用户名: 密码: 验证码:
稀土卤代苯甲酸与邻菲啰啉配合物的合成、晶体结构及热化学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了促进芳香羧酸类稀土配合物的应用,本文采用常规室温溶液沉淀法合成了以苯甲酸及5种卤代苯甲酸为酸配体,以含氮配体1,10-邻菲啰啉为中性配体的23种稀土配合物,它们分别为:[Ho(BA)_3phen]_2, [Ln(2,3-DClBA)_3phen]_2, [Ln(2-Cl-4-FBA)_3phen]_2 (Ln =Nd, Sm, Eu, Tb, Dy, Ho), [Ln(2,5-DClBA)_3phen]_2, (Ln = Sm, Eu, Tb, Dy, Ho), [Ln(5-Cl-2-MOBA)_3phen]_2 (Ln =Nd, Sm, Eu, Ho), [Sm(2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2。
     采用EDTA配位滴定法和元素分析仪确定了配合物中金属Ln~(3+)离子以及C、H、N原子的含量,对配合物进行了初步的表征。并用摩尔电导、红外、紫外、荧光光谱、X-射线粉末衍射和热分析等手段对配合物进行了表征及性质研究。
     用X-射线单晶衍射分析方法获得6种配合物的晶体结构,分别是: [Nd(2-Cl-4-FBA)_3phen]_2, [Sm(2,5-DClBA)_3phen]_2, [Tb(2,5-DClBA)_3phen]_2, [Sm(5-Cl-2-MOBA)_3phen]_2, [Sm(2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2, [Ho(BA)_3phen]_2,测试结果表明,它们均以二聚体的形式存在,晶体结构均属于三斜晶系,pī空间群。羧基基团与金属Ln~(3+)离子的配位模式有单齿、双齿螯合、桥联双齿、桥联螯合三齿配位四种。其中晶体[Ho(BA)_3phen]_2的中心Ho~(3+)离子的空间几何构型为8配位的四方反棱柱;[Nd(2-Cl-4-FBA)_3phen]_2具有两种同分异构体,配位数为9,中心离子Nd~(3+)的配位空间几何构型也有两种,分别为畸变的九配位的单帽四方反棱柱与三帽三棱柱;其余四种配合物的配位数均为9,所对应的中心离子的空间几何构型为畸变的单帽四方反棱柱。
     根据TG-DTG的实验结果及分解最终产物的红外分析结果,研究了配合物的热稳定性及热分解过程。采用非线性等转化率积分法,Madhusudanan-Krishnan-Ninan方法和Malek法研究了配合物[Ho(BA)_3phen]_2第二步与[Sm(5-Cl-2-MOBA)_3phen]_2第一步热分解过程的非等温动力学,确定了相应热分解过程的机理函数、反应动力学参数(活化能E与指前因子A)以及峰温处的热力学参数(ΔG~≠,ΔH~≠和ΔS~≠)。
     利用DSC技术根据间接法(比热比较法)的原理测试了7种配合物[Ho(BA)_3phen]_2, [Ln(2,3-DClBA)_3phen]_2, [Ln(2-Cl-4-FBA)_3phen]_2 (Ln = Eu, Tb, Ho)的连续比热值及相对于标准参考温度298.15 K时的热力学函数值(H_T-H_(298.15 K)), (S_T-S_(298.15 K))与(G_T-G_(298.15 K))。
     利用同步热分析仪与红外光谱联用技术(TG/DSC-FTIR)研究了10种配合物[Ho(BA)_3phen]_2, [Ln(2,5-DClBA)_3phen]_2, (Ln = Sm, Eu, Tb, Dy, Ho), [Ln(5-Cl-2-MOBA)_3phen]_2, (Ln =Nd, Eu, Ho), [Sm (2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2热分解过程中逸出气体的红外光谱。并通过非线性等转化率积分法计算了三种配合物[Sm(2,5-DClBA)_3phen]_2, [Tb(2,5-DClBA)_3phen]_2与[Sm(2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2的热分解反应的活化能E。
In order to promote the application of the rare earth aromatic carboxylic acid complexes, we have synthesized twenty-three rare earth ternary complexes at room temperature by a solution-precipitation method, in which benzoic acid or halogen-benzoic acid were used as the acid ligand, and 1,10-phenanthroline as the neutral ligand. They are [Ho(BA)_3phen]_2, [Ln(2,3-DClBA)_3phen]_2, [Ln(2-Cl-4-FBA)_3phen]_2 (Ln =Nd, Sm, Eu, Tb, Dy, Ho), [Ln(2,5-DClBA)_3phen]_2, (Ln = Sm, Eu, Tb, Dy, Ho), [Ln(5-Cl-2-MOBA)_3phen]_2 (Ln =Nd, Sm, Eu, Ho) and [Sm (2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2.
