用户名: 密码: 验证码:
自卸车举升油缸综合性能试验台的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车技术的发展,国内自卸车的生产和使用量不断增加,特别是近年来中重型的前顶式自卸车发展迅猛。而随着中重型自卸车整车重心的不断提高,其稳定性不断降低,液压举升系统质量的好坏直接关系到自卸车的安全性,还对自卸车的装载效率、工作效率、工作可靠性和维护成本产生一定影响。前顶式自卸车的油缸多采用多级油缸,油缸的行程较长,一般的试验台无法完成对此类油缸的综合性能检测。另外我国液压缸检测技术比较落后,严重制约了我国液压缸产品质量。液压缸的综合检测系统正在向着高精度、高智能、高自动化方向发展。
     论文首先介绍了液压缸试验台的发展状况和研究意义。通过分析自卸车油缸的常用故障,并根据自卸车油缸试验的相关标准分析油缸的试验项目和各个试验项目的试验方法。在此基础上,对检测系统的软、硬件进行设计,研制出了能够自动完成液压缸型式试验和出厂试验的检测系统。检测系统主要用于自卸车举升油缸的出厂试验检测。
     检测系统由加载台架、液压系统和电气控制系统三部分组成。加载台架设计时,考虑到油缸的行程较长,根据相关标准,对油缸的加载方案进行改进,加载台架设计为卧式并联结构,能够模拟液压缸的实际工况进行试验;液压部分采用电液比例技术进行了原理设计,实现了压力和流量的远程控制;电气控制部分采用工控机为控制器,设计了基于PCI总线的接口电路,并采用C++Builder开发工具和虚拟仪器技术开发了控制软件。另外,本文还对电液比例阀的加载原理和加载控制方案进行分析,并对传感器等检测设备进行选用。
     最后,对检测系统进行调试,并对一些实验项目进行试运行。调试时对试验台的加载台架、液压系统和控制检测系统进行全面调试。在进行油缸的试运行时对相关试验项目的试验操作规程和步骤进行介绍。检测系统达到了预期目标,可完成对不同级数、不同缸径的大行程多级油缸的检测。检测系统能够自动完成试验,具有检测准确、可靠性强和检测效率高等特点。
With the development of automotive technology, the production and the usage of domestic dump trucks is increasing, especially in the heavy front top tipper in recent years. While the continuous improvement of the heavy-duty dump truck vehicle center of gravity, its stability continue to lower. The hydraulic lift system quality is directly related to the safety of the dump truck, dump truck loading efficiency, work efficiency and maintenance costs. The former top-fuel tank of a dump truck usually use of the multi-stage fuel tank. Because the trip of fuel tank is longer, general test-bed can not be completed performance testing of such fuel tanks. In addition, China's hydraulic cylinder detection technology relatively gets behind, which severely restricts the quality of the hydraulic cylinder products. The detection system of the hydraulic cylinder is toward the high-precision, highly intelligent, highly automated direction.
     The paper first describes the development and significance of the hydraulic cylinder test bench. By analyzing the common failure of the dump truck fuel tank, and in accordance with the relevant standards of the dump truck cylinder test, it analysis of the fuel tank of the pilot projects and test methods. On this basis, designs the structure of the system. The test system developed can automatically achieve prototype test and delivery test. The test system is mainly used for delivery test inspection of dump truck lift cylinder.
     The test system consists of the loading bench, hydraulic system and electrical control system. Firstly, design loading bench, taking into account the longer stroke of the fuel tank, in accordance with the relevant standards, to improve the fuel tank loading program.The mechanical structure of horizontal and parallel connection is designed for the loading bench, which can simulate the actual working condition of hydraulic cylinders. Secondly, the principle design of hydraulic system for hydraulic cylinder test system is carried out using electro-hydraulic proportional control technique. The hydraulic system can control the pressure and flow automatically. Thirdly, electric control system is designed based on the IPC and data acquired card, and a control software is developed using BCB and virtual instruments technology.In addition, The article also analyzed the loading principle and loading control programs of electro-hydraulic proportional valve, and selection sensors and other detection equipment.
     Finally, debugg the detection system and test run the experimental. Load bench test rig, hydraulic system and control the detection system when debugging a comprehensive debugging. Pilot project test operation procedures and steps are introduced during the trial run of the fuel tank. The detection system achieved the desired objectives to be completed by the detection of different levels, different bore stroke multi-stage cylinder. The detection system can automatically. complete the test, the detection accuracy, high reliability and testing efficiency.
引文
[1]徐达,丛锡堂,等.专用汽车构造与设计[M].北京:人民交通出版社,2008.
    [2]张筱梅.从自卸车市场看液压油缸的发展趋势[J].专用汽车,2008(06):20~22.
    [3]冯晋祥,等.专用汽车[M].北京:机械工业出版社,2008.
    [4]何存兴,张铁华.液压传动与气压传动[M].武汉:华中科技大学出版社,2000.
    [5]曲宪成.改革开放三十年自卸车飞高走远[J].专用汽车,2009(01):34~36.
    [6]赵静一,曾辉,等.液压气动系统常见故障分析与处理[M].北京:化学工业出版社,2009.
    [7]张新,陈尚兵,邹潇洲,孙丽丽.油缸试验台的液压系统[J].煤矿机械,2010(02):115~117.
    [8]郭俊英.浅谈液压油缸加载试验台系统的设计[J].科学之友,2008(07):23~24.
    [9]马俊功,王世富,王占林.液压油缸试验台研制[J].机床与液压,2007(01):139~141.
    [10]郭俊英.油缸加载试验台控制系统方案设计[J].机械管理开发,2008(08):160~161.
