用户名: 密码: 验证码:
电去离子(EDI)过程及其用于水中Cu~(2+)离子的脱除与浓缩的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电去离子(Electrodeionization,EDI),是结合离子交换膜与离子交换树脂,在
    直流电场的作用下实现连续去离子操作的一种新型分离过程,它能够在无需化学
    酸碱再生的条件下,对低浓度溶液进行深度脱盐。近年来,EDI 在纯水生产领域
    获得了日益广泛的应用。本文考察了 EDI 对低浓度 CuSO4溶液中离子的脱除和
    浓缩性能,以评价 EDI 同时回收纯水和重金属的可能性。
     建立了以浓水部分循环方式操作的一级两段 6 个膜对的 EDI 膜堆,有效膜面
    积为 135cm2,考察了膜堆电压,淡水流量,循环比,原水浓度和 pH 值等因素对
    Cu2+离子的脱除和浓缩性能的影响。在一定的操作条件下,对于 Cu2+离子浓度为
    50mg/L 的原料水,通过 EDI 处理后,其产出淡水电阻率可达 2.2-5.6 MΩ.cm,
    Cu2+离子浓度低于仪器的检测限,脱除率>99.99%;浓水中 Cu2+离子浓度可达
    800-1200 mg/L。研究结果表明,EDI 能够在不需化学再生的条件下实现对 Cu2+
    离子的深度脱除和浓缩,有望成为具有巨大优越性的重金属废水回收技术。
     考察了各种不同的装置设计和操作条件对处理低浓度 CuSO4 溶液的 EDI 过
    程的影响。研究表明,树脂的类型,混合比例及膜堆电压等对过程的正常运行产
    生影响。凝胶型树脂在电再生模式下变黑失效;过大的阴阳树脂比例导致树脂床
    层和膜面形成 Cu(OH)2和 CuO 沉淀;工作电压过高则造成金属铜在膜的表面还
    原沉积。在系统实验研究和理论分析的基础上,采用适当比例的大孔树脂,同时
    改善膜堆电阻,则可建立起连续,稳定的 EDI 运行条件。
     通过对实验过程的分析,证实 EDI 过程存在两种不同的运行模式。离子浓度
    较高的条件下,EDI 在增强传质模式下运行,树脂保持为盐型,EDI 的去离子作
    用主要通过树脂对离子传递的增强来实现;离子浓度很低时,EDI 在电再生模式
    下运行,树脂被电化学地再生为 H 型和 OH 型,过程相当于连续获得再生的混
    床离子交换。对这两种运行模式的基本过程特点做了进一步的分析讨论。
     建立了三维离子扩散-迁移模型,结合第二类电渗理论,描述了 EDI 过程的
    离子传递机理。离子交换树脂/膜与溶液界面层中高达 108-109V/m 的电势梯度,
    造成第二 Wien 效应,加速了水解离反应;而 Cu2+离子参与质子传递反应,对水
    解离反应产生催化作用。两种因素的综合作用,导致 EDI 过程水解离的发生。
     本文工作首次在国内建立了 EDI 脱除和浓缩稀溶液中重金属离子的膜堆和
    实验体系,确立了连续稳定操作的条件,取得了重金属与纯水同时回收的良好效
    果,同时系统分析了这一 EDI 新过程的运行模式和传质机理,为重金属废水处
    理 EDI 技术的进一步开发提供了理论和技术支持。
Electrodeionization(EDI) is a novel separation process combining ion exchange
    resins and ion exchange membranes in a stacked unit which is capable of continuous
    deionization under the influence of a DC electric field. Electrodeionization is
    consistent with a model of a continuous regenerated mixed resin bed and is
    well-suited for deep deionization of dilute solutions without chemical regenerations.
    In recent years, EDI has been widely accepted as a competitive technology to produce
    high purity water. In this paper, performances of the EDI process for the removal and
    concentration of Cu2+ ions from dilute CuSO4 solutions were investigated. The
    purpose of the study is to evaluate the viability of the recovery of both high purity
    water and heavy metals from dilute heavy-metal-ion containing wastewaters by the
    EDI process.
     A laboratory two-stage EDI unit with six cell pairs was built for studies on the
    treatment of dilute heavy-metal-ion containing wastewaters in this work. Each ion
    exchange membrane had an effective area of 135cm2.The EDI process was operated
    in a flow mode with partial concentrate recirculation. Effects of stack voltage, dilute
    flowrate, recirculation ratio, Cu2+ concentration and pH of the feed solution on the
    performance of the EDI process were investigated. Under certain conditions, for a
    feed solution with Cu2+ concentration of 50mg/L, EDI was able to produce a pure
    water product containing non-detectable concentrations of Cu2+. Dilute resistivity of
    the EDI process was in the range of 2.2-5.6 MΩ.cm. Cu2+ removal was greater than
    99.99%; a concentrate stream with Cu2+ concentrations in the range of 800-1200 mg/L
    was also achieved. The test results suggest that EDI is capable of deep deionization
    and concentration of dilute CuSO4 solutions without chemical regenerations and is a
    potentially viable technology for the recovery of heavy-metal-ion containing
    wastewaters.
     Effects of different cell configurations and operating conditions on the
    performance of the EDI process for dilute CuSO4 solution treatment were investigated.
