用户名: 密码: 验证码:
大型坳陷湖盆深水重力流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪70年代以来,深水沉积已经成为大陆边缘和陆相湖盆油气藏勘探和研究最为活跃的领域。目前深水沉积的最新研究进展可以归纳为5个方面:①深水牵引流的发现开拓了深水研究的新领域;②传统的浊流理论受到了极大的挑战和质疑;③深水沉积模式日趋完善;④块体搬运体是深水研究和勘探的重要领域;⑤深水区的泥页岩已经成为非常规油气藏勘探的重要领域。
     基于岩心、测井、分析化验和地震等资料的综合分析,结合国内外深水重力流研究的最新进展,本次研究以松辽盆地西部坡折带上白垩统青山口组为主要研究对象,对大型坳陷湖盆重力流的沉积特征、识别标志、分布规律和外部形态进行了系统研究。研究结果不仅具有重要的理论意义,同时对于拓展我国陆相湖盆勘探领域及保障我国能源安全都具有重要的实践意义。
     通过研究,主要取得以下创新性认识:
     1、松辽盆地环坳挠曲坡折带发育单级和多级坡折带,首次对坡折带沟谷体系、断槽和断坑等负向地貌的成因和分布特征进行了研究
     坡折带及其局部地貌形态是控制湖泊砂体及重力流砂体沉积作用、沉积过程及沉积物卸载的重要因素。松辽盆地环坳挠曲坡折可以划分为单级坡折和多级挠曲坡折两大类型。根据沟谷的成因,将坡折带的沟谷体系分为河流冲刷作用形成的下切谷、由同沉积断裂下降盘形成的断槽型沟谷、伸展褶皱形成的沟谷等3种类型。断坑主要由平行湖岸线展布且成对出现的同沉积断裂所形成。
     2、首次在松辽盆地发现大规模分布的块体搬运体(MTDs)并建立了陆相盆地MTDS的识别标志,拓宽了陆相湖盆的勘探领域
     以砂质碎屑流为主、混杂少量滑动岩和滑塌岩的块体搬运体是松辽盆地重力流的主要类型。块体搬运体(MTDs)尤其是砂质碎屑流单层厚度大、物性好、平面分布广泛,可以作为深水勘探的优质储层。在地震剖面上,厚层块体流具有空白(或透明)反射、弱振幅、乱岗状的反射特征;薄层块体搬运体一般具有充填状的外形和眼球形的内部反射结构。松辽盆地浊积岩也极为常见,期次多,反映了浊流作用频繁发生的特点,但层薄,勘探价值不高。
     3、坡折带和沟谷地貌对块体流的外部形态具有重要的控制作用,除发现大规模的湖底扇和母子扇沉积外,还首次在松辽盆地发现大规模分布的槽谷重力流和断坑重力流沉积
     坡折带内部同沉积断裂下降盘形成的槽道和断坑、下切谷、伸展褶皱等负向地貌对块体流的分布和外部形态起到重要的控制作用。简单斜坡主要发育湖底扇和母子扇沉积,块体流的滑动距离与坡度成正比。断坑重力流主要分布在同沉积断裂的下降盘,平行湖岸线呈带状展布。非扇形槽谷重力流具有狭长、平直的特点,砂体走向与湖岸线斜交,坡折带背景下与湖岸线斜交的下切谷、同沉积断裂的下降盘和伸展褶皱是形成的槽谷重力流的主控因素。
Since1970s, deep-water sedimentation has become the most active field ofhydrocarbon exploration and study in continental margins and terrestrial basins.Currently latest research progress in deep-water sedimentation can be briefly summedup as follows:①the find of deep-water traction flow;②traditional turbidity currenttheory has been challenged and questioned;③deep-water sedimentation patterns arebecoming increasingly perfect;④Mass transport deposits(MTDs) has been animportant exploration field of deep-water deposition;⑤deep-water mud and shale hasbecome a new exploration domain of unconventional reservoirs.
     Based on comprehensive analysis of the cores, logs, tests, seismic data and so on,combined with the last worldwide research progress of deep-water gravity flows, thisdissertation systematacially studied sedimentary features, identification marks,distributary patterns, and morphology of gravity flows in the large lacustrine depressionbasin in K2qn of the western slope break in Songliao basin.
     This study is of both regional and universal significance and provides thefollowing new insights:
     1. Single and multi-grade slope breaks were developed surrounding thedepression center. This dissertation studied the negative geomorphic units ofvalley systems, fault troughs, fault slops for the first time.
     Slope breaks and physiognomy are an important factor to control the transportion,deposition process and discharge of lacustrine sand bodies and gravity flow. Singleand multi-grade slope breaks were developed surrounding Songliao depression center.According to the causes of the valleys, the valleys of the slope-break belts weredivided into three types: the incised valleys, the troughs which were formed at thedownthrown sides of the syndepositional faults and the extensional fold valleys.
     2. It was the first time discovery of MTDs in terrestrial basin, MTDs may bea new exploration and development target in terrestrial basin.
     MTDs which were composed chiefly by sandy debris-flows mixed with a little ofslide and slump are the major type of the gravity flows in Songliao basin. The sandydebris in MTDs can be favorite reservoir due to their thick monolayers, good physicalproperties and the wide distribution. On the seismic sections, the thick MTDsmanifested weak amplitude, chaotic and mound seismic reflection configuration.Erosion linear groove were found at the bottom of the MTDs. The turbidite in thestudy area is thin and just has low exploration value.
