用户名: 密码: 验证码:
大型地下结构泄排水减压抗浮控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地下空间的综合开发利用已成为世界城市发展的共同选择,大型和超大型地下结构如雨后春笋般不断涌现,但是随之而来的是大型地下结构抗浮安全问题。而传统被动式抗浮方法工艺复杂、投资大,并且存在众多技术难题,例如地下结构的耐久性和抗疲劳等方面的技术问题。因此,寻找新的绿色的抗浮方法已成为大型地下空间开发与利用亟待解决的重要课题。本文针对地下结构新的抗浮方法—泄排水抗浮方法,对其抗浮机理、抗浮理论分析计算体系、工程风险与质量控制等关键技术问题进行了系统研究。
     首先,本文以深圳某大型地下停车库建设为研究背景,通过从工期、全寿命周期费用等七个方面系统全面的比较常见抗浮方法的特点,以及基于泄排水抗浮的机理深入分析探讨,总结出泄排水抗浮是一种节材、节能的绿色抗浮工艺和方法,并指出了该方法一般适用于弱透水层场地。
     接着,本文通过泄排水减压机理研究和结合工程特点,确定了泄排水抗浮的主要设计参数为基础底部孔隙水压力水头等四个参数;并从现代系统控制理论的角度总结出了泄排水抗浮动态控制的原理和控制系统的构成,其控制原理和过程主要是依据实时全面的监测数据信息,基于有限元渗流分析与计算结果,通过调节水平横管的标高,从而动态适时进行地下结构抗浮安全和周边环境保护控制。
     然后,本文基于饱和土与非饱和土的地下水渗流理论,建立了泄排水抗浮渗流计算有限元模型。并通过多种工况的渗流分析计算,优化确定了该工程的抗浮设计参数控制范围和设计值。并重点对抗浮设计中的两个关键问题(系统水头损失和结构运营期对周边环境的影响)进行了深入探讨。
     此外,本文基于工程风险管理基本理论,提出了泄排水抗浮风险管理流程框架。通过有限元计算计算分析,识别和确定了泄排水抗浮失效风险指标。并基于所建立的泄排水抗浮系统失效的故障树建模分析,找出了导致泄排水抗浮失效的所有可能的故障模式和发生的概率,并根据重要度分析结果制定出了抗浮风险的控制对策。
     最后,本文分析了抗浮系统倒滤层的质量控制问题。确定了倒滤层的构成型式以及关键控制参数设计计算,总结和提出了倒滤层的施工流程和施工控制要点。并通过对地下结构施工阶段和运营阶段八种监测数据的综合,讨论了泄排水抗浮控制的效果,得出如下结论:泄排水抗浮方法对周边环境的影响非常小,该方法经济合理、技术可行。
     本文对地下结构泄排水抗浮方法的研究成果具有一定的理论意义和工程应用价值,可以为类似大型地下工程建设提供参考。
Many cities worldwide take a comprehensive use of their urban underground space. With the emergence of large amounts of large and extra-large underground structures, the problem of hydrostatic uplift safety of large underground structures became important. The traditional passive uplift resisting approachs are complex, expensive, and technically difficult, with many common problems in underground structures such as structure durability of cracking, corrosion-resistant and anti-fatigue. Therefore, it is important and urgent to explore new green anti-floating methods for large-scale development and utilization of underground space. This paper introduced a new anti-floating method of underground structures—under drain anti-floating method.The mechanism of this innovative uplift resisting method, the theoretical analysis and calculation system, and key technical problems such as project risks and quality control were systematically studied.
     Firstly, by analysing the construction of a large underground parking lot in Shenzhen, this paper systematically compared the characteristics of common anti-floating methods on seven aspects, including the schedule, the life cycle cost and so on. It also conducted the in-depth analysis on the uplift resisting mechanism of groundwater-discharging pressure relief. In this way, the under drain anti-floating method was believed to be a green construction technology method that saved materials and energy, and it was argued that this method could be applied to aquitard sites in general.