    It was found that the type of the resin, the composition of the mixed resin bed and the
    stack voltage are crucial to the operation of the process. Gel type resin become black
    and ineffective in the electroregeneration regime. A high ratio of anion exchange resin
    over cation exchange resin leads to the formation of Cu(OH)2 and CuO precipitation
     II
    
    
    in the resin bed and on the membrane surface. Copper reduction on the membrane
    surface take place if the stack voltage is too high. Based on the analyses of these
    phenomena, measures were adopted to eliminate those negative effects. Macroporous
    type cation/anion exchange resins were mixed with appropriate ratio, and a reduction
    of stack resistance was fulfilled. With these improvements, a steady and continuous
    EDI process was achieved.
     It is demonstrated that EDI works in two different regimes. At high salinity, the
    resins in the dilute streams remain in the salt forms, and the deionization efficiencies
    are derived from the resin-enchanced electrical conductivity of the dilute
    compartment; at low salinity, the resins are electrochemically converted to the
    hydrogen and hydroxide forms, and deionization is consistent with a model of a
    continuous regenerated mixed resin bed. The characteristics of the two different
    regimes are discussed.
     A three-dimensional diffusion-migration model was established. This model,
    combining the theory of electroosmosis of the second kind, were used to qualitatively
    explain the ion transport mechanism of the EDI process. The potential gradient of
    108-109V/m at the resin-solution or membrane-solution interface leads to the second
    Wien effect which accelerates the water dissociation reaction. Cu2+ ions are involved
    in the proton transfer reaction and are catalytically active to the water dissociation
    reaction. The combination of the second Wien effect with the catalytic effect of Cu2+
    ions is the origi
引文
[1] Kunin, R., Myers, R. J., Ion Exchange Resins, New York: John Wiley&Sons,
     1950,109
    [2] Walters, W. R., Weiser, D. W., Marek, L. J., Concentration of radioactive
     aqueous wastes, Industrial And Engineering Chemistry, 1955,47(1):61-67
    [3] Kollsman, P., Electrodialytic apparatus, US Patent 2689826, 1954-09-21
    [4] Pearson, R.G., Ion exchange method and apparatus, US Patent 2788319,
     1957-04-09
    [5] Pearson, R.G., Electrolytic Deionization, US Patent 2794777, 1957-06-04
    [6] Kollsman, P., Apparatus for transferring electrolytes from one solution into
     another, US Patent 2799644, 1957-07-16
    [7] Kollsman, P., Method and Apparatus for Treating Ionic Fluids by Dialysis, US
     Patent 2815320, 1957-12-03
    [8] Sammon, D. C., Watts, R., E., An Experimental Study of Electrodeionization
     and Its Application to the Treatment of Radioactive Wastes, Rep. U. K. Atom.
     Energy Auth., AERE-R3137, Chemistry Division, U.K.A.E.A. Research Group,
     Atomic Energy Research Establishment, Haewell (June, 1960)
    [9] Gittens, G.J., Watts, R., E., Some Experimental Studies of Electrodeionization
     Through Resin Packed Beds, Rep. U. K. Atom. Energy Auth., AERE-R4517,
     Chemistry Division, U.K.A.E.A. Research Group, Atomic Energy Research
     Establishment, Haewell (March, 1964)
    [10] Glueckauf, E., Electro-deionization through a packed bed, British Chemical
     Engineering, 1959,646-651
    [11] Gittens, G.J., The application of electrodialysis to demineralization, AICHE
     Symp. Ser., 1965,9:79-83
    [12] Kressman, T.R.E., Process for the removel of dissolved solids from liquids, US
     Patent 2923674, 1960-02-02
    [13] Parsi, E.J., Removal of dissolved salts and silica from liquids, US Patent
     3149061, 1964-09-15
    [14] Parsi, E.J., Removal of weakly basic substances from solution by
     electrodeionization, US Patent 3291713, 1966-12-13
    [15] Rosenberg, N.W., Tirrell, C.E., Limiting currents in membrane cells, Industrial
     And Engineering Chemistry, 1957,49(4):780-784
    [16] Matejka, Z., Continuous production of high-purity water by electro-deionization,
     J.Appl.Chem.Biotechnol., 1971,21:117-119
    [17] Shaposhnik,V.A.; Reshetnikova,A.K.; Zolotareva,R.I. et al. Demineralization of
     Water by Electrodialysis with Ion-exchanger Packing Between the Membranes.