     3、The landform of the slope breaks and the valleys played a significantcontrolling role in the morphology of MTDs. Large scale troughlike and fault pitMTDs were discovered for the first time.
     The morphology of MTDs was importantly controlled by the negative landform ofthe fault-trough and fault pit at synsedimentary grabens, incised valleys and theextensional folds. On the simple slope breaks, the sublacustrine fans and mother-childfans were developed, slide distances of the gravity flows were proportional to thegradients. Fault-pit gravity flows were ribbon shape parallel to the shoreline. The sandbodies of the trough-gravity flows were long, narrow, straight, oblique to the shoreline,and not fan shape. The troughlike morphology were controlled by incised valley,extensional folds, negative geomorphology.
引文
1. Armitage DA, Romans BW, Covault JA, et al. The Influence of Mass-Transport-DepositSurface Topography on the Evolution of Turbidite Architecture: The Sierra Contreras, TresPasos Formation (Cretaceous), Southern Chile. Journal of Sedimentary Research.2009,79(5):287-301.
    2. A.J. Van Loon, A.J. Wiggers. Primary and secondary synsedimentary structures in thelagoonal Almere member (Groningen Formation, Holocene, The Netherlands). SedimentaryGeology1976;16(2):89-97.
    3. Armitage DA, Stright L. Modeling and interpreting the seismic-reflection expression ofsandstone in an ancient mass-transport deposit dominated deep-water slope environment.Marine and Petroleum Geology.2010,27(1):1-12.
    4. Butler RWH, McCaffrey WD. Structural evolution and sediment entrainment inmass-transport complexes: outcrop studies from Italy. Journal of the Geological Society.2010,167(3):617-631.
    5. C. Zhang, X. Xie, T. Jiang, X. Liu. Hydrocarbon migration and accumulation along along-term growth fault: Example from the BZ25-1oilfield of Bohai basin, eastern China.Journal of Geochemical Exploration;89(1-3):460-464.
    6. Coussot, P., Proust, S., and Ancey, C.1996. Rheological interpretation of deposits of yieldstress fluids. Journal of Non-Newtonian Fluid Mechanics,66,55-70.
    7. D.A. Armitage, L. Stright. Modeling and interpreting the seismic-reflection expression ofsandstone in an ancient mass-transport deposit dominated deep-water slope environment.Marine and Petroleum Geology2010;27(1):1-12.
    8. D.A.G. Nowell, D.J. Evans, P.M. Hopson.[`]The seismic expression of synsedimentarychannel features within the Chalk of southern England' by D. J. Evans and P. M. Hopson:comment. Proceedings of the Geologists' Association2001;112(2):183-186.
    9. D.B. Dunlap, L.J. Wood, C. Weisenberger, H. Jabour. Seismic geomorphology of offshoreMorocco's east margin, Safi Haute Mer area. AAPG Bulletin2010;94(5):615-642.
    10. D.J. Evans, P.M. Hopson, G.A. Kirby, C.R. Bristow. The development and seismic expressionof synsedimentary features within the Chalk of southern England. Journal of the GeologicalSociety2003;160(5):797-813.
    11. D.J. Evans, P.M. Hopson. The seismic expression of synsedimentary channel features withinthe Chalk of southern England. Proceedings of the Geologists' Association2000;111(3):219-230.
    12. Dott R H Jr. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin,1963,47:104-128.
    13. E. Kosa, D.W. Hunt. Growth of syndepositional faults in carbonate strata: Upper PermianCapitan platform, New Mexico, USA. Journal of Structural Geology2005;27(6):1069-1094.
    14. E. Prestholm, O. Walderhaug. Synsedimentary Faulting in a Mesozoic Deltaic Sequence,Svalbard, Arctic Norway-Fault Geometries, Faulting Mechanisms, and Sealing Properties.AAPG Bulletin2000;84(4):505-522.
    15. F.K. Lehner, W.F. Pilaar, The emplacement of clay smears in synsedimentary normal faults:inferences from field observations near Frechen, Germany, in: D. P. M?ller-Pedersen, D. A.G.Koestler (Eds.), Norwegian Petroleum Society Special Publications, Elsevier,1997, pp.39-50.
    16. F.Storti, J.Poblet.Growth stratal architectures associated to decollement folds andfault-propagation folds. Inferences on fold kinematics. Tectonophysics1997,282(1-4):353–373.
    17. Fanlds J E, VargaR J. The role of accommodation zones and transfer zones in the regionalsegmentation of extended terranes [J]. Geological Society of America Special Paper,1998,323:1-46.
    18. Faulds JE, OlsonE L, Harlan S S, eta1. Miocene extension and fault-related folding in theHighland Range, southern Nevada: a three-dimensional perspective [J]. Journal of StructuralGeology,2002,24(4):861-886.
    19. G. Shanmugam. Ten turbidite myths. Earth-Science Reviews2002;58(3-4):311-341.
    20. G.P. Roberts, A.M. Michetti. Spatial and temporal variations in growth rates along activenormal fault systems: an example from The Lazio-Abruzzo Apennines, central Italy. Journalof Structural Geology2004;26(2):339-376.
