用户名: 密码: 验证码:
好氧颗粒污泥同步硝化反硝化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用厌氧颗粒污泥通风培养驯化获得具有同步硝化反硝化功能的好氧颗粒污泥,使异
    养菌、硝化菌和反硝化茵等共存于一个颗粒中,微生物间形成相互协作、互为共生的关系,
    构成一个具有同步硝化反硝化功能的反应体系。
    本文研究了同步硝化反硝化好氧颗粒污泥特性、反应过程以及微生物相分布,硝化反
    硝化反应模式及通氧优化,好氧颗粒污泥的动力学常数及传质模式,温室气体N2O的产生
    过程及控制方法。主要研究内容如下:
    i.好氧颗粒污泥的培养
    利用厌氧颗粒污泥好氧培养,93d后转化获得的好氧颗粒污泥具有良好的生物活性和同
    步硝化反硝化特性,在反应过程中COD去除率达90%,氨氮去除率近98%,几乎检测不到
    NO2--N和NO3--N,好氧颗粒污泥建立了良好的硝化反硝化反应体系。在过程研究中,2h
    反应后73. 6%有机物被代谢去除,3h反应后COD浓度降至87m/L,NO2--N和NO3--N在反
    应液中的浓度继续下降,6h的反应显示好氧颗粒污泥具有良好的同步硝化反硝化能力。
    稳定状态下颗粒的平均直径为2. 26mm,好氧颗粒污泥粒径在2. 1~2. 8mm范围的占全部
    颗粒污泥的60%,污泥停留时间约22d;1. 5L反应器中颗粒污泥数量约1. 1×104个,比表面
    积为389m2/m3:好氧颗粒污泥的最大沉降速度约9cm/min,所能承受的最大力为23. 236N;
    反应器内MLSS 8g/L,SV 15~28%,SVI 20~38ml/g。观察发现好氧颗粒污泥具有适合好氧
    和厌氧反应的微环境,颗粒污泥表面结构紧密,主要是球状细菌,内部有较大的空隙,主
    要为杆状细菌。
    ii.好氧颗粒污泥生长特性
    颗粒污泥最适宜硝化反硝化反应的温度范围为25~38℃,最适的pH范围在7~8之间,
    最佳的溶解氧浓度在1-2mg/L。好氧颗粒污泥对有机物和氨氮的亲和常数分别为100mg/L
    和2mg/L。当COD浓度为1500mg/L时,好氧颗粒污泥对氨氮的利用率下降;当氨氮浓度
    超过400mg/L时,有机物降解速率下降,高的氨氮浓度引起硝化中间产物硝酸盐和亚硝酸
    
    
    J.~_…“_........一一一止生垫鱼丝宜全丝‘一一一
    盐的积累,抑制好氧微生物活性。
    Luongs模型,仔=叮~
    二〕卫二旦己丝{2二,较好地拟合了底物抑制实验过程,模型对coD
     C:+Ks
    拟合性护为0.9932,对N场+一为尸为0.9916。氨氮对颗粒污泥降解CoD的抑制常数为
    凡=lll.lmg几,a=0.836;对氨氮降解的抑制常数为凡=103.lm叭,a=1.08。流加培养过程
    中,采用低氨氮浓度(30m叭)流加,过程很少积累N仇一和NOZ一;氨氮流加浓度为200m叭
    时,No3一和NoZ一的积累量分别为12m泌和3om叭;氨氮浓度400m叭时,2h后N仇一
    的量增加到60m叭,硝化反硝化过程受抑制。
     COD吸附实验发现,反应Zh后颗粒污泥吸附COD量达每g干污泥56.7mg。同时,颗
    粒污泥中微生物在胞内积累PHAs,积累的PHAs以电子供体的形式参与了颗粒污泥的反硝
    化反应。
    111.好氧颗粒污泥生物相分析
     根据分离获得的细菌形态特征和初步的生理生化特性,初步鉴定出颗粒污泥中含假单
    胞菌属(Ps eudomonas)5株,亚硝化单胞菌属(Nitros口monas)7株,硝化杆菌属(从如胡ira)4株、
    气单胞菌属(A eromonas)3株、黄单胞菌属〔枷nth口monas)2株、抱杆菌属(加‘illus)4株、黄色
    杆菌属(知nthobacter)2株、产碱菌属(A lealigenes)2株。分离获得的菌属中包含了硝化反应
    的亚硝化单胞菌属和硝化杆菌属微生物,以及具有好氧反硝化性能的Pseudomonas和
    通Icaligenes菌。
     摇瓶培养混合微生物进行脱氮实验,30h内有机物去除率在75%,氮去除率近50%。
    无菌条件下在多孔载体上培养混合微生物,30d后,微生物在多孔载体上附着生长,氨氮去
    除率达到84%,总氮(含氨氮、硝基氮和亚硝基氮)去除率63%。经过培养,含载体的反应器
    利用分离得到的微生物逐步形成具有同步硝化和反硝化功能。
    iv.好氧颗粒污泥同步硝化反硝化反应机制及溶解氧条件影响
     用Monod方程拟合分析不同溶解氧浓度情况下的比硝化反应速率,得硝化反应半饱和
    常数(尤浏)和最大比硝化反应速率常数(彻玩工)分别为1.osm叭和40.2助吮MLSS/I nin。拟合