     Zhurnal Prikladnoi Khimii, 1973,46(12):2659-2663
     122
    
    
    参考文献
    [18] Korngold,E. Electrodialysis process using ion-exchange resins between
     membranes. Desalination, 1975,(16):225-233
    [19] Korngold,E. Electridialysis in Water Desalination and the Influence of Ion
     Exchange Resin Introduction into the Apparatus. Proc. Int. Symp. Brackish
     Water Factor Dev, 1976: 209-216
    [20] Kedem,O. Reduction of Polarization in Electrodialysis by Ion-Conducting
     Spaers. Desalination, 1975,(16): 105-118
    [21] Kedem,O. Reduction of Polarization in Electrodialysis by Ion-Conducting
     Spaers. Desalination ,1975, (16): 105-118
    [22] Kedom,O.;Tanny,G., A simple Electrodialysis Stack. Desalination,
     1978,(24):313-319
    [23] Kedem,O.; Cohen,I. EDS-Sealed Cell Electrodialysis. Desalination,
     1983,(46):291-299
    [24] Govindan,K.P.; Narayanan,P.K. Demineralization by electrodialysis using
     ampholytic ion-conducting spacers. Desalination, 1981,(38):517-527
    [25] Demkin, V, I., Tubashov, Y. A., Panteleev, V.I., Karlin, Y.V., Cleaning low
     mineral water by electrodialysis, Desalination, 1987,(64):367-374
    [26] Korngold, E.; Selegny, E., Method of Separation of Ions from a Solution,
     US Patent 3686089, 1972-08-22
    [27] Tejeda,A.R., System for demineralizing water by electrodialysis, US Patent
     3869376, 1973-5-14
    [28] Thomas, D., Electrically regenerated ion exchange system, US Patent 4032452,
     1977-06-28
    [29] Kedem, O., Kedem, A., Electrodialysis device, US Patent 4038550, 1977-07-05
    [30] Borisovsky, I.V et al., Device for producing deeply desalted water, US Patent
     4165273, 1979-08-21
    [31] Giuffrida, A.J., Electrodialysis process for silica removal, US4298442,
     1981-11-3
    [32] O’hare, H.M., Method and apparatus for the purification of water, US Patent
     4465573, 1984-08-14
    [33] Giuffrida,A.J., Jha, A.D., Ganzi, G.C., Electrodeionization Apparatus. US
     Patent 4,632,745, 1986-12-30
    [34] Ganzi,G.C.; Egozy,Y.; Giuffrida,A.J. High Purity water by electrodeionization:
     performance of the Ionpure continuous deionization systems. Ultrapure water,
     1987,4(3):43-50
    [35] Ganzi,G.C. The IonpureTM Continuous deionization process: Effect of electrical
     current distribution on performance. Proceedings of the 80th Annual AICHE
     meeting on Nov. 28, 1988
    [36] Giuffrida,A.J., Electrodeionization Apparatus and Method. US Patent 4,925,541,
     1990-05-15
    [37] Giuffrida,A.J., Electrodeionization Method and Apparatus. EP 0,346,502A1,
     123
    
    
    参考文献
     1989-12-20
    [38] Giuffrida,A.J., Electrodeionization Method and Apparatus. US Patent 4,931,160,
     1990-06-05
    [39] Giuffrida,A.J.; Ganzi,G.C.; Yoram,O., Electrodeionization apparatus and module.
     US Patent 4,956,071, 1990-09-11
    [40] Ganzi,G.C. Electrodeionization for High Purity Water Production. AICHE Symp.
     Ser., 1988, 84(261):73-83
    [41] Yabe,K.; Motomura,Y; Ishikawa,H. et al. Responding to the Future Quality
     Demands of Ultrapure Water. Microcontamination, 1989, (7):37-46,68
    [42] Ganzi,G.C. IonpureTM CDI electrodeionization systems. New product and
     process development for high purity water production. Proceedings of the
     International Conference on Ion Exchange, ICIE’91, Oct 2-4, 1991, p317
    [43] Ganzi,G.C. Water Purification and Recycling Using the Ionpure CDI Process.
     AICHE Summer National Meeting, Paper 41c,1991
    [44] Ganzi,G.C. Electrodeionization for high purity water production. AICHE Symp.
     Ser., 1991, May, 73-83
    [45] Wilkins,F.R.; Mcconnelee,P.A. Continuous Deionization in the Preparation of
     Microelectronics-Grade Water. Solid State Technol. 1988, 31(8):87-92
    [46] Parise,P.L. Demineralization: the use of Ionpure continuous Deionization for the
     production of pharmaceutical and semiconductor grades of water. Ultrapure
     water, 1990,7(8):14,16-8,20,22,24,26-8
    [47] Ganzi,G.C.; Parise,P.L. The production of Pharmaceutical Grades of Water
     Using Continuous Deionization Post-Reverse Osmosis. J. Parenter. Sci.
     Technol., 1990, 44(4):231-241
    [48] Kitty,K.S.; Anil,D.J.; Ganzi,G.C. Millipore Corporation. Depletion
     Compartment and Spacer Construction for Electrodeionization Apparatus. US
     Patent 4,747,929, 1988-05-31
    [49] Keith,A.P. Depletion Compartment for Deionization Apparatus and Methods.
     US Patent 4,804,451, 1989-02-14
    [50] Ganzi, Gary C.; Wood,J.H.; Griffin,C. Water purification and recycling using
     the CDI Process. Environmental Progress, 1992, (11): 49-53
    [51] Parsi,E.J.; Sims,K.J.; Elyanow,I.D.; et al. Introducing and Removing
     Ion-exchange and Other Particulates from an Assembled Electrodeionization
     Stack. US Patent 5,066,375, 1991-11-19
    [52] Liang, L., Ganzi,G.C.;Wilkins,F., Modules for electrodeionization apparatus, US
     Patent 5292422, 1994-3-8
    [53] Deguchi Toshiaki, Iwasaki Kunihiro, Electrodeionization apparatus, EP
     1068901, 2001-1-17
    [54] Osawa Masabobu, Kato Osamu, Electrodeionization apparatus and pure water
     producing apparatus, EP 1075868, 2001-2-14
    [55] Sato Shin; Arase Fumio; Moribe Takayuki; Electrodeionization apparatus,
     124
    
    
    参考文献
     EP1086746, 2001-3-28
    [56] Ganzi,G.C.; Giuffrida,A.J. The Effect of Ion-Exchange Membrane Properties on
     the Ionpure Continuous Deionization Process. Proceedings of the 1990
     International Congress on Membranes and Membrane Processes. Aug. 1990,
     861-863
    [57] IP Holding Corporation. Electrodeionization Apparatus. US Patent 5,308,466.
