用户名: 密码: 验证码:
太阳风—磁层—电离层电场穿透与屏蔽的观测与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳风-磁层-电离层电场穿透与屏蔽过程一直是太阳风-磁层-电离层电动力学耦合研究的重点课题。这一问题的研究虽然已有40多年的历史,但是,一些最关键的问题至今尚未解决,主要包括:
     1、太阳风电场进入磁层的机制;
     2、行星际/磁层电场渗透到低纬电离层的持续时间;
     3、暴时的屏蔽电场的发展过程;
     4、行星际电场穿透到低纬电离层的效率,即电场穿透效率;
     5、电场穿透效率的地方时依赖性。
     针对这些问题,本文使用观测分析和数值模拟两种研究方法,对太阳风-磁层-电离层电场穿透与屏蔽现象做了较为系统的研究。主要工作概述如下:
     (1)利用多个卫星和地面探测仪器的联合观测数据,分析了2003年11月11日-16日多重电场穿透事件。这是迄今为止报道的持续时间最长(125个小时)的电场穿透事件。研究发现重联电场与赤道电场的相关性比太阳风电场更好,表明太阳风电场通过向阳面磁层顶的磁重联机制进入磁层-电离层系统,并且穿透到了赤道地区。该事件中平均穿透效率为0.136。
     (2)利用多颗磁层卫星的磁场和等离子体数据分析了2005年9月15日赤道电离层电场过屏蔽事件。研究发现,磁层位形变化导致过屏蔽效应呈现逐渐增加和缓慢衰减的2个发展阶段,是引起赤道电离层电场扰动的重要原因。这一事件第一次从观测上验证了上世纪80年代Wolf等人为解释磁层-电离层电场耦合提出的理论。
     上述2个事件研究结果为解决问题1-4的提供了新的认识。由于太阳风-磁层-电离层电场穿透与屏蔽过程是一个全球尺度的问题,而目前观测手段存在时空局限性,对于问题5我们借助计算机数值模拟进行研究。
     (3)在数值模拟研究中,我们以南北半球耦合的电离层电场模式为基础,主要对高纬边界条件进行改进,并且考虑太阳风-磁层发电机对电离层电场的驱动作用,对太阳风-磁层-电离层电场穿透与屏蔽过程的一些全球尺度特性做了研究。主要结果如下:
     (3a)地磁场位形对电离层电场分布的影响:利用中性风与电导率模型,分别在地心共轴偶极场、地心倾斜偶极场和国际地磁参考场(IGRF)三种地磁场模型下计算电离层电场,比较三种结果发现,地磁场位形对电离层电场分布有显著影响。
     (3b)穿透效率的地方时依赖性:利用改进的电离层电场模式,针对太阳风-磁层-电离层电场穿透效率做了实验性探讨。基本结论为:1)不考虑跨极盖电势的饱和效应,赤道电场对行星际电场线性响应,且中性风发电机不影响电场穿透效率;2)穿透效率具有地方时变化:在0900LT至2300LT之间,穿透效率维持在10%左右,0000LT至0700LT之间,穿透效率从2%迅速上升至30%后又迅速回落到原始水平,形成尖峰。这些结论使得我们对电场穿透效率的地方时依赖性第一次有了初步的认识。
     (4)向阳面磁层顶磁场重联是太阳风电场进入磁层-电离层系统的重要途径。利用双星TC1的观测数据,本文分别使用最小方差分析法(MVA)、deHoffmann-Teller(HT)分析和Grad-Shafranov反演方法(GSR)分析了一个向阳面磁层顶多重通量传输事件。结果揭示出向阳面磁层顶非稳态重联产生的通量管结构、运动等一些特征。
     综上所述,本文对太阳风-磁层-电离层电场穿透与屏蔽机制从观测和模拟两种角度都展开了探索,其结果拓展了我们对太阳风-磁层-电离层电动力学耦合的认识。使用观测手段,我发现了一个迄今为止最长时间的多重电场穿透事件,并且以一个磁层形变导致赤道电离层扰动事件验证了一个提出多年的理论。借助数值模拟方法,本文第一次定量地讨论了电场穿透效率的地方时依赖性。
The solar wind-magnetosphere- ionosphere electric field penetration and shielding process has long been one of the most important topics. However, the penetration and shielding phenomenon is transient and of global scale, thus it is difficult to observe and simulate the process, which leads to dispute on some key questions as follows.