    比反硝化速率实验数据,得反硝化反应氧抑制常数(凡动和最大比反硝化反应速率常数
    仇加巴)分别为o.806mg几和36.38知岁gMLSS/min。利用动力学参数,可以计算完全同步硝化
    反硝化反应所需的溶解氧浓度,为o.927m妙。
     不同DO情况下反应CoD去除率均在90%以上,出水cOD低于60 mg几,好氧颗粒
    污泥具有良好的有机物代谢能力。高溶解氧浓度份3,omg几)可提高硝化反应速率,但易造成
    反应过程积累NoZ一N和No3一N;低溶解氧浓度(夕.omg/L),反应积累的硝化产物少,颗粒
    污泥具有更好的反硝化反应能力。
    
    中文摘要
     在好氧颗粒污泥脱氮过程中,短程硝化反硝化与全程硝化反硝化途径并存。高DO情
    况下,大部分NOZ一被氧化为NO3一,NO3一N再在颗粒污泥内部还原为气态氮。而在低
    DO情况下,NOZ一通过短程反硝化反应直接还原为气态的NZO和NZ。同样情况通过”N
    同位素实验可证实,低COD加比由于缺乏有机物而影响颗粒污泥的反硝化反应。研究反应
    过程中各中间产物’SN量变化,发现部分氨氮不通过NO3一’加而直接通过 NOZ一’SN?
Anaerobic granular sludge was trained under the condition of aeration to be aerobic granular sludge with the function of simultaneous nitrification and denitrification. Microorganisms like heterotrophic bacteria; nitrification and denitrification bacteria grew in the aerobic granular sludge, and cooperated and supported each other during reaction. The aerobic granular sludge became an ideal place for simultaneous nitrification and denitrification.
    With the aerobic granular sludge, the characteristics and reaction process, feature and distribution of microorganisms, the kinetic and mechanism of reaction, the generation and control of N2O were studied in a 2L reactor. Main research and corresponding results are described as follow from five aspects: i. Cultivation of aerobic granular sludge
    Anaerobic granular sludge was changed to aerobic granular sludge under the condition of aeration after 93d cultivation. The aerobic granular sludge obtained had the function of simultaneous nitrification and denitrification. Over 90% COD and almost 98% NH4+-N could be removed during the reaction period with aerobic granular sludge, NO2~-N and NO3--N in effluent were not detected. Aerobic granular sludge had established the good reaction system of nitrification and denitrification. In a 6h reaction process, 73.6% COD was removed at 2h, COD degraded to 87mg/L after 3h, while the concentration of NO2~-N and NO3--N was decreased continually. The 6h reaction process showed that the aerobic granular sludge had strong ability of simultaneous nitrification and denitrification.