     1994-05-03
    [58] Ganzi,G.C.; Lexington,D.; Wilkons,F. Electrodeionization Apparatus. US Patent
     5,316,637, 1994-05
    [59] MacNonald,R.J. Acid efficient membrane for use in electrodialysis for recovery
     of acid. US Patent 4,822,471, 1989-04-18
    [60] Batchelder,B.T.; Elyanow,I.D.; Goldstein,A.L.; et al. Electrodialysis including
     filled cell electrodialysis (electrodeionization). US Patent 5,503,72, 1996-04-02
    [61] Elyanow,I.D.; Mcrae,W.A.; Sims,K;J. Electrodialysis including filled cell
     electrodialysis (electrodeionization). US Patent 5,679,228, 1997-10-21
    [62] Oren,Y. et al. Process for Purifying Water. US Patent 5,154,809, 1992-10
    [63] Oren,Y.; Giuffrida,A.; Cacclo,Stephen. Process for purifying water. EP
     0422,453A2, 1991-04-17
    [64] Tamura, M., Apparatus for electrically producing deionized water, US Patent
     6,436,264, 2002-8-20
    [65] Terada, I et. al. Method and apparatus for producing deionized water, US Patent
     5,961,805, 1999-10-5
    [66] Parsi,E.J.; Sims,K.J.; Elyanow,I.D.; et al. Introducing and removing
     ion-exchange and other particulates from and assembled electrodeionization
     stack. US Patent 5,120,416, 1992-06-09
    [67] Parsi,E.J.; Sims,K.J.; Elyanow,I.D.; et al. Introducing and removing
     ion-exchange and other particulates from an assembled electrodeionization
     stack. US Patent 5,203,976, 1992-04-20
    [68] Ganzi,G.C.; Wilkins,F. ; Giuffrida,A.J; Continuous electrodeionization apparatus
     and method, US Patent 6,312,577, 2001-12-6
    [69] Ganzi,G.C.; Mass,L.; DiMascio,F. Electrodeionization apparatus and method.
     US Patent 5,868,915, 1999-02-09
    [70] Kunz,G., Process and apparatus for treatment of fluids, particularly desalination
     of aqueous solutions, US Patent 4,636,296, 1987-1-13
    [71] DiMascio,F.; Ganzi,G.C.; Electrodeionization apparatus and method. US Patent
     5,858,191, 1999-1-12
    [72] DiMascio,F.; Jha, A.;Ganzi,G.C.; Wilkins,F. ; Electrodeionization apparatus and
     method. US Patent 2002/0011413A1, 2003-1-31
    [73] Barber, J.H.; Tessier, D.F; Method and apparatus for electrodeionization of
     water using mixed bed and single phase ion exchange materials in the diluting
     compartment, US Patent 6,197,174, 2001-3-6
     125
    
    
    参考文献
    [74] Tessier, D. F.; Toupin,J.D.R.; Towe, I.G.; Electrodeionization apparatus having
     geometric arrangement of ion exchange material, US Patent 6,156,180,
     2000-12-5
    [75] Mir,L.; Electrodeionization apparatus with scaling control, US Patent 6,187,162,
     2001-2-13
    [76] Mir,L.; Electrodeionization apparatus with scaling control, US Patent 6,296,751,
     2001-10-2
    [77] Denoncourt, J.P.; Moulin, J.; Electrodeionization process for purifying a liquid,
     US Patent 5,593,563, 1997-1-14
    [78] Dejean,E.; Laktionov,E.; Sandeaux,J. et al. Electrodeionization with
     ion-exchange textile for the production of high resistivity water: Influence of the
     nature of the textile. Desalination, 1997, (114):165-173
    [79] Dejean, E.; Sandeaux,J.; Sandeaux,R. et al. Water demineralization by
     electrodeionization with ion-exchange textiles. Comparision with conventional
     electrodialysis. Separation Science and Technology, 1998,(33):801-818
    [80] Laktionov,E.; Dejean,E.; Sandeaux,J. et al. Production of high resistivity water
     by electrodialysis. Influence of ion-exchange textile as conducting spacers.
     Separation Science and Technology, 1999,(34):69-84
    [81] Takanobu,S.; Ishigaki,I.; Fujiwara,K. Ebara Corporation. Electrically
     regenerable demineralizing apparatus. US Patent 5,308,467, 1994-05-03
    [82] Uchino, h.; Tajima, M.; Horie, H.; Demineralization apparatus and cloth for
     packing diluting chamber of the demineralization apparatus, US Patent
     5,512,173, 1996-4-30
    [83] Giuffrida,A.J.; Ganzi,G.C.; Yoram,O., Electrodeionization apparatus and module.
     EP 0,379,116A2, 1990-07-25
    [84] Oren, Yoram; Eaozy,Yair. Studies on polarity reversal with continuous
     deionization, Desalination, 1992,(86):155-172
    [85] William,E.K.; Elyanow,I.D.; Sims,K.J. Eelectrodeionization Polarity Reversal
     Apparatus and Process. US Patent 5,026,465, 1991-06-25
    [86] Gallagher,C.J.; Wilkins,F; Ganzi,G.C. Polarity reversal and double reversal
     electrodeionization apparatus and method. US Patent 5,558,753, 1996-09-24
    [87] Philippe,R.; Samuel,A.; Hans-Peter Alt. High-purity water production with the
     latest modular electrodeionization technology. Ultrapure water,
     1997,(14):40-46
    [88] Jha, Anil D.; Gifford,J.D. CEDI: selecting the appropriate configuration. Power
     Engineering, 2000,( 104):41-42
    [89] Millipore Corporation. Process for Purifying Resin Utilizing Bipolar Interface.