     1. The mechanism of solar wind electric field penetrating to magnetosphere;
     2. The time scale of penetration process;
     3. The shielding electric field development;
     4. How much the solar wind electric field can penetrate to low latitude region, i.e., penetration efficiency;
     5. The local time dependence of electric field penetration.
     To study these topic, two methods, observational studies and numerical simulations, are employed in this dissertation. The most results are novel or unique, which are expected to extend our knowledges of solar wind-magnetosphere-ionospere coupling processes. The main works are listed as follows:
     (1) Unusually long-lasting multiple electric field penetration event during November 11-16, 2003. The striking feature of this event is that the equatorial electric field exhibited impulsive perturbations in association with north-south oscillations of IMF Bz during 125 hours. My analysis results suggested that these perturbations are caused by the penetration of the solar wind electric field to equatorial ionosphere through magnetic reconnection on the dayside magnetosphere. Chapter 2 will present the observations and possible theoretical explanations.
     (2) The magnetospheric reconfiguration during an overshielding event on September 15, 2005. Chapter 3 reports a detailed analysis of an event in which the solar wind dynamic pressure underwent a sharp reduction, which caused magnetic changes in the ring current and plasma sheet as well as overshielding-type ionospheric electric fields in the dayside equatorial region. The event is analyzed in terms of a combination of observational data that is unique, as far as I know, and is interpreted in light of existing theory.
     These observations are important to question 1-4, however, the present observational instruments are not helpful to question 5, and thus the numerical simulations are required.
     (3) Based on an ionospheric dynamo model, I have modified its high latitude boundary condition, and involved the solar wind-magnetospheric dynamo effect. The new model is employed to study the global features of electric field penetration and shielding.
     (3a) The effect of geomagnetic field configuration on ionospheric electric field distribution. With same neutral wind model and conductance model, three geomagnetic models, centered dipole, tilted dipole and international geomagnetic reference field (IGRF), are respectively employed to calculate the ionospheric electric field. Chapter 5 will show how the geomagnetic field configuration affects ionospheric electric field distribution.
     (3b) The local time dependence of penetration efficiency. Chapter 6 suggests that:
     (1) Without considering transpolar potential saturation, equatorial electric field increment linearly responds to IEF increment, and neutral wind do not affect the penetration efficiency; (2) Assuming constant magnetic reconnection length L=2.6 Re, the local time dependence of penetration efficiency can be described as follows: it is about 10% between 9 and 23LT, however, increase rapidly from 2% up to 30% and decrease quickly to 2% between 0 and 7LT. All above characteristics are basically consistent with observations.
     (4) Because the magnetic reconnection on the dayside magnetosphere is the most important coupling mechanism of solar wind electric field to magnetosphere-ionosphere system, this dissertation also includes a case study of multiple flux transfer event on the dayside magnetosphere. Using Double Star TC1 observations, three methods, Maximum/Minimum Variance Analysis (MVA), deHoffmann-Teller (dHT) and Grad-Shafranov Reconstrution, are applied to this event. The results will be presented in chapter 7.
     In summary, the works shown in this dissertation, including case studies and numerical simulation, are expected to extend the present view to solar wind-equatorial ionospheric electric field penetration. Specially for the part of case studies, the magnetospheric reconfiguration in association with overshielding event verified a theory which had been proposed for many years, as well as the unusually long-lasting multiple penetration of solar wind electric field to equatorial ionospheric raise new challenge to the traditional theory.