    The aerobic granular sludge obtained had the average diameter 2.26mm, the range of 2.1 ~2.8mm granular sludge was 60% of all sludge. STR was 22d, there were about 1.1 x 104 granular in the 1.5L reaction. The special surface of granular was 389m2/m3, the maximum sedimentation speed was 9cm/min, and the maximum affording force was 23.236N. In the reaction, MLSS was 8g/L, SV 15-28%, SVI 20~38ml/g. Observed under the microscope, it
    
    
    was found that the granular sludge was a suitable place for the reaction of aerobic and anaerobic reaction, the surface structure of granular sludge was mainly tighten by coccus, and the internal had a lot of gaps grown by bacilli. ii. Growth characteristics of aerobic granular sludge
    The best suitable growth temperature of aerobic granular sludge for simultaneous nitrification and denitrification was 25-3 8 , the pH 7-8 and the DO 1 ~2mg/L. The affinity constants of aerobic granular sludge for ammonium and COD were less than 2mg/L and 100mg/L respectively. When the COD concentration and ammonium were over 1500mg/L and 400mg/L respectively, the consumption rates of COD and ammonium decreased correspondingly. With high ammonium concentration in broth, the midst products of nitrification, nitrite and nitrate, accumulated during the reaction that restricted the activity of aerobic granular sludge.
    Lungs model, fitted the experimental data best (R2 for COD
    0.9932, for NH4+-N 0.9916). The coefficients were Kt=111.1mg/L, a=0.836 for inhibition of COD consumption by ammonium, and Ki=103.1mg/L, a=1.08 for inhibition of ammonium oxidation by ammonium. During cultivation by fed-batch experiment with low concentration of ammonium (30mg/L), there were low nitrite and nitrate existed after reaction; with concentration of 200mg/L, nitrite and nitrate were 12 and 30mg/L in broth; and with concentration of 400mg/L, nitrite was 60mg/L in broth after 2h that restricted the reaction.
    With the adsorption experiment of COD, it was found that aerobic granular sludge could adsorb COD 56.7mg/gSS after 2h. Simultaneously, PHAs was accumulated in the bacteria in granular sludge, and it served as the electron donor for effective simultaneous nitrification and denitrification. iii. Microorganism distribution and mixing cultivation of aerobic granular sludge
    According to the features of morphology, physiology and biochemistry of 29 bacteria separated from the aerobic granular sludge, it concluded that there were 5 Pseudomonas, 1 Nitrosomonas, 4 Nitrospira, 3
引文
Abeliovich A, Vonshak A. Anaerobic metabolism of Nitrosomonas europaea. Arch. Microbiol., 1992, 158:267-270
    Ahlers B, Konig W, Bock E. Nitrite reductase activity in Nitrobacter vulgaris. FEMS Microbiol. Lett. 1990, 67:121-6
    Alphenaar PB, Visser A, Lettinga G. The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulfate content. Bioresearch Technology, 1993,43:249-58
    Andreadakis AD. Physical and chemical properties of activated sludge floes. Wat. Res, 1993,27:1707-14
    Anderson IC, Poth M, Homstead J, Burdige D. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl. Environ.
    
    Microbiol. 1993,59:3525-33
    Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P, Prosser JI. Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 1997, 63:2281-6
    Beun JJ, Ban Loosdrecht MCM, Heijnen JJ. Aerobic granulation. Wat Sci Tech, 2000,41(4-5) :41-48.
    Beun JJ, Hendriks A, Van Loosdrecht MCM. Aerobic Granulation in a Sequencing Batch Reactor. Wat Res,1999 ,33(10) : 2283-2290.