    21. H.W. POSAMENTIER, O.J. MARTINSEN. The character and genesis of submarinemass-transport deposits: insights from outcrop and3D seismic data. SEPM, specialPublication962011:7-38.
    22. Hampton M. Competence of fine-grained dedris flow[J].Journal of Sedimentary Research,1975.45(4):834-844.
    23. J.J. Walsh, A. Nicol, C. Childs. An alternative model for the growth of faults. Journal ofStructural Geology2002;24(11):1669-1675.
    24. Jackson C A L, Gawthorpe R L, Sharp I R. Style and sequence ofdeformation duringextensional fault-propagation folding: examples from the Hammam Faraun and EI-Qaa faultblocks, Suez Rift, Egypt [J].Journal of Structural Geology,2006,28(3):519-535.
    25. Janecke S U, Vanderburg C J, Blankenau JJ. Geometry, mechanism, and significance ofextensional folds from examples in the Rocky Mountain Basin and Range province, U.S.A.[J].Journal of Structural Geology,1998,20(7):841-856.
    26. JOHNSON, A.M., AND RODINE, J.R.,1984, Debris flow, in Brunsden, D., and Prior, D.B.,eds., Slope Instability: Chichester, U.K., John Wiley&Sons, p.257-361.
    27. K.E. Kane, C.A.L. Jackson, E. Larsen. Normal fault growth and fault-related folding in asalt-influenced rift basin: South Viking Graben, offshore Norway. Journal of StructuralGeology2010;32(4):490-506.
    28. K.T. Pickering, J. Corregidor. Mass-Transport Complexes (MTCs) and Tectonic Control onBasin-Floor Submarine Fans, Middle Eocene, South Spanish Pyrenees. Journal ofSedimentary Research2005;75(5):761-783.
    29. Khalil S M, McClay K R. Extensional fault-related folding, northwestern Red Sea, Egypt [J].Journal of Structural Geology,2002,24(4):743-762.
    30. KRUIT, C., BROUWER, J., KNOX, G., SCHOLLNBERGER, W., AND VAN VLIET,A.,1975, Une excursion aux cones d'alluvions en eau profonde d'age Tertiaire prés de SanSebastian (province de Guipuzcoa, Espagne):International Association of Sedimentologists,9th International
    31. Kuenen Ph H, Migliorini C I.1950. Turbidity currents as a cause of graded bedding[J].Journal of Geology,58:91-127.
    32. L. Moscardelli, L. Wood, P. Mann. Mass-transport complexes and associated processes in theoffshore area of Trinidad and Venezuela. AAPG Bulletin2006;90(7):1059-1088.
    33. L. Moscardelli, L. Wood. New classification system for mass transport complexes in offshoreTrinidad. Basin research2008;20(1):26.
    34. logical Association of Canada,1992:2392263
    35. Lowe D R, Guy M, Palfrey A. Facies Of Slurry-Flow Deposits, Britannia Formation (LowerCretaceous), North Sea: Implications For Flow Evolution And Deposit Geometry[J].Sedimentology,2003,50:45-80
    36. Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous),North Sea: a new perspective on the turbidity current and debris flow problem[J].Sedimentology,2000,47,31-70.
    37. Lowe D.R. Sediment-gravity flows, II: Depostional models with special reference to thedeposits of high-density turbidity currents[J]. Journal of Sedimentary Petrology,1982,52:279-297.
    38. Lowe D.R. Sediment-gravity flows: their classification, and some problems of applications tonatural flows and deposits [C]. In: Doyle L J, Pilkey O H, Eds. Geology of ContinentalSlopes. Society of Economic Paleontologists and Mineralogists Special Publication,1979,27:75-82.
    39. Lowe DR. Sediment gravity flows; II, Depositional models with special reference to thedeposits of high-density turbidity currents. Journal of Sedimentary Research.1982,52(1):279-297.
    40. M.R. Shultz, S.M. Hubbard. Sedimentology, Stratigraphic Architecture, and Ichnology ofGravity-Flow Deposits Partially Ponded in a Growth-Fault-Controlled Slope Minibasin, TresPasos Formation (Cretaceous), Southern Chile. Journal of Sedimentary Research2005;75(3):440-453.
    41. MARUYAMA S, SENO T. Orogeny and relative plate motions:Example of the JapaneseIslands [J]. Tectonophysics,1986,127(3-4):305-329.
    42. Middleton G V, Hampton M A. Sediment-gravity flows: mechanics of flow and deposition[C].In: Middleton G V, Bouma A H, Eds. Turbidites and Deep-Water Sedimentation. PacificSection of the Society of Economic Paleontologists and Mineralogists. Short Course LectureNotes,Los Angeles,1973,1-38.
    43. Middleton G V, Hampton M A. Subaqueous sediment transport and deposition by sedimentgravity flows[C]. In: Stanley D.J,Swift D J P, Eds, Marine Sediment Transport andEnvironmental Management, Wiley, New York,1976,197-218
    44. Morley C K, Nelson R A, Patton T L, etal. Transfer zones in the East African system andtheir relevance to hydrocarbon exploration in rifts [J]. AAPG Bulletin,1990,74(8):1234-1253.
    45. Moscardelli L, Wood L, Mann P. Mass-transport complexes and associated processes in theoffshore area of Trinidad and Venezuela. AAPG Bulletin.2006,90(7):1059-1088.