     EP 0,519,504A1, 1992-12-23
    [90] Giuffrida,A.J.; Egozy,Y. Method for Defouling Electrodeionization Apparatus.
     US Patent 4,753,681, 1988-06-28
    [91] Krishnamurity,N.M.; Basking,R.N.J. Desalting aqueous streams via filled cell
     126
    
    
    参考文献
     electrodialysis. US Patent 6,017,433, 2000-01-25
    [92] Krishnamurity,N.M.; Basking,R.N.J. Desalting aqueous streams via filled cell
     electrodialysis. EP 0,916,620A2, 1999-05-19
    [93] Tessier, D. F. et al., Method and apparatus for reducing scaling in
     electrodeionization systems and for improving efficiency thereof, US Patent
     6,056,878, 2000-5-2
    [94] Guido, V.; Franco, C.; Process for demineralizing water, particularly by
     electrodeionization, EP1090885, 2001-11-4
    [95] Tessier, D.F; Glegg,R.; Barber, J.H.; Method and apparatus for preventing
     scaling in electrodeionization units, US Patent 6,149,788, 2000-11-21
    [96] Giuffrida,A.J.; Electrodialysis process for silica removal, US Patent 4,298,442,
     1981-11-3
    [97] Parsi,E.J. Apparatus for the removal of dissolved solids from liquids using
     bipolar membranes. US Patent 4,871,431, 1989-10-03
    [98] Parsi,E.J. Apparatus and Process for the Removal of Acidic and Basic Gases
     from Fluid Mictures Using Bipolar Membranes. US Patent 4,969,983, 1990-11
    [99] Helfferich,F.G. Ion Exchange, NewYork: Mcgraw Hill book company,
     1962;250-322
    [100] Verbeek, H.M.; Furst, L.; Neumeister, H.; Digital simulation of an
     electrodeionization process. Computers chem..Engng, 1998(22):s913-s916
    [101] Jha, Anil D.; Gifford,J.D. CEDI: selecting the appropriate configuration. Power
     Engineering, 104, 8, Aug 2000, 41-42
    [102] White,Janet. Electrodeionization and Ultraviolet Light Treatment Method for
     Purifying Water. US Patent 5,116,509, 1992-05-26
    [103] White,Janet. Electrodeionization and ultraviolet light treatment method for
     purifying water. EP 0,417,506A1, 1991-03-20
    [104] Oizumi,Motomu. Production of pure water by reverse osmosis and continuous
     electrodeionization. JP 11,244,854A2
    [105] Madoka,T.; Sakae,K. High-purity water producing apparatus utilizing
     boron-selective ion-exchange resin. US Patent 5,833,846, 1998-10-10
    [106] Madoka,T.; Sakae,K. High-purity water producing apparatus utilizing
     boron-selective ion-exchange resin. US Patent 5,833,846, 1998-10-10
    [107] Koizumi,Motomu. Production of pure water by reverse osmosis and degassing
     and continuous electrodeionization. JP 11,244,853A2.
    [108] Koizumi,Motomu. Production of pure water useful in washing lenses,
     semiconductors or liquid crystals. JP 11,262,771A2.
    [109] Haddock,Marvin E. Multi-stage engine coolant recycling apparatus and processl.
     WO 00,024,683A1
    [110] DiMascio, Felice; Wood,Jonathan; Fenton,James,M. Continuous
     electrodeionization: production of high-purity water without regeneration
     chemicals. Electrochemical Society Interface, 1998,(7):26-29
     127
    
    
    参考文献
    [111] Zhang,L.; Hernon, B.,P., Bernitz, F., S., Electrodeionization adds new
     dimension to IX, RO. Power, 1998(142) :53-56
    [112] Edmonds,Chris, Salem,Eli. An economic comparison between EDI and
     mixed-bed ion exchange. Ultrapure water, 1998,15(9):43-49
    [113] Katz,Willliam E. Deionization. EDI and membrane: practical ways to reduce
     chemical usage when producing high-purity water. Ultrapure water,
     1999,16(6):52,54-55,57
    [114] Liang,LiShiang; Wood,Jonathan;Hess,William. Design and Performance of
     Electrodeionization System in Power Plant Applications. Ultrapure water,
     1992,9(7):41-2,44-6,48
    [115] Coker, Gary; Williamson,Tom; Sims,Keith et al. Makeup water trentment
     incorporating electrodeionization along with triple membrane treatment at grand
     gulf nuclear station. Annual Meeting – International Water Conference Oct
     19-21, 1992, 249-254
    [116] Cartwright, Peter. Prepared discussion: makeup water treatment incorporation
     electrodeionization (along with triple membrane treatment at grand gulf nuclear
     station). Annual Meeting – International Water Conference Oct 19-21, 1992,
     255-256
    [117] Strauss, Sheldon, D. Optimize water-treatment economics at your powerplant.
     Power, 1995, (139):29-34
    [118] Griffin,C.; Fournier,C.; Dunleavy,M. et al. Regeneration without Chemicals.