     The metal Ln~(3+) contents in the complexes were assayed using an EDTA titration method and the contents of C, H, and N were determined by element analyzer. The complexes were characterized and studied by molar conductance, infrared, ultraviolet, fluorescence spectroscopy, X-ray powder diffraction, thermal analysis and so on.
     The structures of six ternary complexes of [Nd(2-Cl-4-FBA)_3phen]_2, [Sm(2,5-DClBA)_3phen]_2, [Tb(2,5-DClBA)_3phen]_2, [Sm(5-Cl-2-MOBA)_3phen]_2, [Sm (2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2 and [Ho(BA)_3phen]_2 have been determined by X-ray single crystal diffraction. The results show that they are all binuclear molecular and crystallize in triclinic, space group pī. Carboxylate groups coordinated to metal Ln~(3+) ions present four kinds of coordination modes: unidentate, chelating bidentate, bridging bidentate and bridging-chelating tridentate. For the complex [Ho(BA)_3phen]_2, the coordination geometry of the center ion Ho~(3+) is eight-coordinated square antiprismatic conformation. The complex [Nd(2-Cl-4-FBA)_3phen]_2 has two types of binuclear molecules in its crystal and the coordination geometries of the corresponding center ion Nd~(3+) is a distorted nine-coordinated monocapped square antiprismatic or a distorted tricapped triangular prism comformation, respectively. For the others four complexes, the center ions are all nine coordination and the coordination geometries are distorted nine-coordinated monocapped square antiprismatic comformations.
     The thermostability and the thermal decomposition processes of the complexes are discussed by TG-DTG and IR techniques. The integral isoconversional non-linear method, Madhusudanan-Krishnan-Ninan method and Malek method are employed to investigate the kinetics of the second thermal decomposition process of [Ho(BA)_3phen]_2 and the first thermal decomposition process of [Sm(5-Cl-2-MOBA)_3phen]_2. The corresponding kinetic parameters (activation energy E and pre-exponential A) and the thermodynamic parameters (ΔG~≠,ΔH~≠andΔS~≠) are also calculated.
     The continuous heat capacities of the seven complexes [Ho(BA)_3phen]_2, [Ln(2,3-DClBA)_3phen]_2, [Ln(2-Cl-4-FBA)_3phen]_2 (Ln = Eu, Tb, Ho) were measured by DSC technology using indirect measurement method (specific heat comparison method). In addition, the thermodynamic parameters, enthalpy (H_T-H_(298.15 K)), entropy (S_T-S_(298.15 K)) and Gibbs free energy (G_T-G_(298.15 K)) of the complexes relative to the standard reference temperature 298.15 K were also calculated.
     The thermal decomposition behaviors and the evolved gases of ten complexes [Ho(BA)_3phen]_2, [Ln(2,5-DClBA)_3phen]_2, (Ln = Sm, Eu, Tb, Dy, Ho), [Ln(5-Cl-2-MOBA)_3phen]_2, (Ln =Nd, Eu, Ho) and [Sm (2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2 have been discussed by simultaneous TG/DSC-FTIR technique. The activation energy E of the decomposition steps for the complexes [Sm(2,5-DClBA)_3phen]_2, [Tb(2,5-DClBA)_3phen]_2 and [Sm (2-Cl-4,5-DFBA)_3(phen)(H_2O)]_2 are calculated by the integral isoconversional non-linear method.
引文
[1]张若桦,申泮文.稀土元素化学[M].天津:天津科学技术出版社,1987,44,71.
    [2] Hasegawa M, Ishii A, Kishi S. Picosecond time-resolved luminescence of Pr(111) complexes: Intramolecular excitation energy transfer from Iigand to Pr(111) [J]. J. Photochem. Photobiol. A, 2006, 178: 220-224.
    [3]黄春辉.稀土配位化学[M].北京:科学出版社.1997,ⅲ.