     Secondly, this paper studied the mechanism of groundwater-discharging pressure relief and the characteristics of the underground structure, and identified four vital parameters for designing the large underground structures with the under drain anti-floating method, including the pore water pressure head at the bottom of raft foundations.Therefore, it brought up the dynamic control principles of under drain anti-floating method and the composition of the control system from the perspective of modern system control theory.The working principle and process of dynamic anti-floating system largely bases on the comprehensive real-time monitoring data and the finite element seepage analysis and calculation results, and dynamically protect the anti-floating safety of underground structures and the surrounding environment by adjusting the level of the horizontal tube elevation.
     Thirdly, based on the groundwater seepage theory of saturated soil and unsaturated soil, this paper established the seepage finite element anti-floating calculation model of under drain. By analysing and calculating the seepage under a variety of conditions analysis, it optimized the control interval and value of the anti-floating design parameters. In-depth discussions on two key issues were conducted on the anti-floating design, including system head loss and the impact on the surrounding environment during the operation.
     In addition, this paper proposed the the under drain anti-floating risk management process framework, based on the principles of project risk management. It identified and determined the under drain anti-floating failure risk indicators by the finite element anti-floating calculation and analysis. The fault tree model of the established under drain anti-floating system was built and all possible failure modes and their possibilities of occurrence leading to the under drain system failures were located and calculated, and corresponding control measures of the anti-floating risks were developed according to the degree of importance.
     Finally, this paper analysed the quality control of uplift resisting inverted filter layer. The constitution model of the inverted filter layer was determined, the critical control parameters were calculated, and the construction process and construction control points of the inverted filter layer were summarised. This paper integrated the eight types of monitoring data of the underground structures in both the construction phase and the operational phase, and discussed the effect of the under drain uplift resisting system, it concluded that the under drain anti-floating method had a very small impact on the surroundings, and it was economically rational and technically feasible.
     This paper brought up an innovative anti-floating method for underground structures. This research is theoretically and empirically important and can provide a reference for similar large-scale underground construction.
引文
[1]钱七虎.城市可持续发展与地下空间开发利用.地下空间,1998,18(2):69-74
    [2]商务周刊编辑部.人类发展的第二空间就是向地下开发——专访中国工程院院士王梦恕.商务周刊,2010(1):74-75