     Proceedings of the 1991 Condensate Polishing Workshop, A2, June 20, 1991
    [119] Corelie Goffin; Jean,Claude Calay. Use of continuous electrodeionization to
     reduce ammonia concentration in stream grnerators blow-down of PWR nuclear
     power plants. Desalination, 2000, (132): 249-253
    [120] Eighth Supplement, US Pharmacopoeia. 1995. 4320-4321
    [121] John M. Finlay. A novel approach to a pharmaceutical R&D high purity water
     system. Pharmaceutical Engng., 1995, May/June: 88-96
    [122] Pfafflin,Annette. Validation of a water treatment system for water injection and
     purified water. Pharma Technol. J., 2000, 1079: 72-78,80-86
    [123] Weems,John; Pandya,Ken. Lessons learned: the installation of a 300 to 600
     GPM semiconductor high-purity water system. Ultrapure water,
     1999,16(7):26-32
    [124] The National Technology Roadmap for Semiconductors, 1997 Edition
     (Semiconductor Industry Association, 181 Met Drive, Suite 450, San Jose, CA
     95110)
    [125] Nonnvan, R.P.; Morrison,D.J. Recycle spent rinse waters with EDI.
     Semiconductor International, 1999,(22):161-166
    [126] Parker,R. Electrodeionization in the Semiconductor Fab Recycle System.
     Proceedings of the 18th Annual Semiconductor Pure Water and Chemicals
     Conference, March 1-4, 1999, 219-238
     128
    
    
    参考文献
    [127] Colbert, G.L.; Reeves, G.; Combs, G.; Edmonds, C.; Make boiler feedwater with
     lower risks. Hydrocarbon Processing, 1997, August:57-61
    [128] Michael,R.P. Clean Water for Better Plating. Product Finish, 1992, 56(6):70-74
    [129] Dunleavy,M.J. Continuous deionization for the production of electrocoat
     makeup water. SME Technical Paper (Series) FC 1993 Publ by SME 1-11
    [130] St-Legier,R.B.; La Tour-De-Peilz,M.C. Demineralization of sweet whey by
     electrodeionization. US Patent 5,980,961, 1999-11-09
    [131] St-Legier,R.B.; La Tour-De-Peilz,M.C. Demineralization of milk and
     milk-derived products by electrodeionization. US Patent 6,033,700, 2000-03-07
    [132] Haddock,M.E.; Eaton,E.R. Recycling used engine coolant using high-volume
     stationary, multiple technology equipment. ASTM Spec. Tech. Publ., STP
     1335(Engine Coolant Testing: Fourth Volume), 1999,251-260
    [133] Kheira,S.; Jacqueline,S.; Jean,M. et al. Elimination of nitrate from drinking
     water by electrochemical membrane process. Desalination, 1995,(101):123-131
    [134] Spiegel, E.F.; Thompson,P.M.; Helden,D.J. et al. Investigation of an
     electrodeionization system for the removal of low concentrations of ammonium
     ions. Desalination, 1999,(123):85-92
    [135] Parsi,E.J.; Lexington,M. Apparatus and Process for the Removal of Acidic and
     Basic Gases from Fluid Mictures Using Bipolar Membranes. US Patent
     4,969,983.
    [136] Ganzi,G.C.; Lexington,M. Purified ion exchange resins and process. US Patent
     5,259,936, 1993-11-09
    [137] 国营 742 厂. 高纯电渗析实验概况. 电渗析技术资料选编, 北京: 中国建筑
     工业出版社, 1975 年:187-194
    [138] 中科院原子核研究所. 填充床电渗析及其在处理低放废水中的应用. 水处
     理技术, 1981, 增刊:1-6
    [139] 李恒勤, 薛培法, 骆大星等. 离子交换纤维电渗析处理低放废水扩大试验.
     水处理技术, 1982,8(1):26-30
    [140] 杨洪渊. 用填充床电渗析直接处理废水同时制取纯水. 水处理技
     术,1985,11(5):53-57
    [141] 黄亦普, 陈朝. 树脂填充床电渗析制高纯水的脱盐机理. 水处理技术,
     1981,7(2):17-21
    [142] 撒应福, 沈华容, 戴国隆. 新型离子交换导电网电渗析器. 膜分离科学与技
     术, 1982,2(2):50-63
    [143] 杨渭渔. 离子传导隔网对电渗析极化的影响. 净水技术, 1983,2(3):1-5
    [144] 江维达, 沈炎章, 李东等. 均质离子交换导电网应用于电渗析脱盐的效果.
     水处理技术, 1983,9(4):28-35
    [145] 沈炎章, 李东, 江维达等. 离子交换导电网的组装形式对电渗析行为的影
     响. 水处理技术, 1983,9(4):36-38
    [146] 骆大星, 李恒勤, 范国萍等. 离子交换纤维填充床电渗析的研究. 水处理技
     术, 1985,11(3):36-38,47
     129
    
    
    参考文献
    [147] 骆大星, 李恒勤, 薛培法等. 离子交换纤维高纯电渗析的研究. 原子能科学
     技术, 1986,(6):660-669
    [148] 杨洪渊. 堆工低放废水的电渗析处理工艺. 庆祝中国海水淡化与水再利用
     学会成立 10 周年论文报告会论文预印集. 1990, 236-242
    [149] Yang Hongyuan. Resin Packed Bed-Electrodialysis (Packed-ED) to Treat
     Atomic Reator Discharged Wastewater of Low Radioactivity. Water Treatment.