引文
上出洋介、鲍明翰 (2005),磁层-电离层耦合,徐文耀译,北京:科学出版社。
    徐文耀 (2003),地磁学,北京:地震出版社。
    王水, 李罗权 (1999),磁场重联,合肥:安徽教育出版社。
    李罗权,刘振兴 (1988),地球磁层中的多重 X 线磁场重联. 见:叶永煊, 吕保维主编,空间物理学进展,成都:四川科学技术出版社。
    黄宗英, 濮祖荫, 肖池阶等 (2004), 2001 年 1 月 26 日高纬磁层顶通量管事件的观测研究. 地球物理学报,47 (2) :181~189。
    沈长寿,资民筠,王劲松等 (2006),关于暴时电离层电流分布的南北半球不对称性. 地球物理学报, 49 (6) :1573~1581。
    余涛 (2003),中低纬电离层电场的模拟研究及电场对电离层年度变化的影响,博士学位论文,中科院武汉物理与数学研究所。
    雷久候 (2003),中纬电离层电场的统计分析与模式化研究,博士学位论文,中科院武汉物理与数学研究所。
    Anderson, D., A. Anghel, K. Yumoto, M. Ishitsuka, and E. Kudeki (2002), Estimating daytime vertical EXB drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett., 29(12), 1596, doi:10.1029/2001GL014562.
    Axford, W. I. and Hines, C. O. (1961): A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys., 39: 1433 1464
    Baker W G , Martyn D F. (1953), Electric currents in the ionosphere. I. Conductivity. Phil . Trans . Roy . Soc. London , A246 : 281~294
    Blanc, M., and A. Richmond (1980), The Ionospheric Disturbance Dynamo, J. Geophys. Res., 85(A4), 1669-1686.
    Blanc, M., P. Amayenc, P. Bauer, and C. Taieb (1977), Electric Field Induced Drifts From the French Incoherent Scatter Facility, J. Geophys. Res., 82(1), 87-97.
    Burke W J , Weimer D R , Maynard N C. (1999), Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials. J. Geophys. Res. , 104(A5), 9989~9994.
    Carpenter, L., and V. Kirchhoff (1975), Comparison of High-Latitude and Mid-Latitude Ionospheric Electric Fields, J. Geophys. Res., 80(13), 1810-1814.
    Crain D J , Heelis R A , Bailey G J , et al. (1993), Low-latitude plasma drifts from a simulation of the global atmospheric dynamo. J . Geophys . Res . , 98 : 6039~6046
    deHoffmann, F. and Teller, E. (1950), Magneto-hydrodynamic shocks, Phys. Rev., 80, 692.
    De Witt , R N. (1965), Dynamo action in ionosphere and motions of the magnetospheric plasma. Scientif . Rep . NSF GP 2721 , Geophys. Inst . Univ . of Alaska
    Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zone. Phys. Rev. Lett., 6: 47 48.
    Earle, G. D., and M. C. Kelley (1987), Spectral studies of the sources of ionospheric electric fields, J. Geophys. Res., 92(A1), 213– 224.
    Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen (1986), The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723–13,728.
    Fejer, B. G. (2002), Low latitude storm time ionospheric electrodynamics (2002), J. Atmos. Sol.-Terr. Phys., 64, 1401.
    Fejer, B. G., and J. T. Emmert (2003), Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19-21 October 1998 magnetic storm, J. Geophys. Res., 108(A12), 1454, doi:10.1029/2003JA010190.
    Fejer, B. G., and L. Scherliess (1997), Empirical models of storm-time equatorial zonal electric fields, J. Geophys. Res., 102(A11), 24,047 –24,036.
    Fejer, B. G., R. W. Spiro, R. A. Wolf, and J. C. Foster (1990), Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observation and model results, Ann. Geophys., 8, 441.
    Fu, Z. F. and Lee, L. C. (1986), Multiple X line reconnection, 2. The dynamics, J. Geophys. Res., 91, 13373.
    Goldstein, J., R. W. Spiro, P. H. Reiff, R. A. Wolf, B. R. Sandel, J. W. Freeman, and R. L. Lambour (2002), IMF-driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000, Geophys. Res. Lett., 29.
    Gonzales, C., M. Kelley, R. Behnke, J. Vickrey, R. Wand, and J. Holt (1983), On the Latitudinal Variations of the Ionospheric Electric Field During Magnetospheric Disturbances, J. Geophys. Res., 88(A11), 9135-9144.