    [3]贾建伟,彭芳乐.日本大深度地下空间利用状况及对我国的启示.地下空间与工程学报,2012,8(S1):1339-1343
    [4]钱七虎.中国城市地下空间开发利用的现状评价和前景展望.民防苑,2006(1):1-5
    [5]王卫东,朱合华,李耀良.城市岩土工程与新技术.地下空间与工程学报,2011(S1):1274-1291
    [6]雷波,明世祥,贾立宏.基于SEEP/W的基底地下水赋存形态及孔压分析.中南公路工程,2005,30(4):99-103
    [7]张在明,孙保卫,徐宏声.地下水赋存状态与渗流特征对基础抗浮的影响.土木工程学报,2001,34(1):73-78
    [8]高大钊.岩土工程勘察与设计:岩土工程疑难问题答疑笔记整理之二.北京:人民交通出版社,2010
    [9]刘汉进,张同波,于德湖.某地下车库局部整体上浮位形变化与损坏特征分析.青岛理工大学学报,2010,31(5):119-124
    [10]吴斌.地下结构物抗浮设计初探[硕士学位论文].广州:华南理工大学,2003
    [11]史佩栋,高大钊,桂业琨.高层建筑基础工程手册.北京:中国建筑工业出版社,2000
    [12]李国强,黄宏伟,吴迅等.工程结构荷载与可靠度设计原理(第3版).北京:中国建筑工业出版社,2005
    [13]中华人民共和国住房和城乡建设部.GB50009-2012建筑结构荷载规范.北京:中国建筑工业出版社,2012
    [14]中华人民共和国住房和城乡建设部.GB50069-2002给水排水工程构筑物结构设 计规范.北京:中国建筑工业出版社,2002
    [15]北京城建设计研究总院.GB50157-2003地铁设计规范.北京:中国计划出版社,2002
    [16]European Committee for Standardization. EN1990:2002 Eurocode:Basis of Structural Design. London:BSI,2002
    [17]European Committee for Standardization. EN1991-1-6:2005 Eurocode 1:Actions on Structures Part 1-6:General Actions -actions During Execution. London:BSI, 2005
    [18]European Committee for Standardization. EN1997-1:2004 Eurocode7:Geotechnical Design-part 1:General Rules. London:BSI,2004
    [19]中华人民共和国住房和城乡建设部.GB50069-2002给水排水工程构筑物结构设计规范(2009年版).北京:中国建筑工业出版社,2009
    [20]中华人民共和国住房和城乡建设部.JGJ 72-2004高层建筑岩土工程勘察规程.北京:中国建筑工业出版社,2004
    [21]张欣海.深圳地区地下建筑抗浮设计水位取值与浮力折减分析.勘察科学技术,2004,(2):12-20
    [22]杨瑞清,朱黎心.地下建筑结构设计和施工设防水位的选定与抗浮验算的探讨工程勘察,2001,(1):43-46
    [23]叶树人.深圳地下水对地下建(构)筑物浮力作用参数取值的分析.四川建筑,2004,24(1):59-60
    [24]周朋飞.城市复杂环境下地下水浮力作用机理试验研究[硕士论文].北京:中国地质大学(北京),2006
    [25]张第轩.地下结构抗浮模型试验研究[硕士论文].上海:上海交通大学船舶海洋与建筑工程学院,2007
    [26]向科,周顺华,詹超.浅埋地下结构浮力模型试验研究.同济大学学报(自然科学版),2010,38(3):346-352,357
    [27]崔岩,崔京浩,吴世红等.浅埋地下结构外水压折减系数试验研究.岩石力学与工程学报,2000,19(1):82-84
    [28]李广信,吴剑敏.浮力计算与粘土中的有效应力原理.岩土工程技术,2003,(2):63-66
    [29]张竹庭.地下水渗流对地下结构抗浮计算的影响分析.建筑施工,2012,34(8):780-782
    [30]李广信,吴剑敏.关于地下结构浮力计算的若干问题.土工基础,2003,17(3):39-41
    [31]李胜勇,韩华.建筑抗浮设计水位取值方法-以北京市某工程为例.中国安全科学学报,2005,15(7):58-62
    [32]黄志仑,马金普,李丛蔚.关于多层地下水情况下的抗浮水位.岩土工程技术,2005,19(4):182-183,217
    [33]何翠香.如何确定北京地铁工程的抗浮设防水位.工程勘察,2010,(S1):747-751
    [34]张在明.地下水与建筑基础工程.北京:中国建筑工业出版社,2001
    [35]European Committee for Standardization. EN1997-2:2007 Eurocode 7:eotechnical Design -part2:Ground Investigation andTesting. London:BSI,2007
    [36]毛超熙.渗流计算分析与控制.北京:中国水利水电出版社,2003
    [37]Biot M A. General theory for three-dimensional consolidation. J. Appl. Phys.,1941, 12(2):155-164
    [38]Zienkiewicz 0 C, Shiomi T. Dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics,2005,8(1):71-96
    [39]Warren J E, Root P J. The behavior of naturally fractured reservoirs. Old SPE Journal,1963,3(3):245-255
    [40]Clossman P J. An aquifer model for fissured reservoirs. Old SPE Journal,1975, 15(5):385-398
    [41]李锡夔,张洪武.饱和土壤动力渗流的非线性分析.大连理工大学学报,1990,30(3):255-262
    [42]Bishop A W. The principle of effective stress. Teknisk Ukeblad,1959,106(39): 859-863
    [43]Bishop A W, Blight G E. Some aspects of effective stress in saturated and unsaturated soils. Geotechnique,1963,13(3):177-197
    [44]Fredlund D G. Unsaturated soil mechanics in engineering practice. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(3):286-321