     1994,9(1):33-40
    [150] 王方. 电去离子净水技术. 膜科学与技术, 2001,21(2):50-54
    [151] 沈晓鲤, 宋国强, 舒畅. EDI 原理及其在纯水清洁生产中的应用. 环境科学
     与技术, 2000,(3):41-43
    [152] 房海阔,魏洪军, 电去离子(EDI)技术在热电厂水处理中的应用,净水技术,
     2002,21(2):17-19
    [153] Ganzi,G.C. IonpureTMCDI 电去离子系统高纯水生产用的新产品和工艺开发.
     阿步光雄. 当代离子交换技术. 王方编译.第 1 版.北京:化学工业出版
     社,1993:260-265
    [154] 王建友, 龚承元. 离子交换树脂与膜结合的电去离子过程. 医疗卫生装备,
     1997,(5):16-20
    [155] 王方. 电去离子净水技术的新进展. 工业水处理, 2000,20(7):4-7
    [156] 纪永亮. 在超纯水生产中电去离子法的应用(会议论文编译). 水处理信息
     导报, 1998,(4):6-9
    [157] 刘红斌等. 电去离子纯水生产技术最新进展. 医疗卫生装备, 2002(2):29-32
    [158] 王建友. 电去离子(EDI)高纯水新技术及其研究进展. 上海化工,
     2000,25(21):15-19
    [159] 徐新、林载祁. 填充床电渗析器制备纯水的研究. 水处理技术,
     1996,22(6):336
    [160] 王方. 电去离子纯水器. 中国实用新型专利 ZL 96244874.5
    [161] 王方. 等空隙填充床电渗析器. 中国实用新型专利 ZL 97221361.7
    [162] 王方. 电去离子软水方法及所用装置. 中国发明专利 ZL 97116340.5
    [163] 王方. 电去离子软水法. 工业水处理, 1999,-03,19(2):8-9,40
    [164] 王方. 离子交换树脂的电再生方法及装置. 中国发明专利 ZL 96120791.4
    [165] 王方. 混床离子交换树脂的电再生法. 工业水处理, 1997,17(2):1
    [166] 王方. 电去离子过程的反应叠加的实用模型. 清华大学学报,
     1998,38(7):107-110
    [167] 王建友. 电去离子过程的研究. 天津大学硕士学位论文. 1998
    [168] 王建友, 刘红斌, 龚承元, 王世昌. 电去离子过程水解离影响因素的研究.
     膜科学与技术, 2000,20(5):1
    [169] 刘红斌等,电去离子过程水解离的基本特征. 膜科学与技术,
     2003(23):35-39。
    [170] 王建友. 电去离子过程的传质机理及其集成膜过程的研究. 天津大学博士
     学位论文. 2001
    [171] 刘红斌, 龚承元, 苏建勇, 朱孟府. 电去离子过程的实验研究. 工业水处理,
     130
    
    
    参考文献
     2000,20(9):11-13
    [172] 王世昌, 王建友, 任延, 王志, 王宇新. 电去离子高纯水器. 中国实用新型
     专利 ZL 00200207.8
    [173] 刘红斌, 王建友, 苏建勇, 朱孟府, 龚承元. 一种电去离子装置. 中国实用
     新型专利 ZL 99241918.2
    [174] 军事医学科学院卫生装备研究所. 一种制药用水的生产工艺及设备. 中国
     发明专利公开 CN1253912
    [175] Jianyou Wang; Shichang Wang; Manrong Jin. A Study of Electrodeionization
     Process. Desalination, 2000,132:349-352
    [176] Wang Jianyou; Wang Shichang; High-purity water production by RO/EDI
     system, 化工学报, 2001,52(1):15-16
    [177] 祝生杰, 李翔. 螺旋式电除盐器. 化工环保, 2000,20(4):57-58
    [178] 吴国锋,张国亮,曲敬绪,谭永文,CDI 技术和装置的研究和开发,水处
     理技术, 2002,28(2):75-77
    [179] 孟祥和,胡国飞,重金属废水处理,北京:化学工业出版社,2000:8-9
    [180] 涂锦葆,电镀废水治理手册,北京:机械工业出版社,1989: 5-7
    [181] 安成强等,电镀三废治理技术,北京:国防工业出版社,2002:16-22
    [182] (日)中村实,电镀废水闭路循环的理论与应用,北京:机械工业出版社,
     1986.
    [183] 李春华等,离子交换法处理电镀废水,北京:轻工业出版社,1989.
    [184] 王振堏,离子交换膜-制备,性能及应用,北京:化学工业出版社,1986
    [185] 史红文等,氢氧化钠—膜过滤法处理含镍电镀废液,环境污染与防治,
     2002,24(2):93-97
    [186] 楼永通,王寿根等. 膜分离技术在镀镍漂洗水回收中的应用—漂洗水的预
     浓缩,电镀与环保, 2001,21(5):28-31
    [187] 楼永通,陈益棠等, 膜分离技术在电镀镍漂洗水回收中的应用, 膜科学与
     技术,2002,22(2):43-47
    [188] 管山,王建友,王世昌, 电去离子(EDI)过程处理电镀废水的研究进展, 化工
     进展,2003,22(8):837-840
    [189] 徐晅阔,电去离子除盐过程及其用于脱除水中铜离子的研究,天津大学硕
     士学位论文,2002.