    46. Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows andtheir deposits[J]. Sedimentology,2001,48:269-299.
    47. N.M.S. Numan, R.A. Hammoudi, J. Chorowicz. Synsedimentary tectonics in the Eocene PilaSpi limestone formation in Iraq and its geodynamic implications. Journal of African EarthSciences1998;27(1):141-148.
    48. Nardin T R, Hein F J, Gorsline D S, et al. A review of mass movement processes, sedimentand acoustic characteristics, and contrasts in slope and base-of-slope systems versuscanyon-fan-basin floor systems[C]. In: Doyle L J, Pilkey O H, eds.Geology of Continentalslopes. Special Publication-SEPM,1979,27:61-73
    49. NEMEC, W.,1991, Aspects of sediment movement on steep delta slopes, in Colella, A., andPrior, D.B., eds., Coarse-Grained Deltas: International Association of Sedimentologists,Special Publication10, p.29-73.
    50. P. Imbert, M. Cretu, T. Oppeneau, The Architecture of Large Mass-Transport Complexes-Long Runout Deposits vs. Deformed Substrate,69th EAGE Conference&Exhibition Incorporating SPE EUROPEC2007(Abstracts),2007.
    51. Perrier R,Quilbier J.Thickness changes in sedimentary layers during compaction history[J]. AAPG Bulletin,1974,58(3):507-520.
    52. Pickering KT, Corregidor J. Mass-Transport Complexes (MTCs) and Tectonic Control onBasin-Floor Submarine Fans, Middle Eocene, South Spanish Pyrenees. Journal ofSedimentary Research.2005,75(5):761-783.
    53. Postma G. Classification for sediment-gravity-flow deposits based on flow conditions duringsedimentation[J]. Geology,1986,14:291-294.
    54. R. Gawthorpe, S. Hardy. Extensional fault-propagation folding and base-level change ascontrols on growth-strata geometries. Sedimentary Geology2002;146(1-2):47-56.
    55. R. Soliva, A. Benedicto, P. Vergely, T. Rives. Mechanical control of a lithological alternationon normal fault morphology, growth and reactivation. Bulletin de la Societe Geologique deFrance2005;176(4):329-342.
    56. R. Soliva, A. Benedicto, R.A. Schultz, L. Maerten, L. Micarelli. Displacement and interactionof normal fault segments branched at depth: Implications for fault growth and potentialearthquake rupture size. Journal of Structural Geology2008;30(10):1288-1299.
    57. R.G. Walker. Deep-water sandstone facies and ancient submarine fans; models for explorationfor stratigraphic traps. AAPG Bulletin1978;62(6):932-966.
    58. R.L. Gawthorpe, C.A.L. Jackson, M.J. Young, I.R. Sharp, A.R. Moustafa, C.W. Leppard.Normal fault growth, displacement localisation and the evolution of normal fault populations:the Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology2003;25(6):883-895.
    59. R.W.H. Butler, W.D. McCaffrey. Structural evolution and sediment entrainment inmass-transport complexes: outcrop studies from Italy. Journal of the Geological Society2010;167(3):617-631.
    60. R.W.H. BUTLER, W.D. MCCAFFREY. Structural evolution and sediment entrainment inmass-transport complexes: outcrop studies from Italy. Journal of the Geological Society2010;167(pt.3):15.
    61. Ratzov G, Collot J-Y, Sosson M, et al. Mass-transport deposits in the northern Ecuadorsubduction trench: Result of frontal erosion over multiple seismic cycles. Earth and PlanetaryScience Letters.2010,296(1-2):89-102.
    62. Reading HG, Richards M.Turbidite systems in deep-water basin margins classified by grainsize and feeder system. AAPG Bulletin.1994,78(5):792-822.
    63. RUPKE, N.A.,1978, Deep Clastic Seas, in Reading, H.G., ed., Sedimentary Environmentsand Facies: Oxford, U.K., Blackwell, p.372-415.
    64. S. Pochat, J. Van Den Driessche. Impact of synsedimentary metre-scale normal fault scarpson sediment gravity flow dynamics: An example from the Grès d'Annot Formation, SEFrance. Sedimentary Geology2007;202(4):796-820.
    65. S. Pochat, S. Castelltort, J. Van Den Driessche, K. Besnard, C. Gumiaux. A simple method ofdetermining sand/shale ratios from seismic analysis of growth faults: An example from upperOligocene to lower Miocene Niger Delta deposits. AAPG Bulletin2004;88(10):1357-1367.
    66. S.J. Wilkins, M.R. Gross. Normal fault growth in layered rocks at Split Mountain, Utah:influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling. Journalof Structural Geology2002;24(9):1413-1429.
    67. S.K. Taylor, A. Nicol, J.J. Walsh. Displacement loss on growth faults due to sedimentcompaction. Journal of Structural Geology2008;30(3):394-405.
    68. Schlagenhauf, I. Manighetti, J. Malavieille, S. Dominguez. Incremental growth of normalfaults: Insights from a laser-equipped analog experiment. Earth and Planetary Science Letters2008;273(3-4):299-311.
    69. Schneider ED, Fox PJ, Hollister CD, et al. Further evidence of contour currents in theWestern North Atlantic. Earth and Planetary Science Letters.1967,2(4):351-359.
