用户名: 密码: 验证码:
轮式起重机伸缩臂液压和电气控制系统的研究设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重臂是轮式起重机的主要受力构件,它大多数设计成箱形结构,伸缩式起重臂内装有伸缩缸或伸缩系统和伸缩用滑块;它的设计合理与否直接影响着起重机的承载能力、整机稳定性和整机自重,同时左右着轮式起重机的发展。就吊臂而言,其重量一般占整机的13-20%,而大型起重机占的比例则更大,这就导致起重机在大幅度下的起重量和大起重量下的起升高度急剧降低,成为此类起重机向大型化发展的主要障碍之一。
     起重机伸缩控制技术取决于伸缩机构的结构形式,而伸缩机构的技术直接影响起重臂的自重、整机的性能,也是制约起重臂乃至起重机发展的关键技术。因而国外知名企业对伸缩机构的研究都很重视,都研制出了自己的专利技术。
     单缸插销式伸缩机构采用单个油缸来推动各节臂的伸缩。采用机电液相结合的综合控制技术来实现单个伸缩油缸自动进行五节起重臂伸缩目标的控制。
     在本论文中,主要研究内容如下:
     (1)采用PLC可编程控制技术,实现了通过一根双作用往复式伸缩油缸来实现起重臂的全部伸缩动作。通过计算机控制系统的显示屏信息提示进行人机对话,实现起重臂按设定的工作模式和逻辑程序顺序伸缩以及对起重臂伸缩状态的实时监控。
     (2)通过比较多种伸缩臂控制机理的优缺点,选出一种代表先进研究方向的伸缩臂控制机理,并对其进行详细分析研究与设计计算。
     (3)设计出伸缩臂动作的液压控制回路,对整个伸缩系统的液压控制回路的主要元件如主泵、阀和液压缸的主要参数进行设计计算,并对系统一些主要静态指标进行计算。
     (4)设计出控制系统的硬件电路,对系统的主要电气控制元件进行设计计算,在满足基本功能的条件下,使其具有高的可靠性和稳定性。
     (5)建立液压系统关键控制回路的数学模型,采用AMESim模拟软件对伸缩臂位置伺服系统以及缸销液压系统进行了分析仿真。
     (6)设计出电气控制系统的控制流程图,并用西门子编程软件STEP7-Micro/MIN编制出伸缩臂动作的自动和手动控制程序,并进行仿真验证。
The boom is the main bearing structure of truck cranes. The boom is usually made into box-type fabric with telescopic cylinder or telescoping system and slide pad inside. The loading capacity and overall stability and total mass depend on whether the boom design is reasonable and it influences the development of wheeled cranes.The boom usually weight takes 13-20% of the total mass,andeven more in the bigger cranes which will cause the prompt reduction of lifting capacity while working with big radius and hoist height while lifting heavy loads, so it is one of main obstacles which influence negatively on the development of big cranes.
     The telescoping control technique depends on the structure of the telescoping mechanism while the telescoping mechanism technique affects the boom weight and overall machine performance directly as well as the development of boom and even the whole crane. So famous foreign companies always pay more attention tithe development of the telescoping mechanism and have the own patent echniques.
     The application of electro-hydraulic mechanical integration combined control technique makes the objective of one single cylinder automatically control five telescopic booms possible.
     In this paper, The works I have done and the result are as following:
     (1)The control system of single cylinder telescopic machinery is aliped by using PLC.In this The operator can control the boom's action according to set mode and logic sequence by the human-computer terface,and the real time monitoring of boom'state is available. Hardware circuit and software are designed in this papers, which are proved to be reliable and stable by being put into proactive.
     (2)By comparing a wide range of telescopic boom of the advantages and disadvantages of the control mechanism,we elect a representative of the advanced research arm of the telescopic control mechanism, and a detailed analysis of the calculation and design.
     (3)The parameters of the primary elements of hydraulic elements such as bump,valve and cylinder, are calculated and the primary static state index also are calculated.
     (4)Design control system of hardware circuit, the electrical control system design and calculation of components in the basic functions to meet the conditions, so that it will have high reliability and stability.
     (5)The key control circuit's mathematics model of hydraulic system is set up in this essay and dynamic characteristic is analyzed via the model. We have used AMESim simulation software on telescopic boom cylinder position servo systems, and marketed analysis of the hydraulic system simulation.
     (6)We designed the flow chart of electrical control system and used programming software Siemens STEP7-Micro/MIN produce telescopic boom's automatic and manual movement control procedures, and drive it to simulation.
引文
1.柳洪义.机械工程控制基础[M],北京:科学出版社,2006,6-42.
    2.王士刚.液压系统可视化动态建模技术及其软件实现方法研究[D].大连:大连理工大学,2001.
    3.章宏甲.液压传动[M],北京:机械出版社,1997,32-44.
    4.陈祥华.变频恒压供水系统节能分析[J],机电设备,2003,5(6):43-45.
    5.王俊普.智能控制[M],合肥:中国科学技术大学出版社,1996,25-44.
    6.李永堂.液压系统建模与仿真[M],北京:冶金工业出版社,2003.2,66-69.
    7蔡廷文.液压系统现代建模方法[M],北京:中国标准出版社,2002.12,38-41.