    Bock E, Koops HP, Harms H. Nitrifying bacteria. In:Autotrophic Bacteria. Schlegel HG & Bowien B. (Eds.), Science Tech Publishers, Madison, WI and Springer Verlag, Berlin, 1989, 81-96
    Bock E, Schmidt I, Stuven R, Zart D. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron accetpor. Arch. Microbiol. 1995,163:16-20
    Bock E, Wilderer PA, Freitag A. Growth of Nitrobacter in the absence of dissolved oxygen. Water Res. 1988,22:245-50
    Bodelier PLE, Frenzel P. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl. Environ. Microbiol. 1999,65:1826-33
    Both GJ, Gerards S, Laanbroek HJ. Kinetics of nitrite oxidation in two Nitrobacter species grown in nitrite-limited chemostats. Arch. Microbiol. 1992, 157:436-41
    Brock TD, Madigan MT, Martinko JM, Parker J. Biology of microorganisms. Upper Saddle River NJ, USA. Prentice Hall, 1997
    Burns RC, Hardy RWF. Nitrogen fixation in bacteria and higher plants. Berlin, Springer Verlag, 1975 Carpertier B & Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl. Bacteriol. 1993, 75:499-511
    Characklis WG. Laboratory biofilm reactors. In Characklis WG and Marshall KC (Eds.): Biofilms. New York, 1990
    Costerton JW, Lewandowski Z, Debeer D. Biofilms, the customized microniche. J. Bacteriol. 1994, 176:2137-42
    De Beer D, Vav Der Heuvel JC, Ottenfraf SPP. Microelectrode measurements in nitrifying aggregates. Appl Env Microbiol, 1993, 59: 573-579.
    De Boer W, Gunnewiek Pak, Veenhuis M, Bock E, Laanbroek HJ. Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl. Environ. Microbiol. 1991, 57:3600-4
    Delong EF, Wickham GS, Pace NR. Phylogenetic strains: ribosomal RNA based probes for the identification of single cells. Science, 1989,243:1360-3
    Dolfing J. Acetogenesis. Ecology of Anaerobic Microorganisms, Zehnder (Ed.). Wiley Interscience, 417-468,1988
    Ebersold HR, Cordier JL, Luthy P. Bacterial mesosomes: Method dependent artifacts. Arch. Microbiol. 1981, 130: 19-22
    Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp nov and its phylogenetic relationship. Arch. Microbiol. 1995,164:16-23
    Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PH. Structure of cytochrome c nitrite reductase. Nature. 1999,400:476-80
    Etterer T, Wilderer PA. Generation and properties of aerobic granular sludge. Wat Sci Tech, 2001,43(7) :19-26.
    Ferguson SJ. Is a proton pumping oxidase essential for energy conservation in Nitrobacter? FEBS Lett.