    70. Sedimentological Congress, Nice, France, Excursion Guidebook, v.23,75p.
    71. Shanmugam G, Lehtonen LR, Straume T, et al. Slump and debris-flow dominated upperslope facies in the Cretaceous of the Norwegian and northern North seas (61-67degrees N);implications for sand distribution. AAPG Bulletin.1994,78(6):910-937.
    72. Shanmugam G, Moiola RJ. Reinterpretation of depositional processes in a classic flyschsequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma.AAPG Bulletin.1995,79(5):672-695.
    73. Shanmugam G, Shrivastava SK, Das B. Sandy Debrites and Tidalites of Pliocene ReservoirSands in Upper-Slope Canyon Environments, Offshore Krishna-Godavari Basin (India):Implications. Journal of Sedimentary Research.2009,79(9):736-756.
    74. Shanmugam G, Slides, Slumps. Debris Flows, and Turbidity Currents. In: John HS, Karl KT,Steve AT, editors. Encyclopedia of Ocean Sciences. Oxford: Academic Press.2009, p.447-467.
    75. Shanmugam G.2003. Deep-marine tidal bottom currents and their reworked sands in modernand ancient submarine canyons [J]. Marine and Petroleum Geology,20:471-491.
    76. Shanmugam G.50years of the turbidite paradigm (1950s--1990s): deep-water processes andfacies models--a critical perspective. Marine and Petroleum Geology.2000,17(2):285-342.
    77. Shanmugam G. High-density turbidity currents; are they sandy debris flows? Journal ofSedimentary Research.1996,66(1):2-10.
    78. Shanmugam G. Ten turbidite myths. Earth-Science Reviews.2002,58(3-4):311-341.
    79. Shanmugam G. The Bouma Sequence and the turbidite mind set. Earth-ScienceReviews.1997,42(4):201-229.
    80. SHIPP RC, Weimer P, POSAMENTIER HW. Mass-transport deposits in deepwater settings:an introduction. SEPM, special Publication962011:1-4.
    81. Siepmann J, Siepmann FF, A. T. Local controlled drug delivery to the brain: Mathematicalmodeling of the underlying mass transport mechanisms. International Journal ofPharmaceutics.2006,314(2):101-119.
    82. Stow D.A.V, Mayall M.2000. Deep-water sedimentary systems: new models for the21stcentury[J]. Marine and Petroleum Geology,17(2):125-135.
    83. STOW D.A.V.,1986, Deep Clastic Seas, in Reading, H.G., ed., Sedimentary Environmentsand Facies: Oxford, U.K., Blackwell, p.399-444.
    84. T.M. Alves, J. Cartwright, R.J. Davies. Faulting of salt-withdrawal basins during earlyhalokinesis: Effects on the Paleogene Rio Doce Canyon system (Espirito Santo Basin, Brazil).AAPG Bulletin2009;93(5):617-652.
    85. V. Catterall, J. Redfern, R. Gawthorpe, D. Hansen, M. Thomas. Architectural Style andQuantification of a Submarine Channel-Levee System Located in a Structurally ComplexArea: Offshore Nile Delta. Journal of Sedimentary Research2010;80(11):991-1017.
    86. Walker R.G. Turbidites and submarine fans [C]∥Walker R G,JamesN P, eds. FaciesModels Response to Sea Level Change. Geo2
    87. Walker RG. Deep-water sandstone facies and ancient submarine fans; models for explorationfor stratigraphic traps.AAPG Bulletin.1978,62(6):932-966.
    88. Zeng Hongliu, Henry C Stephen, Riola P John. Strata Slicing: Part II, Real3-D seismicdata.Geophysics,1998,63(2):514-522.
    89.蔡希源,陈章明.松辽两江地区石油地质分析[M].北京:石油工业出版社,1999
    90.蔡希源,等.陆相盆地高精度层序地层学-隐蔽油气藏勘探基础、方法与实践.北京:地质出版社.2003.
    91.陈广坡,王天奇,李林波,等.箕状断陷湖盆湖底扇特征及油气勘探--以二连盆地赛汉塔拉凹陷腾格尔组二段为例.石油勘探与开发2010;37(1):7.
    92.迟元林,云金表,蒙启安,等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002.
    93.崔周旗,李文厚,吴健平,等.乌里雅斯太凹陷斜坡带湖底扇相砾岩体沉积特征与隐蔽油藏勘探.沉积学报2005;23(1):8.
    94.邓宏文,王红亮,王敦则.古地貌对陆相裂谷盆地层序充填特征的控制--以渤中凹陷西斜坡区下第三系为例.石油与天然气地质2001(04):293-296+303.
    95.丁晓琪,张哨楠,熊.迪,等.鄂尔多斯盆地西南缘延长组湖盆底形演化研究.2011.西南石油大学学报(自然科学版).
    96.董春梅,张宪国,林承焰.地震沉积学的概念、方法和技术,沉积学报,2006,24(5):698-704.
    97.董刚,何幼斌.根据地层厚度恢复古水深的研究[J].长江大学学报(自科版)理工卷,2010,07(3):484-486.
    98.董军社,陈平富,万晓樵等.南海北部崖19-1-1井晚第三纪有孔虫动物群演替与古水深变化[J].现代地质,2000,14(3):291-294.
    99.杜金虎,易士威,王权.华北油田隐蔽油藏勘探实践与认识.中国石油勘探.2003,8(1):1-10.