    [190] S. Guan; J.Y.Wang; S.C.Wang, An experimental study of continuous
     electrodeionization process for acid copper electroplating rinsewater Recovery,
     Proceedings of International Symposium on Natural Resources Processing,
     2003,p337-340
    [191] GUAN Shan, WANG Jianyou,WANG Shichang, Purification and
     concentration of acid copper electroplating rinsewater by the continuous
     electrodeionization process, 化工学报,2004,55(1):166-167
    [192] J.Johann, G.Eigenberger, Chem.Ing.Tech. 65(1993):75
    [193] F.-F. Kuppinger, W.Neubrand, H.-J.Rapp, G. Eigenberger, Chem.Ing.Tech.
     67(1995):731
     131
    
    
    参考文献
    [194] Stephen Sung, Recycling of copper from metal finishing wastewaters using
     electrodialysis ion exchange, Ph.D. Thesis, University of Connecticut, 1997
    [195] C. D. Dillon, In-line copper recovery technology, M.Sc. Thesis, University of
     Minnesota, 1998
    [196] M.J.Semmens; C. D. Dillon;Chris Riley, Environmental Progress,
     20(2001):251-260
    [197] P.B.Spoor; W.R.terVeen;L.J.J.Janssen, J.Appl.Electrochem., 31(2001):523-530
    [198] P.B.Spoor; W.R.terVeen;L.J.J.Janssen, J.Appl.Electrochem.,
     31(2001):1071-1077
    [199] P.B.Spoor;L.Koene;W.R.terVeen;L, et al ,J.Appl.Electrochem., 32(2002):1-10
    [200] P.B.Spoor;L.Koene;W.R.terVeen;et al, Chemical Engineering Journal,
     85(2002):127-135
    [201] P.B.Spoor;L.Grabovska;L.Koene;et al, Chemical Engineering Journal,
     89(2002):193-202
    [202] Koene, L., Janssen, L.,J., Removal of nickel from industrial process liquids,
     Electrochimica Acta, 47 (2001):695-703
    [203] Klischenko, R., Kornilovich, B., Chebotaryova, R.,et al, Purification of galvanic
     sewage from metals by electrodialysis, Desalination, 126(1999):159-162
    [204] Grebenyuk, V.D., Chebotareva, R.D.,Linkov, N.A.,et al, Electromembrane
     extraction of Zn from Na-containing solutions using hybrid electrodialysis-ion
     exchange method, Desalination, 115(1998):255-263
    [205] Basta K, Aliane A, Lounis A, et al, Electroextraction of Pb2+ ions from diluted
     solutions by a process combining ion-exchange textiles and membranes,
     Desalination , 120(1998):175-184
    [206] Iurash, C.,A,. Nikonenko, V.,V., Pismenskaya, N.,D., et al, Dependence of salt
     and water ion flux through ion exchange membranes under electrodialysis on
     the ion exchange bed composition, Desalination, 124(1999):105-113
    [207] Sauer, M.C.; Southwiek, P.F.; Spiegler, K.S.; et al. Electrical conductance of
     porous plugs. Ind. Eng. Chem., 1955,47(10):2187-2193
    [208] Spiegler, K.S.; Yoest, R.L.; Wyllie, M.R.J.; Electrical potentials across porous
     plugs and membranes, ion-exchange resin-solution system. Disscussions Farady
     Soc. 1956,21:174-183
    [209] Vuorilehto, K.; Tamminen, A.; Application of a solid ion-exchange electrolyte in
     three-dimensional electrodes. J.Appl.Electrochem.,1997,27:749-755
    [210] Mafe, S.; Ramirez, P.; Alcaraz, A.; Electric field-assisted proton transfer and
     water dissociation at the junction of a fixed-charge bipolar membrane. Chemical
     Physics Letters, 1998,294:406-412
    [211] Alcaraz, A.; Ramirez, P.; Mafe, S.; et al. Ion selectivity and water dissociation in
     polymer bipolar membranes studied by membrane potential and current-voltage
     measurements. Polymer, 2000,41:6627-6634
    [212] Rubinstein, I.; Mechanism for an electrodiffusional instability in concentration
     132
    
    
    参考文献
     polarization. J. Chem. Soc., Faraday Trans.; 1981,77:1595
    [213] Dukhin, S.S.; Mishchuk, N.A.; Intensification of electrodialysis based on
     electroosmosis of the second kind. Journal of Membrane Science,
     1993,79:199-210
    [214] Mishchuk, N.A.; Perspectives of the electrodialysis intensification, Desalination,
     1998,117:283-296
    [215] Mishchuk, N.A.; The role of water dissociation in concentration polarization of
     disperse particles. Colloids and Surfaces A:Physicochemical and engineering
     Aspects, 1999,159:467-475
    [216] Simons, R.; Strong electric field effects on proton transfer between
     membrane-bound amines and water. Nature, 1979,280(30): 824-826
    [217] Simons, R.; Electric field effects on proton transfer between ionizable groups
     and water ion ion exchange membranes. Electrochim Acta. 1984,29(2): 151-158
    [218] Onsager, L.; Deviation from Ohm’s law in weak electrolytes. J. Chem. Phys.,
     1934,2:599-615
    [219] Strathmann, H.; Krol, J. J.; Rapp,H.J. et al. Limiting current density and water
     dissociation in bipolar membranes. Journal of Membrane Science,
     1997,125:123-142
    [220] Oda, Y.; Yawataya, T.; Neutrality-disturbance phenomen of membrane-solution
     systems. Desalination, 1968, 5: 129
    [221] Tanaka, Y.; Water dissociation in ion-exchange electrodialysis. Journal of
     Membrane Science, 2002,203: 227-244
     133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700