    [11]文海鹏.油缸试验台试制设计[J].机械研究与应用,2008(12):135-139.
    [12]高俊华.油缸试验台自动采集系统设计[J].长江工程职业技术学院学报,2006(12):64~65.
    [13]Sui Xiu-hua,Miao De-jun. Design and analysis of three-stage hydraulic cylinder used in dump trucks based on Pro/E and ANSYS [J]. Mechanic Automation and Control Engineering (MACE),2010 International Conference on,2010(6):536-538.
    [14]Donghai Su, Yong Wu; Benxu Zou; Feng Liu. The Research on the Hydraulic Test-Bed of Cylinder [J]. System Science, Engineering Design and Manufacturing Informatization (ICSEM),2010 International Conference on..2010(11):144-146.
    [15]Garimella, P., Bin Yao. Model based fault detection of an electro hydraulic cylinder [J]. 2005 American Control Conference.2005(6):484-489.
    [16]Pan Chun-ping, Guan Hsin. Nonlinear Control Study and Apply of a Single Hydraulic Cylinder's Test Stand[J]. Intelligent Systems and Applications (ISA).2011(5):1-4.
    [17]GB/T15622-2005,液压缸实验方法[S].
    [18]QC/T460-2010,自卸车液压缸技术条件[S].
    [19]张俊豪,王荣花.多级油缸的结构分析[J].机械与设备,2008(06):20-23.
    [20]臧克江.液压缸[M].北京:化学工业出版社,2009.
    [21]潘海涛,曹琦.关于自卸乍油缸回落的原因分析[J].汽车技术,2007(05):9-10.
    [22]朱晓阳,晓峰.液压缸常见缓冲装置及修理[J],装备维修技术,2009(02):52~57.
    [23]韩志刚,于超,田书杰.自卸车举升机构常见故障分析[J].黑龙江交通科技,2002(07):54~55.
    [24]张霞.油缸常见液压故障诊断[J].煤矿机械,2006(06):1092~1093.
    [25]海沃自卸车液压系统用户手册,2011(07).
    [26]柳杨.商用车驱动桥总成综合检测系统的设计与研究[D].武汉:武汉理工大学硕十学位论文,2011.
    [27]Rannow MB, Li PY. On/off Valve Based Position Control of a Hydraulic Cylinder[A].Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2007,2008, (4):141~149.
    [28]Ruan J, Wang QF, Burton R. Analysis of Hydraulic Load-sensing System and P-Q Valve in Test Press[A]. Proceedings of the Third International Symposium on Instrumentation Science and Technology,2004,1:675~679.
    [29]http://www.hbjiaheng.net/chanpinzhanshi/yeyagang/qzsttyyg/379.html.
    [30]李文新.液压缸综合性能检测技术的理论研究[D].合肥:合肥工业大学硕十学位论文,2009.
    [31]Wemer Gotz. Electro-hydraulic Proportional Valves and Closed Loop Control Valve. Theory and Application. Robert Bosch Gmbh,1989.
    [32]周俊忠.液压缸内泄漏检测方法的改进[J].润滑与密封,2009(09):117-119.
    [33]张利平,等.液压气动技术速查手册[M].北京:化学工业出版社,2007.
    [34]吴根茂.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [35]许福玲,陈尧明.液压与气压传动[M].北京:机械工业出版社,2007.
    [36]周恩涛.液压系统设计元器件选型手册[M].北京:机械工业出版社,2007.
    [37]华德液压阀样本,液压阀1-5合刊,2007.
    [38]赵文武.液压用压力传感器及其合理选用[J].液压与气动,2000(10):23~24.
    [39]黄志坚.液压辅件[M].北京:化学工业出版社,2008.
    [40]宋文绪,杨帆.自动检测技术[M],北京:高等教育出版社,2004.
    [41]吴勇.液压缸试验台的研究与分析[D].沈阳:沈阳工业人学硕十学位论文,2011.
    [42]姜镇军.磁致伸缩液压缸位移传感器[D].人连:人连理工人学硕士学位论文,2007.
    [43]卿太全,郭明琼.最新传感器选用手册[M].北京:中国电力出版社,2009.
    [44]http://www.zysensor.cn,合肥中亚传感器有限公司.
    [45]PCI2306数据采集卡使用说明书V6.1,北京阿尔泰科贸有限公司,2005.
    [46]Dai Yongshou, Lei Guojiang, Zheng Jinwu. The Monitoring System for Hydraulic Enduring Pressure Test Unit of Proof-blowouter[J]. Control & Automation,2003, (1):30-1.
    [47]Yao AWL, Ku CH. Developing A PC-based Automated Monitoring and Control Platform for Electric Power Systems[J], Electric Power Systems Research,2003,64(2):129~136.
    [48]林咏.Measurement Studio软件包[J].世界电子元器件,2000(12):73~74.
    [49]PCI2306驱动程序使用说明书,北京阿尔泰科贸有限公司.
    [50]陈灿煌.C++Builder6切底研究[M].北京:中国铁道出版社,2003.
    [51]胡孔法.数据库原理及应用[M].北京:机械工业出版社,2008.
    [52]赵俊.液压系统变工况能量回收技术研究[D].成都:西南交通大学硕士学位论文,2007.
    [53]徐鹏,米伯林,李杞超.液压节能技术的应用与发展[J].农机化研究,2006(09):206~207.
    [54]李艳杰,付晓云.液压传动与控制系统的新型节能技术探讨[J].沈阳理工大学学报,2010(12):38-41.
    [55]Sugiyama G. Energy Saving in Hydraulic Devices for Construction Machinery[J]. Journal of Japanese Society of Tribologists,2006,51(5):371~376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700