    100.樊太亮,吕延仓,丁明华.层序地层体制中的陆相储层发育规律.地学前缘,2000,7(4):315-321.
    101.冯有良,徐秀生.同沉积构造坡折带对岩性油气藏富集带的控制作用--以渤海湾盆地古近系为例.石油勘探与开发2006(01):22-25+31.
    102.冯增昭,王英华,刘焕杰,等.1994.中国沉积学.北京:石油工业出版社.
    103.冯志强,张顺,解习农,等.松辽盆地嫩江组大型陆相坳陷湖盆湖底水道的发现及其石油地质意义[J].地质学报,2006,80(8):1226-1232,1240.
    104.付晓飞,王朋岩,申家年,等.简单斜坡油气富集规律-以松辽盆地西部斜坡北段为例.地质论评2006;52(4):10.
    105.傅维洲.满洲里-绥芬河地学断面及相邻地区的地震活动.中国满洲里-绥芬河地学断面地球物理场及深部构造特征研究.北京:地震出版社,1994.
    106.高瑞祺,张莹,崔同翠,著.松辽盆地白垩纪石油地层.北京:石油工业出版社.1994.
    107.高瑞祺.1980.松辽盆地白垩纪陆相沉积特征.地质学报,1(1):9-22
    108.高振中, K.A.Eriksson.内潮汐沉积-海洋深水沉积的一种新类型.江汉石油学院学报.1991,13(01):100-101.
    109.高振中,段太忠.华南海相深水重力沉积相模式.沉积学报.1990,8(02):9-21.
    110.高振中,罗顺社,何幼斌,等.鄂尔多斯地区西缘中奥陶世等深流沉积.沉积学报.1995,13(04):16-26.
    111.郭占谦,王先彬.1998.火山活动与沉积盆地的形成和演化.地球科学,23(1):59-64
    112.侯启军,冯志强,冯子辉.2009.松辽盆地陆相石油地质.北京:石油工业出版社
    113.黄薇,王建功,赵应成,等.松辽盆地拗陷期坡折带特征.石油学报2007;28(4):5.
    114.纪友亮,冯建辉,王声朗等.东濮凹陷古近系沙河街组沙三段沉积期湖岸线的变化及岩相古地理特征[J].古地理学报,2005,7(2):145-156.
    115.姜华,王华,肖军等.应用古地貌分析方法进行有利区带预测--以琼东南盆地②号断裂带为例[J].石油勘探与开发,2009,36(4):436-441.
    116.姜涛,解习农,汤苏林,等.浊流成因海底沉积波形成机理及其数值模拟.科学通报,2007,52(16):1945-1950.
    117.姜涛,解习农,汤苏林.浊流形成条件的水动力学模拟及其在储层预测方面的作用.地质科技情报,2005,24(2):1-6.
    118.姜在兴.沉积学.2008,北京:石油工业出版社.
    119.焦婷婷.东营凹陷泥岩裂缝的特征成因与油气富集.石油地质与工程2010;24(6).
    120.鞠俊成,张凤莲,喻国凡,等.辽河盆地西部凹陷南部沙三段储层沉积特征及含油气性分析.古地理学报2001;3(1):8.
    121.康安,朱筱敏,王贵文等.古水深曲线在测井资料层序地层分析中的应用[J].沉积学报,2000,18(1):63-67.
    122.李德生.中国含油气盆地构造学[M]..北京:石油工业出版社,2002.
    123.李国玉等,中国含油气盆地图集,石油工业出版社,2002.
    124.李火车,刘秋生,王亚红,等.2001.斜坡油气勘探.石油地球物理勘探,36(5):602~610.
    125.李丕龙,张善文,宋国奇,等.断陷盆地隐蔽油气藏形成机制-以渤海湾盆地济阳坳陷为例.石油实验地质.2004,26(01):3-10.
    126.李守军,郑德顺,姜在兴等.用介形类优势分异度恢复古湖盆的水深--以山东东营凹陷古近系沙河街组沙三段湖盆为例[J].古地理学报,2005,7(3):399-404.
    127.李祥辉,王成善,胡修棉.深海相中的砂质碎屑流沉积:以西藏特提斯喜马拉雅侏罗-白垩系为例.矿物岩石.2000,20(01):45-51.
    128.李祥辉,王成善,金玮,等.深海沉积理论发展及其在油气勘探中的意义.沉积学报.2009,27(01):77-86.
    129.李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示.石油勘探与开发2007;34(4):9.
    130.李云,郑荣才,高博禹,等.深水扇沉积研究现状和展望--以珠江口盆地白云凹陷珠江深水扇系统为例.地质论评,2010,56(4):549-560
    131.林畅松,潘元林,肖建新,等."构造坡折带"--断陷盆地层序分析和油气预测的重要概念.地球科学2000(03):260-266.
    132.林畅松,郑和荣,任建业,等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制.中国科学(D辑:地球科学)2003(11):1025-1036.
    133.林承焰,张宪国,董春梅.地震沉积学及其初步应用.石油学报,2007,28(2):69-72.
    134.蔺连第,朗艳,金蕙,等.二连盆地乌里雅斯太凹陷早白垩世湖底扇.石油勘探与开发2005;32(3):6.
    135.刘宪斌,万晓樵,林金逞,等.陆相浊流沉积体系与油气.地球学报2003;24(1):6.