    8.王春行.液压伺服控制系统[M],北京:机械工业出版社,1989,22-25.
    9.赵喜容,任德志.管道对液压系统静动特性的影响[J],机床与液压,1997,4(5):41-45.
    10.岑豫皖.液压管道对电液伺服系统稳定性影响的研究[J],机床与液压:1998(4),58-60.
    11.陈小钟.计算机绘制液压系统图[M],北京:机械出版社,1988,22-25.
    12.王云.单缸插销式伸缩臂系统的故障排除[J],起重运输机械,2006(5):1-10.
    13.张训文.机电一体化系统设计与应用[M],北京:北京理工大学出版社,2006,77-83.
    14.候国章.测试与传感技术[M],哈尔滨:哈尔滨工业大学出版社,1998,166-189.
    15.周志敏,周纪海.现代开关电源控制电路及应用[M],北京:人民邮电出版社,2005,66-79.
    16.沈凤鸣,谢文蔚.液压传动基础知识(续)[J],渔业现代化,1982,2(5):14-35.
    17.袁存武.国内外轮式起重机发展概况[J],工程机械,1998,3(3):33-36.
    18.秦家升,游善兰AMESim软件的特征及其应用[J],工程机械,2004,1(2):1-6.
    19.徐小东.单缸插销式伸缩臂自动伸缩控制系统的研究与应用[D],吉林:吉林大学,2008.
    20.宋金环,石博强等.挂车液压悬架系统的结构分析与改进设计[J],专用汽车,2006(1):38-40.
    21.王兴文,黄共才.QY25汽车起重机液压系统的研究[J],工程机械,1984,2(1):14-35.
    22.余佑官AMESim仿真技术及其在系统中的应用[J],液压气动与密封,2005,7(3):28-31.
    23.许贤良.非对称伺服阀控制非对称液压缸的理论分析[J],液压与气动,2004,4(3):16-18.
    24.田树军,张宏.液压管路动态特性的Simulink仿真研究[J],系统仿真学报,2006,18(5),1136-1138.
    25.王栋梁.非对称阀控制非对称缸的分析研究[J],山东建材学院学报,2001,15(2):123-127.
    26.王传礼,丁凡,李其朋.对称四通阀控制非对称液压缸伺服系统动态特性研究[J],中国机械工程,2004,15(6):471-474.
    27.张显库.控制系统建模与数字仿真[M],大连:大连海事大学出版社,2004.12.
    28.刘豹.现代控制理论[M],北京:机械工业出版社,2000,5-41.
    29.付永领,祁晓野AMESim系统建模和仿真——从入门到精通[M],北京:北京航空航天大学出版社,2006,1-22.
    30.宋黎明.PLC控制程序的设计技巧[J],重庆科技学院学报(自然科学版),2008,13(2):112-116.
    31.W.F.休斯,J.A.布赖顿.流体动力学[M],北京:科学出版社,2002.3.
    32.罗安.电液比例系统的控制策略[J],中南工业大学学报,1995,11(2):114-118.
    33.张训文.机电一体化系统设计与应用[M],北京:北京理工大学出版社,2006,77-83.
    37.候国章.测试与传感技术[M],哈尔滨:哈尔滨工业大学出版社,1998,166-189.
    38.齐海涛,付永领.基于AMESim的电动静液作动器的仿真分析[J].机床与液压,2007,35(3):184-186.
    39.温熙森.机械系统建模与动态分析[M],北京:科学出版社,2004,46-49.
    40.何永森.机械管内流体数值预测[M],北京:北京航空航天大学出版社,2008,32-45.
    41. C.L.Chen, M.H.Chang. Optimal design of fuzzy sliding-mode control a comparative study [J], Fuzzy Sets and Systems,1998,21(3):37-48.
    42. M.Braae,D.A.Rutherford. Selection of parameters for a fuzzy logic controller [J], Fuzzy Sets and Systems,1979,31(2):185-199.
    43. N.Gubeljak,U Zerbst,J.Predan.Application of the European SINTAP procedure to the failure analysis of a broken forklift [J], Engineering Failure Analysis,2004,2(1):33-47.
    44. R.Verschoore, J.G.Pieters I..Measurements and simulation on the comfort of forklifts [J],Journal of sound and vibration 2003,9.266(3):585-599.
    45. C.L.Giliomee.Semi-active hydropneumatic spring and damper system [J],Journal of Terramechanics 1998.35:109-117.
    46. F.H.F. Leung, H.K. Lam, P.K.S. Tam. Design of fuzzy controllers for uncertain nonlinear systems using stability and robustness analyses [J], Systems Control Lett,1998,35:237-243.
    47. J.Levitas.Global stability analysis of fuzzy controllers using cell mapping methods [J], Fuzzy Sets and Systems,1999,106:85-97.
    48. K.J.Astrom,J.J.Anton and K.E. Arzen[J], Expert Control, Automatica,1986,22(3):277-286.
    49. E,B.Naidu. An expert systems for real-time scheduling in flexible manufacturing system [J], Information and design technologies.1992,18(30):34-19.
    50. C.I. Siettos, G.V. Bafas. Semiglobal stabilization of nonlinear systems using fuzzy control and singular perturbation methods [J], Fuzzy Sets and Systems,2004,45(7):275-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700