    [45]Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils. Geotechnique,1990,40(3):405-430
    [46]陈正汉.非饱和土固结的混合物理论(Ⅰ).应用数学和力学,1993,14(2):127-137
    [47]陈正汉.非饱和土固结的混合物理论(Ⅱ).应用数学和力学,1993,14(8):687-698
    [48]Zienkiewicz O C, Chan A H C, Pastor M, et al. Computational geomechanics with special reference to earthquake engineering. Chichester, UK:Wiley,1999
    [49]Neuman S P. Saturated-unsaturated seepage by finite elements. Journal of the Hydraulics Division,1973,99(12):2233-2250
    [50]Lam L, Fredlund D G, Barbour S L. Transient seepage model for saturated-unsaturated soil systems:a geotechnical engineering approach. Canadian Geotechnical Journal,1987,24(4):565-580
    [51]郭晓东,田辉,张梅桂等.我国地下水数值模拟软件应用进展.地下水,2010,32(4):5-7
    [52]Hudson J A, Stephansson O, Andersson J. Guidance on numerical modelling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. International Journal of Rock Mechanics and Mining Sciences,2005,42(5):850-870
    [53]Tsang C F, Stephansson O, Jing L, et al. DECOVALEX Project:from 1992 to 2007. Environmental Geology,2009,57(6):1221-1237
    [54]Tsang C F. Introductory editorial to the special issue on the DECOVALEX-THMC project. Environmental Geology,2009,57(6):1217-1219
    [55]Tomlinson M J, Boorman R. Foundation design and construction. London:Pearson Education,2001
    [56]刘京城.国家体育馆钢渣混合料回填施工.施工技术,2007,36(9):78-80
    [57]Littlejohn G S, Bruce D A. Long-term performance of high capacity rock anchors at Devonport. Ground Engineering,1979,12(7):25-33
    [58]Benmokrane B, Chekired M, Xu H, et al. Behavior of grouted anchors subjected to repeated loadings in field. Journal of Geotechnical Engineering,1995,121(5): 413-420
    [59]柳建国,刘波.建筑物的抗浮设计与工程技术.工业建筑,2007,37(4):1-5
    [60]Fellenius B H. Results from long-term measurement in piles of drag load and downdrag. Canadian Geotechnical Journal,2006,43(4):409-430
    [61]Turnbull W J, Mansur C I. Relief well systems for dams and levees. Transactions of the American Society of Civil Engineers,1954,119(1):842-861
    [62]Chang J. Water pressure reducing structure of a raft foundation bottom plate. U.S., English,5228805,1993:1-12
    [63]Chang D T T, Wu J Y, Nieh Y C. Use of geosynthetics in the uplift pressure relief system for a raft foundation. ASTM Special Technical Publication,1996,1281(1): 196-210
    [64]Chang D T T, Chang J C I, Tung R S T, et al. New method to stabilize the uplift-pressure problem for raft foundations. Transportation Research Record: Journal of the Transportation Research Board,2000,1721(1):31-38
    [65]Wong I H. Methods of resisting hydrostatic uplift in substructures. Tunnelling and Underground Space Technology,2001,16(2):77-86
    [66]Shin E C, Das B M, Kim J I, et al. Uplift pressure removal system in underground structure utilizing geocomposite system[C].in:Kuwano J, Koseki J. Proceedings of the 8th International Conference on Geosynthetics (8ICG).Yokohama, Japan: Millpress Science Publishers,2006:1699-1702
    [67]王世明.地下结构抗浮设计及其新发展.地下工程与隧道,1994,(1):9-16
    [68]俞建强.深大基础工程中的新技术——静力释放层的应用.建筑施工,1999,21(2):19-21