    [4]朱文祥.中级无机化学[M].北京:高等教育出版社.2004,376.
    [5]李强,高濂,严东生.稀土化合物纳米荧光材料的新进展[J].无机材料学报,2001,16(1):17.
    [6]李文连.显示技术用稀土有机和稀土无机荧光体研究新进展[J].液晶与显示,2002,17(5):335-340.
    [7]王耕霖,阎世平,姚心侃,李学尧,万柱礼,饶子和,梁栋材.11-配位的镧系金属硝酸盐1,8 -蔡并-16-冠-5配合物的合成和性质[J].中国科学B辑化学,1982(5):406-412.
    [8] Zhang J J, Xu S L, Ren N, Zhang H Y. Synthesis, Crystal Structure, and Properties of [Dy(p-ABA)_3Phen·H_2O]·1.5H_2O [J]. Russ. J. Inorg. Chem, 2008, 53(3): 397-401.
    [9] Li X, Shi Q, Sun D F, Bi W H, Hong M C. Syntheses, Characterizations of a Series of Lanthanide Coordinated Complexes Constructed from Orotic Acid [J]. Eur. J. Inorg. Chem. 2004(13): 2747-2753.
    [10] Ren N, Zhang J J, Xu S L, Wang R F, Wang S P. Synthesis, Crystal Structure and Thermal Decomposition Mechanism of Complex [Sm(o-MBA)_3phen]_2[J]. Thermochimica Acta, 2005, 438:172-177.
    [11] Zhang Y, Jin L P, Lu S Z. Crystal Structure and Luminescence of Eu(BA)_3phen Complex [J]. J. Chin. Rare Earth Soc. 1998, 16(1): 5-8.
    [12] Wang R F, Wang S P, Shi S K, Zhang J J. Crystal structure and properties of a terbium benzoate complex with 1,10-phenanthroline [J]. Chin J. Struct. Chem. 2004, 23(11), 1300-1304.
    [13] Xu S L, Zhang J J, Ren N, Zhang H Y, Hu R S. Preparation, Crystal Structure andThermal Decomposition Process of Dysprosium Benzoate Complex with 1,10-Phenanthroline [J]. Chin J. Struct. Chem. 2008, 27(2): 233-237.
    [14] Qiu X, Zhang Y B, Li X. Synthesis, crystal structure and Fluorescence of a new europium complex with 2-bromobenzoate and 2,2'-bipyridine [J]. J. Rare Earths, 2009, 27(5): 797-800.
    [15] Sun S J, Ren N, Zhang J J, Ye H M, Wang J F. Crystal Structure, and Thermal Decomposition Kinetics of the Complex of Ho 2,4-Dichlorobenzoic Acid and 2,2′-Bipyridine [J]. J. Chem. Eng. Data, 2010, 55: 2458-2462.
    [16] Ye H M, Ren N, Zhang J J, Sun S J, Wang J F. Crystal structures, luminescent and thermal properties of a new series of lanthanide complexes with 4-ethylbenzoic acid [J]. New J. Chem. 2010, 34: 533-540.
    [17] Zhang J J, Zhang H Y, Zhou X, Ren N, Wang S P. Synthesis, Crystal Structure, thermal decomposition kinetics of Sm~(3+) complex with p-chlorobenzoic acid and 2,2'-bipyridine [J]. J. Chem. Eng. Data, 2010, 55: 152-158.
    [18] Sun S J, Zhang D H, Zhang J J, Ye H M, Wang S P, Wu K Z. Crystal structures, luminescent properties and thermal decomposition kinetics of lanthanide complexes with 2-chloro-4-fluorobenzoic acid and 2,20-bipyridine [J]. J. Mol. Struct. 2010, 977: 17-25.
    [19] Ye H M, Ren N, Zhang J J, Sun S J, Wang J F. Synthesis, crystal structures and thermal decomposition kinetics of four new lanthanide complexes with 3,4-dimethylbenzoic acid and 1,10-phenanthroline [J]. Struct. Chem. 2010, 21(1): 165-173.
    [20] Tian L, Ren N, Zhang J J, Liu H M, Bai J H, Ye H M, Sun S J. Synthesis, crystal structure, luminescence and thermal decomposition kinetics of Eu(III) complex with 2,4-dichlorobenzoic acid and 2,2'-bipyridine [J]. Inorg. Chim. Acta, 2009, 362: 3388-3394.