    Harper, R. (1977a), A Comparison of Ionospheric Currents, Magnetic Variations, and Electric Fields at Arecibo, J. Geophys. Res., 82(22), 3233-3242.
    Harper, R. (1977b), Tidal Winds in the 100- to 200-km Region at Arecibo, J. Geophys. Res., 82(22), 3243-3250.
    Hau, L.-N., and B. U. O¨ . Sonnerup (1999), Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data, J. Geophys. Res., 104, 6899–6917.
    Heelis, R. A., P. C. Kendall, R. J. Moffett, and D. W. Windle (1974), Electrical coupling of the E and F regions and its effects in F region drifts and winds, Planet. Space Sci., 22, 743–756.
    Ho, C., T. Huang, and S. Gao (1997), Contributions of the high-degree multipoles of Neptune's magnetic field: An Euler potentials approach, J. Geophys. Res., 102(A11), 24393-24401.
    Hu, Q., and B. U. O¨ . Sonnerup(2002), Reconstruction of magnetic clouds in the solar wind: Orientation and configuration, J. Geophys. Res., 107(A7), 1142, doi:10.1029/2001JA000293.
    Hu, Q., and B. U. O¨ . Sonnerup (2003), Reconstruction of two-dimensional structures in the magnetopause: Method improvements, J. Geophys. Res., 108(A1), 1011
    Huang C S , Sazykin S , Chao J et al. (2007), Penetration electric ields: Efficiency and characteristic time scale. J. Atmos. Solar-Terr. Phys. , 69(10): 1135-1146.
    Huang, C.-S., J. C. Foster, and M. C. Kelley (2005), Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110, A11309, doi:10.1029/2005JA011202.
    Huang, C. S., J. C. Foster, L. P. Goncharenko, G. D. Reeves, J. L. Chau, K. Yumoto, and K. Kitamura (2004), Variations of low-latitude geomagnetic fields and Dst index caused by magnetospheric substorms, J. Geophys. Res., 109, A05219, doi:10.1029/2003JA010334.
    Iijima, T. and T. A. Potemra (1976), The amplitude distribution of field-aligned currents at northern altitudes observed by Triad, J. Geophys. Res., 81, 2165-2174 .
    Iijima, T. and T. A. Potemra (1978), Large-scale characteristics of field-aligned currents associated with substorms, J. Geophys. Re.s., 83, 599-615.
    Jaggi R K , Wolf R A. (1973), Self-consistent calculation of the motion of a sheet of ions in the magnetosphere, J. Geophys. Res. , 78: 2852.
    Kan, J. R., and L. C. Lee (1979), Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6, 577-580.
    Kelley, M. C., B. G. Fejer, and C. A. Gonzales (1979), An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6(4), 301– 304.
    Kelley, M. C. (1989), The Earth’s Ionosphere Plasma Physics and Electrodynamics, Academic, San Diego, Calif.
    Kelley, M. C., J. J. Makela, J. L. Chau, and M. J. Nicolls (2003), Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30 (4), 1158, doi:10.1029/2002GL016321.
    Kikuchi, T., K. Hashimoto, and K. Nozaki (2008), Penetration of magnetospheric electric fields to the equator during a geomagnetic storm, J. Geophys. Res., in press.
    Kikuchi, T., T. Araki, H. Maeda, and K. Maekawa (1978), Transmission of polar. electric fields to the equator, Nature, 273, 650–651.
    Kirchhoff, V., and L. Carpenter (1976), The Day-to-Day Variability in Ionospheric Electric Fields and Currents, J. Geophys. Res., 81(16), 2737-2742.
    Le Sager P , Huang T S. (2002a), Ionospheric currents and field-aligned currents generated by dynamo action in an asymmetric Earth magnetic field. J . Geophys . Res . , 107(A2) : 1025~1038
    Le Sager P , Huang T S. (2002b), Longitudinal dependence of the daily geomagnetic variation during quiet time. J . Geophys . Res ., 107(A11) : 1397~1404
    Maekawa, K. and H. Maeda (1978), Electric fields in the ionosphere produced by polar field-aligned currents, Nature, 273, 649-650.