    [69]张慧东,钱刚毅,李旭强等.建筑排水减压抗浮新技术的运行与维护.施工技术,2012,41(13):67-69,103
    [70]Srivastava A, Babu G L S. Uplift Capacity and Performance Assessment of Anchor Piles Installed to Basement Raft. EJGE,2012,17(1):1174-1187
    [71]Zhang B, Benmokrane B, Ebead U A A. Design and evaluation of fiber-reinforced polymer bond-type anchorages and ground anchors. International Journal of Geomechanics,2006,6(3):166-175
    [72]万嘉康,徐云博.抗拔桩应用与研究现状.岩土工程界,2008,11(3):50-51
    [73]赵庆华.地下结构抗浮方案评价指标体系的建立.扬州大学学报(自然科学版),2009,12(4):74-78
    [74]Pilarczyk K W. Geosynthetics and geosystems in hydraulic and coastal engineering. London:Taylor & Francis,2000
    [75]吴吉,春薛禹群.地下水动力学.北京:中国水利水电出版社,2009
    [76]Harr M E, Deen R C. Analysis of seepage problems. J. of Soil Mech. and Found. Div., ASCE,1961,87(5):91-107
    [77]铁道部第一勘测设计院.铁路工程地质手册.北京:中国铁道出版社,1999.189-190
    [78]台湾中联工程顾问股份有限公司.DBJ/CT077-2010 CMC静水压力释放层技术规程.上海:上海市建筑建材业市场管理总站,2010
    [79]Ashby W R. An introduction to cybernetics. London:Chapman and Hall,1957
    [80]Bond A, Harris A. Decoding Eurocode 7. London and New York:Taylor & Francis, 2008
    [81]中华人民共和国住房和城乡建设部.GB50007-2011建筑结构荷载规范.北京:中国建筑工业出版社,2012
    [82]Powrie W. Soil mechanics:concepts and applications. London:Taylor & Francis, 2002
    [83]Fredlund D G. Unsaturated soil mechanics in engineering practice.Journal of Geotechnical and Geoenvironmental Engineering,2006,132(3):286-321
    [84]龚晓南.高等土力学.杭州:浙江大学出版社,2002
    [85]Davidson J M, Stone L R, Nielsen D R, et al. Field measurement and use of soil-water properties. Water Resources Research,1969,5(6):1312-1321
    [86]Van Genuchten M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Science Society of America Journal,1980,44(5):892-898
    [87]苑莲菊,李振栓,武胜忠.工程渗流力学及应用[M].北京:中国建材工业出版社,2011.53-54
    [88]GEO-SLOPE International Ltd. Seepage Modeling with SEEP/W 2007(Third Edition). Calgary, Alberta, Canada:GEO-SLOPE International Ltd,2008
    [89]Bettess Peter. Infinite Elements. Sunderland, UK:Penshaw Press,1992.53-95
    [90]中华人民共和国住房和城乡建设部.GB50497-2009建筑基坑工程监测技术规范.北京:中国建筑工业出版社,2009
    [91]李中斌.风险管理解读.北京:石油工业出版社,2000
    [92]中华人民共和国住房和城乡建设部.GB50652-2011城市轨道交通地下工程建设风险管理规范.北京:中国建筑工业出版社,2011
    [93]Rider G, Milkovich S, Stool D, et al. Quantitative risk analysis. Injury Control and Safety Promotion,2000,7(2):115-133
    [94]王江涛.渗流对深基坑工程的影响分析[硕士学位论文].武汉:武汉科技大学,2004
    [95]罗云,樊运晓,马晓春.风险分析与安全评价.北京:化学工业出版社,2000
    [96]Averett M W. Fault tree analysis. Risk Analysis,1988,8(3):433-464
    [97]全国统计方法应用标准化技术委员会.GB/T 4888-2009故障树名词术语和符号.北京:中国标准出版社,2009
    [98]李惠强.高层建筑施工技术.北京:中国建筑工业出版社,2005.78-80
    [99]张建.FTA分析方法在基坑工程中的应用研究.铁道建筑,2009(2):74-76
    [100]龙小梅,陈龙珠.基坑工程安全的故障树分析方法研究.防灾减灾工程学报,2005,25(4):365-368
    [101]Rawal A, Shah T, Anand S. Geotextiles:production, properties and performance. Textile Progress,2010,42(3):181-226
    [102]SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters. Journal of the Geotechnical Engineering Division, ASCE,1984, 110(6):684-700
    [103]周蓉.土工织物反滤机理研究.青岛大学学报,2000,15(4):41-43
    [104]中华人民共和国水利部.GB50290-1998土工合成材料应用技术规范.北京:中国计划出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700