    [21] Niu S Y, Jin J, Jin X L, Yang Z Z. Synthesis, Structure and Characterization of Gd(III) Dimer Bridged by Tetra Benzoates [J]. Solid State Sci. 2002, 4: 1103–1106.
    [22] Zhao N, Wang S P, Ma R X, Gao Z H, Wang R F, Zhang J J. Synthesis, crystal structure and properties of two ternary rare earth complexes with aromatic acid and 1,10-phenanthroline [J]. J Alloys and Compounds, 2008, 463: 338–342.
    [23] Wang J F, Ren N, Zhang J J, Wu Ke Z, Wang S P. Synthesis, crystal structure and thermal properties of a holmium(III) benzoate complex with 1,10-phenanthroline [J]. J. Chem. Eng. Data, 2010, 55: 4982-4989.
    [24] Wang J F, Zhang D H, Liu X, Wu K Z, Zhang J J. Synthesis, Crystal Structure, and Thermal Decomposition Kinetics of the Ternary Complex [Sm(5-Cl-2-MOBA)_3phen]_2 [J]. J. Chem. Eng. Data, 2010, 55: 5608-5613.
    [25] Yang S P, Yang H, Yu X B, Wang Z M. Synthesis, structure and fluorescence of Eu_2(NAP)_6(PHEN)_2 (NAPH = a-naphthoic acid; PHEN = 1,10-phenanthroline) [J]. J. Mol. Struct. 2003, 659: 97-102.
    [26] Li X, Li Y Q, Wu X S. 1-D and 2-D lanthanide coordination polymers constructed from 4-sulfobenzoate and 1,10-phenanthroline [J]. Inorg. Chem. commum. 2008, 11: 774-778.
    [27] Li X, Li Y Q, Zheng X J, Sun H L. 3-D supramolecular frameworks assembled by lanthanide binuclear molecules based on 1,2-phenylenedioxydiacetic acid and 1,10-phenanthroline [J]. Inorg. Chem. commum. 2008, 11: 779-782.
    [28] Wan Y H, Zhang L P, Jin L P, Gao S, Lu S Z. High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1,10-Phenanthroline [J]. Inorg. Chem. 2003, 42 (16): 4985-4994.
    [29] Wan Y H, Jin L P, Wang K Z, Zhang L P, Zheng X J, Lu S Z. Hydrothermal synthesis and structural studies of novel 2-D lanthanide coordination polymers with phthalic acid [J]. New J. Chem. 2002, 26(11): 1590-1596.
    [30] Bettencourt-Das A D. Isophthalato-Based 2D Coordination Polymers of Eu(III), Gd(III), and Tb(III): Enhancement of the Terbium-Centered Luminescence through Thiophene Derivatization [J]. Inorg. Chem. 2005, 44(8): 2734-2741.
    [31] Kiritsis V, Michaelides A, Skoulika S, Ouahab C. Assembly of a porous three-dimensional coordination polymer: crystal structure of {[La_2(adipate)_3(H_2O)4]6H_2O)n [J]. Inorg. Chem. 1998, 37: 3407-3410.
    [32] Wang C G, Xing Y H, Li Z P, Li J, Zeng X Q, Ge M F, Niu S Y. A Series of Three-Dimensional Lanthanide-Rigid-Flexible Frameworks: Synthesis, Structure, and Luminescent Properties of Coordination Polymers with 2,5-Pyridine Dicarboxylic Acid and Adipic Acid [J]. Cryst. Growth Des. 2009, 9(3): 1525–1530.
    [33] Pan L, Adams K M, Hernandez H E, Wang X T, Zheng C, Hattori Y, Kaneko K. Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties [J]. J. Am. Chem. Soc. 2003, 125(10): 3062-3067.
    [34] Lu W G, Jiang L, Lu T B. Lanthanide Contraction and Temperature-Dependent Structures of Lanthanide Coordination Polymers with Imidazole-4,5-Dicarboxylate and Oxalate [J]. Cryst. Growth Des. 2010, 10(10): 4310-4318.
    [35] Cao R, Sun D F, Liang Y C, Hong M C, Tatsumi K, Shi Q. Syntheses and characterizations of three-dimensional channel-like polymeric lanthanide complexes constructed by 1, 2, 4, 5-Benzenetetracarboxylic acid [J]. Inorg. Chem. 2002, 41: 2087–2094.