    136.刘震,邵新军,金博,等.压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响[J].现代地质,2007,21(1):125-132.
    137.鲁洪波,姜在兴.稀土元素地球化学分析在岩相古地理研究中的应用[J].石油大学学报(自然科学版),1999,23(1):6-8.
    138.慕小水,苑晓荣,贾贻芳,等.东濮凹陷泥岩裂缝油气藏形成条件及分布特点.断块油气田2003;10(1):3.
    139.潘树新,郭维华,马凤良等.松辽盆地榆树水系泉头组-嫩江组沉积相特征及勘探潜力[J].新疆石油地质,2010,31(01):47-50
    140.潘树新,卫平生,王天奇,等.松辽盆地东部物源的发现及其石油地质意义.天然气地球科学,2011,22(6):1021-1027.
    141.潘树新,梁苏娟,史永苏,等.松辽盆地上白垩统青山口组介形虫群集性死亡事件成因[J].古地理学报,2010,12(4):409-414.
    142.潘树新,卫平生,袁剑英,等.论油气运移的"高速公路"及源外找油思想[J].沉积学报,2011,29(3):599-603.
    143.庞雄,彭大钧,陈长民,等.三级"源-渠-汇"耦合研究珠江深水扇系统.地质学报.2007,81(06):857-864.
    144.庞雄,申俊,袁立忠,等.南海珠江深水扇系统及其油气勘探前景.石油学报.2006,27(03):11-15+21.
    145.彭大钧,庞雄,陈长民,等.南海珠江深水扇系统的形成特征与控制因素.沉积学报.2006,24(01):10-18.
    146.冉波,王成善,李祥辉.鲍玛序列的多解性.沉积与特提斯地质.2010,30(01):40-43.
    147.任作伟,李琳,张凤莲.辽河盆地老第三系深层碎屑岩储层沉积相.古地理学报2001;3(4):10.
    148.阮伟,R. Steel,黄洁.碎屑岩深水扇研究,《海洋地质与第四纪地质》,2010,30,(1),39-46
    149.石广仁,米石云,张庆春,等.盆地模拟原理方法[M].北京:石油工业出版社,1998:129-132.
    150.石世革.黄骅坳陷板桥凹陷古近系沙一段中部层序地层学研究与岩性油气藏勘探.石油与天然气地质2008;29(3):6.
    151.宋国奇.应用层序地层学方法恢复加里东期古地貌[J].石油实验地质,2000,22(4):350~354.
    152.苏金宝,朱文斌,贾东等.伸展断层相关褶皱的几何学分析及其在车镇凹陷中的应用[J].地质学报,2011,85(10):1563-1573.DOI:11-1951/P.20110923.1427.010.
    153.万锦峰,鲜本忠,佘源琦等.基于伽马能谱测井信息的古水深恢复方法--以塔河油田4区巴楚组为例[J].石油天然气学报,2011,33(6):98-103.
    154.汪功怀,邓明霞,宋萍,等.东濮凹陷沙三上盐间泥岩裂缝油气藏地震识别及描述.断块油气田2011;18(4).
    155.汪新文.伸展褶皱作用及其油气勘探意义[J].现代地质,2008,22(1):60-69.
    156.王大伟,吴时国,董冬冬,等.琼东南盆地第四纪块体搬运体系的地震特征.海洋地质与第四纪地质,2009(3):69-74.
    157.王东坡,刘招君,刘立,等.松辽盆地演化与海平面升降[M].北京:地质出版社,1994.
    158.王鸿祯,莫宣学.1996.中国地质构造述要.中国地质,(8)
    159.王家豪,王华.层序地层学应用于古地貌分析-以塔河油田为例[J].地球科学-中国地质大学学报,2003,28(4):425~430.
    160.王建功,卫平生,郑浚茂,赵占银,潘树新.挠曲坡折带特征与油气勘探--以松辽盆地南部为例.石油学报2005;26(2):5.
    161.王建功,王天琦,张顺等.松辽坳陷盆地水侵期湖底扇沉积特征及地球物理响应.石油学报,2009,30(3):361-366.
    162.王留奇,姜在兴,操应长,等.东营凹陷沙河街组断槽重力流水道沉积研究.石油大学学报(自然科学版).1994,18(03):19-25.
    163.王燮培,费琪,张家骅.石油勘探构造分析.1990.
    164.王学军,王志欣,刘显阳等.利用铀的测井响应恢复鄂尔多斯盆地古水深[J].天然气工业,2008,28(7):46-48.
    165.王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型、展布及其勘探意义.石油与天然气地质2003;24(3):6.
    166.王英民,刘豪,李立诚,等.准噶尔大型坳陷湖盆坡折带的类型和分布特征.地球科学-中国地质大学学报2002;27(6):6.
    167.王英民,刘豪,辛仁臣,等.湖盆坡折带--地层岩性圈闭勘探的新领域.石油科学(英文版)2004;1(2):7.
    168.王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型、展布及其勘探意义.石油与天然气地质,2003,24(3):199-214.
    169.王英民,王海荣,邱燕,等.深水沉积的动力学机制和响应.沉积学报,2007,25(4):495-504.
    170.王英民,徐强,李冬,等.南海西北部晚中新世的红河海底扇.科学通报,2011,56(10):781-787.