    Maruyama, N., S. Sazykin, R.W. Spiro, B.G. Fejer, R.A. Wolf, D.Anderson, A. Anghel, F. R. Toffoletto, T. J. Fuller-Rowell, M.V. Codrescu, A. D. Richmond, G. H. Millward (2007), Modeling storm-time electrodynamics of the low latitude ionosphere–thermosphere system: can long lasting disturbance electric fields be accounted for? J. Atmos. Sol. Terr. Phys., 69(10), 1182-1199.
    McComas, D. J., S. J. Bame, B. L. Barraclough, et al. (1993), Magnetospheric plasma analyzer: Initial three-spacecraft observations from geogeosynchronous orbit, J. Geophys. Res., 98(A8), 13453-13466.
    Nicolls, M. J., M. C. Kelley, J. L. Chau, O.Veliz, D. Anderson, and A. Anghel (2007), The spectral properties of low latitude daytime electric fields inferred from magnetometer observations, J. Atmos. Sol. Terr. Phys., 69(10), 1160–1173.
    Nishida, A. (1968), Coherence of Geomagnetic DP 2 Fluctuations with Interplanetary Magnetic Variations, J. Geophys. Res., 73(17), 5549-5559.
    Nopper, R. W., Jr., and R. L. Carovillano (1978), Polar-equatorial coupling during magnetically active periods, Geophys. Res. Lett., 5(8), 699–702.
    Nopper, R. W., Jr., and R. L. Carovillano (1979), On the orientation of the polar cap electric field, J. Geophys. Res., 84(A11), 6489–6492.
    Papamastorakis, I., Paschmann, G., et al. (1989),Orientation,motion and other properties of flux rope transfer event structure on September 4, 1984, J. Geophys. Res., 94, 8852
    Pu Z Y, Zong Q G, Xiao C J, et al, (2005), Multiple Flux Rope Events At The High-Latitude Magnetopause: Cluster/Rapid Observation On January 26, 2001, Surveys in Geophys.
    Richmond A D. (1995), Ionospheric electrodynamics using magnetic apex coordinates. J . Geomagn . Geoelectr . , 47 : 191~212
    Richmond A D , Ridley E C , Roble R G. (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys . Res . Lett . , 19 : 601~604
    Richmond A D , Blanc M , Emery B A , et al. (1980), An empirical model of quiet day ionospheric electric fields at middle and low latitude. J .Geophys . Res ., 85(A9) : 4658~4664
    Rothwell, P. L., and J. R. Jasperse (2006), Modeling the connection of the global ionospheric electric fields to the solar wind, J. Geophys. Res., 111, A03211, doi:10.1029/2004JA010992.
    Russell, C., and R. Elphic (1979), ISEE Observations of Flux Transfer Events at the Dayside Magnetopause, Geophys. Res. Lett., 6(1), 33-36.
    Russell, C. T. and R. C. Elphic (1978), Initial ISEE magnetometer results: Magnetopause observations, Space Science Rev, 22, 681-715.
    Scherliess, L., and B. G. Fejer (1999), Radar and satellite global F region vertical drift model, J. Geophys. Res., 104, 6829-6842.
    Siscoe, G. (1982), Energy Coupling Between Regions 1 and 2 Birkeland Current Systems, J. Geophys. Res., 87(A7), 5124-5130.
    Smiddy, M., M. Kelley, W. Burke, F. Rich, R. Sagalyn, B. Shuman, R. Hays, and S. Lai (1977), Intense Poleward-Directed Electric Fields Near the Ionospheric Projection of the Plasmapause, Geophys. Res. Lett., 4(11), 543-546
    Sonnerup B U O, Maureen Scheible. (1998), Minimum and maximum variance analysis. In : G. Paschmann , Patrick W Daly ed. Analysis Methods for MultiSpacecraft Data. Noordwijk : ESA Publications Division , 185~220.