    [36] Yan B, Zhang H J, Wang S B, Ni J Z. Synthesis, Characterization, and Photophysical Properties of Rare Earth Complexes of N-Phenyl-2-aminobenzoic Acid and 1,10-Phenanthroline [J]. Monatshefte für Chemie, 1998, 129: 567-575.
    [37] Yan B, Zhang H J, Wang S B, Ni J Z. Intramolecular energy transfer mechanism between ligands in ternary rare earth complexes with aromatic carboxylic acids and 1,10-phenanthroline [J]. J photochemistry and photobiology, 1998, 116: 209-214.
    [38]宋之刚,曲建强,王流芳.间羟基苯甲酸邻菲啰啉稀土三元配合物的合成、表征和抗菌活性研究[J].化学研究与应用,1999,11(1):41-45.
    [39]吴静,张冬艳,张通.水杨酸-邻菲啰啉三元稀土配合物的合成、表征及抑菌作用[J].内蒙古工业大学学报,2005,24(3):175-179.
    [40] Brzyska W, (?)wita E. Thermal decomposition of rare earth element complexes with 2,6-dichlorobenzoic acid [J]. Thermochim Acta, 1995, 255: 191-200.
    [41] Brzyska W, (?)wita E. Thermal decomposition of rare earth element complexes with 2,5-dichlorobenzoic acid [J]. Thermochim Acta, 1994, 231: 135-142.
    [42] Brzyska W, (?)wita E. Spectroscopic and Thermal Studies of Y(III) and Lanthanide(III) Complexes with 3,4-Dichlorobenzoic Acid [J]. Monatshefte fuèr Chemie, 1998, 129: 1133-1138.
    [43] Ferenc W, Bocian B. Thermal and Spectral Behaviour of 5-chloro-2-methoxybenzoates of Heavy Lanthanides and Yttrium [J]. J. Therm. Anal. Cal. 2000, 62: 831-843.
    [44] Czajka B, Bocian B, Ferenc W. Investigation of 5-chloro-2-methoxybenzoates La(III),Gd(III) and Lu(III) Complexes [J]. J. Therm.Anal. Cal. 2002, 67: 631-642.
    [45] Tang X Y, Yue S T, Li P, Wang N, Liu Y L. Hydrothermal synthesis and crystal structure study of two novel 3-D mellitates {Nd_2[C_6(COO)_6] (H_2O)_6} and {Ho_2[C_6(COO)_6](H_2O)_6}[J]. J. Rare Earths. 2008, 26(6), 800-803.
    [46] Lyszczek R. THERMAL AND SPECTROSCOPIC INVESTIGATIONS OF NEW LANTHANIDE COMPLEXES WITH 1,2,4-BENZENETRICARBOXYLIC ACID [J]. J. Therm. Anal. Cal. 2007, 90(2): 533-539.
    [47]张兴晶,邢永恒,王春光,曾小庆,葛茂发.含有刚柔二元羧酸配体的新型稀土配位聚合物[Eu_2(Suc)_(0.5)(BC)_3(OH)_2]n的水热合成、结构和热分解动力学研究[J].无机化学学报,2009,25(3):407-411.
    [48]杨德俊,李旭,肖圣雄等.两种稀土镧配合物与大肠杆菌作用的热动力学研究[J].化学研究与应用, 2009,21(3):401-405.
    [49] Gao C, Cui K, She J B, Hou C Q, Guo H Y, Zhao W, Wei W, Peng B. Optical properties of a novel neodymium pentafluoropropionate binuclear complex [J]. J. Inorganica Chimica Acta, 2009, 362: 2001–2005.
    [50] Lam A W H, Wong W T, Gao S, Wen G H, Zhang X X. Properties of Dimeric and Polymeric Lanthanide Complexes with Benzoic Acid and Its Derivatives [J]. Eur. J. Inorg. Chem. 2003, 149-163.
    [51] Premkumar T, Govindarajan S, Rath N P, Manivannan V. New nine and ten coordinated complexes of lanthanides with bidentate 2-pyrazinecarboxylate containing hydrazinium cation [J]. J. Inorganica Chimica Acta, 2009, 362: 2941–2946.
    [52]金天柱,朴龙鹤,李俊然,黄春辉,卫革成,金钟声.吡啶-2,6-二甲酸镧钇异核配合物的合成及晶体结构[M].中国稀土学报,1994,12(3):270-272.