    
    1982,146:239-43
    Ferguson SJ. Denitrification and its control. Antonie van Leeuwenhoek Int. J.Gen. Mol.MicrobioI. 1994, 66:89-110
    Ferguson SJ. Nitrogen cycle enzymology. Curr. Opin. Chem. Biol. 1998:182-93
    Focht DD, Chang AC. Nitrification and denitrification processes related to wastewater. Adv. Appl. Microbiol, 1975, 19:153-86
    Freitag A, Bock E. Energy conservation in Nitrobacter, FEMS Microbiol. Lett. 1990,66:157-62
    Gee CS, Pfeffer JT, Suidan MT. Nitrosomonas and Nitrobacter interactions in biological nitrification. J. Environ. Eng. 1990, 116(1) :4-17
    Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW. Production of NO2-and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 1980, 40:526-32
    Guiot SR, Pauss A, Costerton WJ. A structured model of the anaerobic granule consortium. Wat. Sci. Tech. 1992,25:1-10
    Halling-Sorensen B, Hjuler H. Simultaneous nitrification and denitrification with and upflow fixed bed reactor applying clinoptilolite as media. Wat. Treat, 1992, 7: 77-88
    Hanaki K, Hong Z, Matsuo. Production of nitrous oxide gas during denitrification of wastewater. Water Sci. Technol. 1992, 26:1027-36
    Harada H, Uemura S, Momonoi K. Interaction between sulfate-reducing bacteria and methane producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Wat. Res. 1994, 28:355-67
    Hellinga C, Schellen AAJC, Mulder JW, Van Loosdrecht MCM, Heijnen JJ. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 1998, 37:135-42
    Helmer C, Kunst S. Simultaneous nitrification/denitrification in an aerobic biofilm system. Wat. Sci. Tech. 1998, 37(4-5) : 183-877
    Hirorns WD, Hastings RC, Head IM, McCarthy AJ, Saunders JR, Pickup RW, Hall GH. Amplification of 16s ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology, 1995,141:2793-800
    Ho K. Biological nutrient removal in activated sludge processes with low F/M, sludge bulking control. Ph.D. thesis. The University of Queensland, Australia, 1994
    Hooper AB, Vannelli T, Bergmann DJ, Arciero DM. Enzymology of the oxidation of ammonia to nitrite by bacteria. J. Gen. Mol. Microbiol., 1997,71:59-67
    Janssen LPBM, Warmoeskerken MMCG. Transport phenomena data companion. Delft, Delft University Press, 1987
    Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommereningroser A, Koops HP, Wagner M. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge-nitrosococcus mobilis and nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 1998,64:3042-51
    Kester RA, De Boer W, Laanbroek HJ. Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Appl. Environ. Microbiol. 1997,63:3872-7
    Kuenen JG, Robertson LA. Combined nitrification-denitrification processes. FEMS Microbiol. Rev. 1994,15: 109-17
    Lettinga G, Hulshoff PLW, Zeeman G. Biological wastewater treatment: Anaerobic Treatment). Department of Environmental Technology, Wageningen Agricultural University, The Netherlands, 1993.
    Lewis DL, Gattie DK. Effects of cellular aggregation on the ecology of microorganisms. American Soc. Microbiol. News. 1990,56:263-268
    
    
    Lloyd H, Ketchum Jr. Design an physical features of sequencing batch reactors. Water Sci. Tech. 1997, 35(1) :11-18
    Lipschultz F, Zafiriou OC, Wofsy SC, McElroy MB, Valois FW, Watson SW. Production of NO and N2O by soil nitrifying bacteria. Nature,1981, 294:641-3
    Madigan MT, Martinko JM, Parker J. Brock Biology of Microorganisms, Prentice Hall, 473-531, 1997
    Masuda S, Watanabe Y, Ishiguro M. Biofilm properties and simultaneous nitrification and denitrification in aerobic rotating biological contactors. Wat. Sci. Tech. 1991, 23(7-9) : 1355-63
    Mateju V, Cizinska S, Krejci J. Biological water denitrification-a revies. Enzyme Microb. Technol. 1992, 14:170-183
    Mishima K, Makamura M. Self-immovilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Wat Sci Tech, 1991, 23: 981-990.