    Sonnerup, B. U. O¨., Papamastorakis, I., Paschmann, G., and Lu¨hr, H. (1990), The magnetopause for large magnetic shear: Analysis of convection electric fields from AMPTE/IRM, J. Geophys. Res., 95, 10 541.
    Sonnerup, B. U. O¨ . (1996), and M. Guo, Magnetopause transects, Geophys. Res. Lett., 23, 3679–3682.
    Sonnerup, B. U. O¨ . and Cahill, Jr., L. J. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171,.
    Takeda M , Yamada Y , Araki T. (1986), Simulation of ionospheric currents and geomagnetic field variations of Sq for different solar activity. J . Atmos . Terr . Phys . , 48 : 277~287
    Tarpley J D. (1970), The ionospheric wind dynamo Ⅱ Solar tides. Planet . Space Sci . , 18 : 1091~1103
    Thomsen, M. F., S. J. Bame, D. J. McComas, M. B. Moldwin, K. R. Moore (1994), The magnetospheric lobe at geogeosynchronous orbit, J. Geophys. Res., 99(A9), 17283-17294.
    Toffoletto, F., S. Sazykin, R. Spiro, and R. Wolf (2003), Inner. magnetospheric modeling with the Rice Convection Model,. Space Sci. Rev., 107, 175-196.
    Tsurutani, B. T., and W. D. Gonzalez (1987), The cause of high intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfven wave trains, Planet. Space Sci., 35, 405– 412.
    Tsyganenko N. A., H. J. Singer, J. C. Kasper (2003), Storm-time distortion of the inner magnetosphere: How severe can it get?, J. Geophys. Res., 108 (A5), 1209, doi:10.1029/2002JA009808.
    Vasyliūnas, V.M. (2001), Electric field and plasma flow: What drives what? Geophys. Res. Lett., 28, 2177.
    Vasyliunas, V. M. (1972), The interrelationship of magnetospheric processes, in Earth’s Magnetosphere Processes, edited by M. McCormac, pp. 29– 38, D. Reidel, Norwell, Mass.
    Vasyliunas, V. M. (1970), Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, edited by B. M. McCormac, pp. 60 – 71, D. Reidel, Norwell, Mass.
    Wagner C U , Mo¨hlmann D , Schafer K , et al. (1980), Large scale electric fields and currents and related geomagnetic variations in the quiet plasmasphere. Space Sci . Rev . , 26 : 391~ 446
    Wei Y , Hong M , Wan W , et al. (2008), Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF Bz. Geophys. Res. Lett., doi:10.1029/2007GL032305
    Wing, S. and D. G. Sibeck (1997), Effects of interplanetary magnetic field z component and the solar wind dynamic pressure on the geogeosynchronous magnetic field, J. Geophys. Res., 102(A4).
    Wolf, R. A., R. W. Spiro, S. Sazykin and F. R. Toffoletto (2007), How the Earth's inner magnetosphere works: An evolving picture, J. Atmos. Sol. Terr. Phys., 69(3), 288-302, doi: 10.1016/j.jastp.2006.07.026.
    Wolf R A , Spiro R W , Sazykin S , et al. (2006), Use of Euler potentials for describing magnetosphere-ionosphere coupling. J . Geophys . Res . , 111(A7) : 315~322
    Wolf, R. A., R. W. Spiro, G.-H. Voigt, P. H. Reiff, C. K. Chen, and M. Harel (1982), Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977, J. Geophys. Res., 87, 5949.
    Xiao C. J., Z.Y. Pu, Y. Wei,Z. X. Liu, C. M. Carr, T. L. Zhang, K.-H. Glassmeier, H. Reme, and I. Dandouras (2005), Multiple Flux Rope Events at the Magnetopause Observations by TC1 on Mar. 18, 2004 , Ann. Geophys. , 23, 2897-2901.
    Yuan, Z., and X. Deng (2007), Effects of continuous solar wind pressure variations on the long-lasting penetration of the interplanetary electric field during southward interplanetary magnetic field, Adv. Space Res., 39, 1342-1346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700