    [53] Zhao L F, Chen Y S, Bao L. Synthesis and crystal structure of rare earth complexes with o-nitrobenzoic acid and N,N-dimethylformamide [J]. J. Mol. Struct. 2010, 966: 48-52.
    [54]李余增.热分析[M].北京:清华大学出版社.1978,1.
    [55]唐宗薰.中级无机化学[M].北京:高等教育出版社.1978,143.
    [56] Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective [J]. International Reviews in Physical Chemistry, 2000, 19(1): 45-60.
    [57] Vyazovkin S, Wight C A. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids [J]. International Reviews in Physical Chemistry, 1998, 17(3): 407-433.
    [58]胡荣祖,高胜利,赵凤起,史启祯,张同来,张建军.热分析动力学[M].北京,科学出版社,2008,p3.
    [59] Dollimore D, Tong P, Alexander K S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation [J]. Thermochim Acta, 1996, 282: 13-27.
    [60]陆振荣.热分析动力学的新进展[J].无机化学学报,1998,14(2):119-126.
    [61] Kissinger H E. Reaction Kinetics in Differential Thermal Analysis [J]. Anal. Chem, 1957, 29(11): 1702-1706.
    [62] Ozawa T. A new method of analyzing thermogravimatric data [J]. Bull. Chem. Soc. Jpn. 1965, 38(11): 1881-1886.
    [63] Maciejewski M. Part B: The ICTAC Kinetics Project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield [J]. Thermochim Acta, 2000, 355: 145-154.
    [64] Vyazovkin S. Part C: The ICTAC Kinetics Project—the light at the end of the tunnel [J]. Thermochim Acta, 2000, 355: 155-163.
    [65] Burnham. Alan K. Part D: The ICTAC kinetics project—multi-thermal–history model-fitting methods and their relation to isoconversional methods [J]. Thermochim Acta, 2000, 355: 165-170.
    [66] Roduit B. Part E: The ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes [J]. Thermochim Acta, 2000, 355: 171-180.
    [67] Vyazovkin S, Dollimore D. Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids [J]. J. Chem. Inf. Comp. Sci. 1996, 36: 42–45.
    [68] Madhusudanan P M, Krishnan K, Ninan K N. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data [J]. Thermochim. Acta, 1986, 97: 189-201.
    [69] Tang W J, Liu Y W, Zhang H, Wang C X. NEW TEMPERATURE INTEGRAL APPROXIMATE FORMULA FOR NON-ISOTHERMAL KINETIC ANALYSIS [J]. J. Therm. Anal. Cal. 2003, 74: 309-315.
    [70] Malek J. The kinetic analysis of non-isothermal data [J]. Thermochim. Acta, 1992, 200: 257-259.
    [71] Malek J, Smrcka V. The kinetic analysis of the crystallization processes in glasses [J]. Thermochim. Acta, 1991, 186: 153-169.
    [72] Geary W J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds [J]. Coord. Chem. Rev. 1971, 7: 81-122.
    [73]施耀曾,孙祥祯,蒋燕灏等.有机化合物光谱和化学鉴定[M].南京:江苏科学技术出版社,1988,p98.
    [74]王瑞芬,金林培,王明昭,黄世华,陈学太.铕(Ⅲ)与对甲基苯甲酸、2,2′-联吡啶配合物的合成、晶体结构及荧光光谱[J].化学学报,1995,53(1),39-45.
    [75]白光弼,陈广德,王喆明,袁莉,康致万,高锦章.镧系元素-1-氨基乙酸-1,10-二氮杂菲固态三元配合物的合成及表征[J].无机化学学报,1988,4(2):32-41.
    [76] An B L, Gong M L, Li M X, Zhang J M. Synthesis, Structure and Luminescence Properties of Samarium(III) and Dysprosium(III) Complexes with a New Tridentate Organic Ligand [J]. J. Mol. Struct. 2004, 687: 1-6.
    [77]王流芳,吴集贵,彭周人,冉卫,晏国洪.混合配体、稀土三元配合物的研究Ⅳ.3,5-二硝基水扬酸(H_2DNSA)、邻菲咯啉(phen)稀土(RE)三元固体配合物的合成及性质[J].无机化学学报,1990,6(2):23-28.