    Mitchell P. Chemiosmotic coupling and energy transduction. Theor. Exp. Biophys, 1969,2:159-261
    Moriyama K, Sato K, Harada Y, Washiyama K and Okamoto K. Simultaneous biologicalremoval of nitrogen and phosphorus using oxic-anaerobic-oxic process. Wat. Sci. Tech. 1990,22(7-8) :61-66
    Murray RGE, Watson SW. Structure of nitrocyctis oceanus and comparison with Nitrosomonas and Nitrobacter.J. Bacterial, 1965,89:1594-609
    Munch EV, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactor. Wat. Res. 1996,30(2) : 277-284
    Okayasu Y, Abe I, Matsuo Y. Emission of nitrous oxide from high-rate nitrification and denitrification by mixed liquor circulating process and sequencing batch reactor process. Water Sci. Technol. 1997,36:39-45
    Oleszkiewicz JA. Granulation in Anaerobic sludge bed reactors treating food industry wastes. Biological waste. 1988
    Pachana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND). Wat. Sci. Tech. 1999, 39(6) :600-605
    Payne W. Denitrification. New York, Wiley, 1981
    Poth M, Focht DD. 15N Kinetic analysis of N2O production by Nitrosomonas europaea: an wxamination of nitrifier denitrification. Appl. Environ. Microbiol, 1985,49:1134-41
    Rittmann BE, Langeland WE. Simultaneous denitrification with nitrification in single-channel oxidation ditches. Journal WPCF. 1985, 57(4) :300-308
    Robertson LA, Gijs KJ. Aerobic denitrification: a controversy revived. Arch. Microbiol. 1984, 139:351-354
    Robertson LA, Kuenen JG. Nitrogen removal from water and waste. In: Microbial control of pollution. Fry JC, Gadd GM, Herbert RA et al. (Eds.). Cambridge University Press, Cambridge, 1992, 227-267
    Robertson LA, Van Neil EWJ. Simultaneous denitrification with nitrification in aerobic chemostat cultures of thiophaera pantotropha. Appl. Environ. Microbiol. 1988, 54(1) : 2812-18
    Schlegel HG, Bowien B. Autotrophic Bacteria. Berlin, Springer Verlag, 1987
    Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 1997, 167:106-11
    Schmidt I, Gries T,Willuweit T. Nitrification-Fundamentals of the metabolism and problems at the use of ammonia oxidizers. Acta Hydrochim. Hydrobiol, 1999,27:121-35
    Schramm A, De Beer D, Wagner M, Amann RI. Identification and activities in situ of Nitrosospira and Nitrospira spp. As dominant populations in a nitrifying fluidized bed reactro. Appl. Environ. Microbiol. 1998, 64: 3480-5
    Schulthess RV, Kuhni M, Gujer W. Release of nitric and nitrous oxides form denitrifying activated sludge. Water Res. 1995, 19:215-26
    Shin HS, Lim KH, Park HS. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed
    
    reactors. Wat Sci Tech. 1992, 26(3-4) : 601-605.
    Siegrist H, Reithaar S, Koch G, Lais P. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Wat. Sci. Tech. 1998, 38(8-9) :241-248
    Sorokin DY, Muyzer G, Brinkhoff T, Kuenen JG, Jetten MSM. Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch. Microbiol. 1998, 170:345-52
    Spector M. Production and decomposition of nitrous oxide during biological denitrification. Water Environ. Res. 1998,70:1096-98
    Spieck E, Aamand J, Bartosch S, Bock E. Immunocytochemical detection and location of the membrane-bound nitrite oxidoreductase in cells of Nitrobacter and Nitrospira. Fems Microbiol. Lett. 1996,139:71-6
    Spieck E, Enrich S, Aamand J, Bock E. Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis. Arch. Microbiol. 1998, 169:225-30
    Spieck E, Muller S, Engel A, Mandelkow E, Patel H, Bock E. Two-dimensional structure of membrane-bound nitrite oxidoreductase from nitrobacter hamburgensis. Journal of Structural Biology. 1996,117:117-23
    Stanley JT, Bryant MP, Pfennig N. Bergey's manual of systematic bacteriology. Williams & Wilkins, 1807-35, 1989
    Stephen JP, Kowalchuk GA, Bruns MV, Mccaig AE, Phillips DJ, Embley TM, Prosser JI. Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 1998, 64:2958-65
    Teske A, Alm EW, Regan JM, Toze S, Rittmann BE, Stahl DA. Evolutionary relationships amnong ammonia-and nitrite-oxidizing bacteria. J. Bacteriol. 1994, 176:6623-30
    Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. Formation and growth of heterotrotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol Bioeng, 1994, 44: 595-608.
