ohashi A., Watarai H. Kinetic complexation mechanisms of Ni(Ⅱ) and Zn(Ⅱ) with a pyridylazo-ligand at liquid-liquid interfaces. Analytica Chimica Acta, 2001, 447, 247-254.
    [66] M. A. Hughes. Rate of extraction of cobalt from an aqueous solution to D2EHPA in a Growing drop cell. Hydrometallurgy, 1985, 13(3):249-264.
    [67] H. Watarai. Automated system for solvent extraction. Anal. Chem. , 1982, 54:2390-2392.
    [68] 戴各生.萃取法在稀盐酸溶液中分离钨钼的研究.稀有金属 1986,5(3):171-178.
    [69] Whewell R J. The kinetics of the solvent extraction of copper(Ⅱ) with LIX reagents-Ⅰ: Single drop experiments. JINC, 1975, 37:2303-307.
    [70] Kolarik S. The rate of lanthanide(Ⅲ) extraction by HDEHP from complexing media. JINC, 1974, 36: 905-909.
    [71] Krystyna Prochaska. Interfacial activity of metal ion extractant. Advances in colloid and Interface Science, 2002,95:51-72.
    [72] P. R. Danesi. The Kinetics of Metal Solvent Extraction. CRC Critical Reviews in Analytical Chemistry, 1980, 10(1): 1-114.
    [73] G.A. Yagodin et al., Solvent Extr. Ion Exch., 1984, 2(2): 139
    [74] 於静芬,吉晨,有机磷酸混合萃取体系的界面化学及动力学控制机制研究,高等学校化学学报,1992,13(2):224-226。
    [75] 乐善堂,马根祥,李德谦等.铒在HBTMPTP-正庚烷/水溶液间的传质动力学.高等学校化学学报,2000,21(6):832-835.
    [76] G.F.Vandegrift and E.P. Horwttz, Interfacial activity of liquid-liquid Extraction Reagents-Ⅰ. Dialkyphosphorous based acids. J. Inorg.nucl. Chem. 1980, 12:119-125.
    
    
    [77] Jan Szymanowski and Krystyna Prochska, The surface Excess Isotherms and the Mechanism of Copper Extraction by hydroxyoximes. J. of Colloid and Interface Science. 1988,125 (2): 649-656
    [78] Jan Szymanowski and Krystyna Prochaska, The surface Excess and the rate of copper extractionHydrimetallurgy, 1990, 25:329-348
    [79] J. Szymanowski, K. Prochaska and K.Alejski., Interfacial behavior of LIX 65N and surface kinetics of copper extraction, Hydrometallurgy, 1990, 25:329-348
    [80] H.H.Chen and E.Ruckenstein., Correlation between the stability of Concentrated Emulsions and the interfacial Free energy between the two phases. J. of Colloid and Interface Science. 1990, 138(2): 473-479
    [81] Mark L. Dietz and Henry Freiser, Role of the interface in the Kinetics and Mechanism of Nickel extraction with certain Halogen and Alkyl-substituted 8-Quinolinols, Langmuir, 1991, 7:284-288
    [82] J.Szymanowski, I. Blondet, B. ore, et al., Interfacial activity of dinonylnaphtha-lene sulphoric acid in the presence of modifiers possessing an hydroxyl group. Hydrometallurgy, 1992, 28:277-296
    [83] Gerard Cote, Jan Szymanowski, Processing of interfacial tension data in solvent extraction studies, interfacial properties of various acidic organ ophosphorus extractants. J. Chem. Tech. Biotechnol., 1992, 54:319-329
    [84] 于胜军,唐季安.表(界)面张力测定方法的进展,化学通报,1997,11:11-15.
    [85] 朱(王步)瑶,赵国玺.液体表(界)面张力的测定—滴体积介绍.1981,6:21-26.
    [86] 吴树森,朱耀辉.恒速滴重法测定动态界面张力.华东理工大学学报,1996,22(1):96-102.
    [87] 吴有庭,梅乐和,朱自强等.旋转液滴法界面张力仪的建立以及液液界面张力的测定.化工学报,1996,47(4):510-14.
    [88] 储德清,李德谦等.Cyanex923对稀土元素硝酸盐的萃取.分析化学,1998,26(11):1346-1349.
    [89] Liao Wu-ping, Yu Gui-hong, Yue San-tang, et al. Kinetics of Cerium Extraction from H_2SO_4-HF Medium with Cyanex923. Talanta, 2002, 56(4): 613-618.
    [90] 廖伍平,中国科学院长春应用化学研究所博士学位论文,2002.
    [91] Liao Wuping, Shang Qingkun, Yu Guihong, et al. Three-phase extraction study of Cyanex923-n-heptane/H_2SO_4 system. Talanta, 2002,57(6):1085-1092.
    [92] 洪水皆,任鸿德.微量稀土的螯合滴定.化学学报,1965,31(1):91-94.
    [93] 孙都成,乐善堂,李德谦.DMHMP萃取稀土元素萃取动力学徒为的递变规律.溶剂萃
    
    取进展.广州:暨南大学出版社,1998,108-115.
    [94] 郑左西,顾忠茂,吴全锋.HEHEHP从硫酸介质中萃取Y~(3+)的动力学研究.核化学与放射化学,1996,18(4):213-216.
    [95] J.Szymanowski, Kinetics and Interfacial Phenomena. olvent Extraction and Ion Exchange, 2000,18(3):729-751.
    [96] P. Beudaert, V. Lamare,J.-F.Dozol,L.Troxler, G.Wipff, Theoretical studies on TBP:MD simulations in vacuo, in water, in chloroform and at a water/chloroform interface. Solvent Extraction and Ion Exchange, 1998,16(2):597-618.
    [97] A.K. Mohammed, J. C. Sullivan, K. L. Nash, Kinetics of the complexation of UO_2(NO_3)_2 with tributyl phosphate (TBP) in xylene. Solvent Extraction and Ion Exchange, 2000,18(3): 809-820.
    [98] Youssef touhami, Vladimir Hormof, Graham H.Neale, Dynamic interfacial tension behavior of acidified oil/surfacetant-enhanced alkaline systems—2. Theoretical studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 133(1998)211-231.
    [99] KSV Inetruments Ltd., Sigma 701 Instruction Manual. Helsinki, Finland, 2001.
    [100] 孙国新,杨永会,孙思修.萃取剂HDEHP界面性质研究.高等学校化学学报,1995,16(11):1677-1679.
    [101] 朱(王步)瑶,赵振国.界面化学基础.北京:化学工业出版社,1996.
    [102] 杨天林,杨永会,孙思修.胺类萃取剂液-液体系界面性质研究—水相pH值、水相介质及温度对N1923界面吸附性能的影响.溶剂萃取新进展,北京:冶金工业出版社,1991.
    [103] 戴乐蓉,董向群.界面张力的温度系数.物理化学学报,1999,15(1):64-68.
    [104] 赵国玺.表面活性剂物理化学.北京:北京大学出版社,1991.
    [105] 刘长欣,崔玉,杨永会等.HDEHP的界面性质及萃取动力学机理.高等学校化学学报,1997,18(3):460-462.
    [106] 孙思修,孙国新,崔玉等.不同稀释剂中HDEHP的界面性质研究.化学学报,1997,55,64-68.
    [107] 沈静兰,奚正楷,高自立等.液-液萃取体系界面特性的研究.应用化学,1984,1(4):57-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700