    [78] Li X, Jin L P, Wan Y H. crystal structure and luminescence of a europium coordination polymer {[Eu(p-MOBA)_3·2H_2O]·0.5H_2O·0.5(4,4'-bipy)} [J]. Chinese Journal of Chemistry, 2002, 20: 352-357.
    [79] Sikorska-Iwan M, Modzelewska-Banachiewicz B. Thermal behaviour of 1,2,4,-triazole and 1,2,4-triazine derivatives [J]. J. Therm. Anal. Cal. 2005, 81: 119-123.
    [80] Shimanouchi T. Tables of Molecular Vibrational Frepuencies Consolidated. Vol.Ⅰ, National Bureau of Standards, 1972, 1-160.
    [81] Lyszczek R. Thermal and spectroscopic investigations of new lanthanide complexes with 1,2,4-benzentricarboxylic acid [J]. J. Therm. Anal. Cal. 2007, 90: 533-539.
    [82] Guo J P, Liu B P, Lv X C, Tan Z C, Tong B, Shi Q, Wang D F. Molar heat capacities, thermodynamic properties, and thermal stability of trans-4-(Aminomethyl)cyclohexanecarboxylic acid [J]. J. Chem. Eng. Data, 2007, 52:1678-1680.
    [83] Wang M H, Tan Z C, Sun X H, Zhang H T, Liu B P, Sun L X, Zhang T. Determination of Heat Capacities and Thermodynamic Properties of 2-(Chloromethylthio)benzothiazole by an Adiabatic Calorimeter [J]. J. Chem. Eng. Data, 2005, 50: 270-273.
    [84] Zhang Z H, Tan Z C, Sun L X, Zhen Y J, Lv X C, Shi Q. Thermodynamic investigation of room temperature ionic liquid: The heat capacity and standard enthalpy of formation of EMIES [J]. Thermochimica Acta, 2006, 447: 141-146.
    [85] Straszko J, Olstak-Humienik M, Mozejko J. Kinetics of Thermal Decomposition of ZnSO4·7H_2O [J]. Thermochimca. Acta, 1997, 292: 145-150.
    [86] Olstak-Humienik M, Mozejko J. Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates. Thermochimca. Acta, 2000, 344: 73-79.
    [87]傅献彩,陈瑞华.物理化学[M].北京:人民教育出版社,1979,p214.
    [88] Xu L J, Wang S P, Wang R F, Zhang J J. Synthesis, structures and properties of ternary rare earth complexes with fluorobenzoic acid and 1,10-phenanthroline [J]. J. Coord. Chem. 2008, 61(2):237-260.
    [89]张颖,金林培,吕少哲. [Eu2(BA)6( bipy)2]的晶体结构和荧光光谱[J].无机化学学报,1997,9(3):44-52.
    [90]赵永亮,安晓萍,王连蒙,宝金荣,燕来.对苯二甲酸双核稀土冠醚配合物的合成、表征及荧光性能的研究[J].中国稀土学报,2004,22(2):26-28.
    [91]何东华,邸友莹,杨伟伟,孔玉霞,淡文彦,谭志诚.无水苯甲酸锂的合成、结构表征及热化学研究[J].高等学校化学学报,2009,30(11) :2258-2262.
    [92] Liu B P, Tan Z C, Yu H G, Lan X Z, Zhang D S, Liu P, Sun L X. Thermodynamic Properties of [Ho2(Ala)4(H_2O)8]Cl6 (Ala = alanine) [J]. Acta Phy.-Chim. Sin. (物理化学学报) 2003, 19(5): 445-449.
    [93]李建宇.稀土发光材料及其应用[M].化学工业出版社,北京,2003,156-157.
    [94]常建华,董绮功.波谱原理及解析[M].科学出版社北京,2001,82.
    [95] Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective [J]. Int. Reviews in Physical Chemistry, 2000, 19: 45-60.
    [96] Vyazovkin S, Wight C A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data [J]. Thermochim. Acta, 1999, 340-341: 53-68.
    [97] Lu Z R, Ding Y C, Xu Y, et al. Thermal behavior and decomposition kinetics [J]. J. Therm. Anal. Cal. 2003, 73: 333-340.
    [98]谢晶曦,常俊标,王绪明.红外波在有机化学和药物化学中的应用[M].科学出版社,北京,2001,286,163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700