    171.王颖,大型坳陷湖盆坡折带对沉积和岩性地层圈闭的控制作用--以松辽盆地西部坡折带为例,2005.
    172.王永春.松辽盆地南部岩性油气藏的形成和分布[M].北京:石油工业出版社,2001
    173.卫平生,论坳陷盆地"坡折带"及"湖岸线"对岩性地层油气藏的控制作用--以松辽盆地南部西部斜坡为例,2005.
    174.卫平生,潘树新,王建功,等.2007.湖岸线和岩性地层油气藏的关系研究--论"坳陷盆地湖岸线控油".岩性油气藏,19(1):27-32
    175.卫平生,王建功,潘树新,等.2004.河口坝、沿岸坝的形成及成藏机制.新疆石油地质,25(6):592-595
    176.吴崇筠,薛叔浩.1993.中国含油气盆地沉积学[M],北京:石油工业出版社.
    177.吴时国,秦蕴珊.南海北部陆坡深水沉积体系研究.沉积学报,2009,27(5):922-930.
    178.夏青松,田景春.浊积岩神话与砂质碎屑流[J].沉积与特提斯地质,2006,26(4):105-108.
    179.鲜本忠,万锦峰.断陷湖盆洼陷带重力流沉积特征与模式:以南堡凹陷东部东营组为例[J].地学前缘,2012(1):121-135.
    180.向立宏.济阳坳陷泥岩裂缝主控因素定量分析.油气地质与采收率2008;15(5):4.
    181.谢又予.沉积地貌分析[M].北京:海洋出版社,2000
    182.辛仁臣,蔡希源,王英民,等.松辽坳陷深水湖盆层序界面特征及低位域沉积模式[J].沉积学报,2004,22(3):387-392.
    183.徐长贵,赖维成,薛永安,等.古地貌分析在渤海古近系储集层预测中的应用.石油勘探与开发2004;31(5):4.
    184.徐福刚,李琦,康仁华,等.沾化凹陷泥岩裂缝油气藏研究.矿物岩石2003;23(1):3.
    185.杨克绳,王同和.冀中坳陷逆同生断层的发现及其找油意义.石油勘探与开发1985(04):1-7.
    186.杨万里,高瑞琪,郭庆福,等.1985.松辽盆地陆相油气生成运移和聚集.哈尔滨:黑龙江科学技术出版社.
    187.于兴河.2008.碎屑岩系油气储层沉积学(第二版).北京:石油工业出版社.
    188.俞凯,侯洪斌,郭念发,等.松辽盆地南部断陷层系石油天然气地质[M].北京:石油工业出版社,2002.
    189.翟光明,王志武,主编.中国石油地质志.北京:石油工业出版社,1993.
    190.张金川,金之钧,袁明生.页岩气成藏机理和分布.天然气工业2004;24(7):4.
    191.张金功,袁政文.泥质岩裂缝油气藏的成藏条件及资源潜力.石油与天然气地质2002;23(4):4.
    192.张景军,柳成志,曹彬彬,等.乌尔逊凹陷南屯组湖底扇沉积特征研究.科学技术与工程2011;11(27).
    193.张明禄,王勇.长庆气田下古生界气藏开发阶段储集层描述方法[J].石油勘探与开发,2002,29(5):74~76.
    194.张世奇,任延广.松辽盆地中生代沉积基准面变化研究[J].长安大学学报(地球科学版),2003,25(2):1-5.
    195.张文佑,边千韬.1984.地质构造控矿的地球化学机制.矿物岩石学通报,1984,30:9-10
    196.张兴阳,罗顺社,何幼斌.沉积物重力流-深水牵引流沉积组合-鲍玛序列多解性探讨.江汉石油学院学报.2001,23(01):1-4+6.
    197.赵俊兴,陈洪德,向芳.高分辨率层序地层学方法在沉积前古地貌恢复中的应用[J].成都理工大学学报(自然科学版),2003,30(1):76~81.
    198.真柄钦次.压实与流体运移[M].陈荷立,邸世祥,汤锡元,等译.北京:石油工业出版社,1981:145-156.
    199.郑荣才,文华国,韩永林,等.鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义.成都理工大学学报(自然科学版),2006,33(6):566-575.
    200.周廷全,鲜本忠,林会喜,等.车镇凹陷陡坡带古近系湖底扇沉积规律及储层特征.油气地质与采收率2007;14(2):5.
    201.周廷全,鲜本忠,林会喜,等.车镇凹陷陡坡带古近系湖底扇沉积规律及储层特征.油气地质与采收率,2007,13(2):23-27.
    202.朱筱敏,熊继辉,刘泽荣,等.东濮凹陷轴向重力流水道沉积研究.石油大学学报(自然科学版).1991,15(05):1-10.
    203.朱筱敏.2008.沉积岩石学(第四版).北京:石油工业出版社.
    204.禚喜准,王琪,朱筱敏,等.松辽盆地南部拗陷期湖盆底形演化及充填序列.石油学报2009(04):536-541.
    205.邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力.石油勘探与开发2010;37(6).
    206.邹才能,陶士振,袁选俊,等.连续型油气藏形成条件与分布特征.石油学报.2009,30(03):324-331.
    207.邹才能,赵文智,张兴阳,等.大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布.地质学报.2008,82(06):813-825.
    208.邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征-以鄂尔多斯盆地为例.沉积学报.2009,27(06):1065-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700