    Third KA, Burnett N, Cord-Ruwisch R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR. Biotech. & Bioeng. 2003, 83(6) :706-720
    USA EPA. Nitrogen Control. Technomic Publishing Company, Inc., Lancaster, Pennsylvania 17604, USA, 1991
    Van Benthum WAJ, Garrido-Fernandez JM, Tijhuis L. Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor. Biotechnol Prog, 1996, 12(6) :764-772.
    Van Der Hoek JP. Granulation of denitrifying sludge, In:Granular aerobic sludge, G Lettinga, AJB Zehnder, JTC.Grotenhuis and LW Hulshoff Pol(eds), Pudoc, Wageningen, The Netherlands, 203-210, 1993.
    Van Lier JB, Boersma, Debets MM, Lettinga G. High rate thermophilic anaerobic wastewater treatment in compartmentalized upflow filters. Wat. Sci. Tech. 1994,30:251-261
    Van Loosdrecht MCM, Tijhuis L, Wijdieks AMS. Population distribution in aerobic biofilms on small suspended particles. Wat. Sci. Tech. 1995, 31(1) : 163-171
    Van Neil EWJ. Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification. Ph.D thesis, Delft University of Technology, Delft, 1991
    Von Schulthess R, Wild D, Gujer W. Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration. Water Sci. Technol. 1994,30:123-32
    Watanabe Y. Simultaneous nitrification and denitrification in micro-aerobic biofilms. Wat. Sci. Tech. 1992, 26(3-4) :511-522
    Weast RC, Lide DR. Handbook of Chemistry and Physics. 70th ed., Boca-Raton CRC Press, 1989 Wiesmann U. Biological nitrogen removal from wastewater. Adv. Biochem. Eng.-Biotechnol. 1997, 51:113-53
    
    
    Williams RJP, Frausto D. The natural selection of the chemical elements. Oxford, Clarendon Press, 1996 Woese CR. Bacterial evolution. Microbiol. Rev., 1987, 51:221-71
    Wood PM. Nitrification as a bacterial energy source. In Prosser J (Ed.): Nitrification. Oxford, IRL Press, 1986:39-62
    Yoo H, Ahn KH. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrifcation (SND) via nitrite in an intermittently-aerated treactor. Wat. Res. 1999, 33(1) : 145-154
    Zaccone R, Caruso G, Azzaro M. Detection of nitrosococcus oceanus in a mediterranean lagoon by immunofluorescence. J Appl. Bacteriol. 1996, 80:611-6
    Zhao HW, Mavinic DS, Oldham WK. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Wat. Res. 1999, 33(4) :971-978
    Zart D, Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol, 1998, 169:282-6
    Zeng H, Hanaki K, Matsuo T. Production of nitrous oxide gas during nitrification of wastewater. Water Sci. Techno). 1994,30:133-41
    Zumft WG. The denitrifying prokaryotes. In Balows A, Truper HG, Dworkin M, Harder W, and Schleifer KH(Eds.): The Prokaryotes, 2nd ed. Berlin, Springer Verlag, 1992
    陈坚,环境生物技术,中国轻工出版社,1999
    陈坚,无锡轻工大学博士学位论文,1990
    陈文新主编.土壤和环境微生物学.北京农业大学出版社,北京,1990
    杨麒,李小明,曾光明,谢珊,刘精今.SBR系统中同步硝化反硝化好氧颗粒污泥的培养.环境科学.2003, 24(4) :94-98
    卢然超,张晓健,张悦.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响.环境科学,2001,22(2) : 87-90
    郑兴灿,李亚新编著.污水除磷脱氮技术.中国建筑工业出版社,北京,1998
    朱兆良,邢光熹.氮循环.清华大学出版社,北京,2002
    竺建荣,刘纯新,何建中.厌-好氧交替工艺的生物除磷特性研究.环境科学学报,1999,19(4) :394-398
    竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究.环境科学,1999,20(2) :39-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700