用户名: 密码: 验证码:
非牛顿流体中蛋白质气泡有限变形的动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质气泡在生物医学、化工、材料、消防、油气田固井等领域有着广泛的应用。在上述应用中,蛋白质气泡通过与其它流体混合或一起流动,由于形成气泡的蛋白质膜具有粘弹性,气泡周围的流体大多为非牛顿流体,这使得对蛋白质气泡在流体中的动力学特性问题的研究变得十分复杂。而蛋白质气泡在流体中的动力学特性又会直接影响气泡在流体中的存活时间、分布均匀性以及整个流体的稳定性。因此,全面、深入研究蛋白质气泡在非牛顿流体中的动力学特性,对于更好地拓宽蛋白质气泡的应用领域具有十分重要的意义。
     本文在研究由粘弹性蛋白质膜构成的气泡有限变形的基础上,建立了蛋白质气泡在非牛顿流体中的动力学方程,研究分析了蛋白质膜的粘弹特性、气泡的几何特性、气泡周围流体的性质以及气泡间的相互作用等因素对气泡动力学特性的影响,为蛋白质气泡动力学特性的深入研究和应用领域的拓宽提供理论依据。本文主要研究内容和结论如下:
     (1)利用粘弹性材料有限变形的能量密度函数、Maxwell模型的松弛函数及气泡的变形梯度张量,推导出了蛋白质膜变形与应力之间的非线性关系。再根据气泡变形的平衡方程,建立了气泡在内外压力差作用下内径有限变形的静态特性方程。计算结果表明,蛋白质气泡径向变形具有非线性特性,在不同初始压力差作用下,气泡内外压力达到平衡所需的时间及变形量均不相同。增加气泡膜厚和粘弹性,既可以延长气泡变形达到平衡的时间,又可以增强气泡承受载荷的能力。
     (2)根据已经推导出的粘弹性蛋白质膜变形与应力之间的非线性关系,并结合气泡变形的动力学方程,建立了在内外压力差、弹性有限变形应力及粘性耗散应力共同作用下气泡膜的非线性振动方程。通过对该方程进行计算分析,结果表明,气泡在不同初始瞬态压力差的作用下,气泡的振动频率、振幅衰减速率是不同的,停止振动时的大小也不相同;增加膜厚和粘性会抑制气泡的振动幅值,增强气泡承受动载荷的能力;对于初始大小不同的气泡,小尺寸气泡的振动频率高,振动速度衰减慢。
     (3)考虑蛋白质气泡周围非牛顿流体的粘性对气泡外壁面上作用力的影响,建立了Bingham流体中单个蛋白质气泡有限变形的动力学方程,通过对该方程进行计算分析,结果表明,增加Bingham流体的塑性粘度会使气泡壁面振幅衰减速度加快,频率降低,平衡时气泡变形量小。并把计算结果与Bingham流体中空化气泡的振动特性以及蛋白质气泡外壁面受压力差作用下的振动特性进行了对比分析。与Bingham流体中空化气泡相比,在流体压力和气泡几何尺寸相同的情况下,蛋白质气泡在有限变形时的振幅衰减速度慢,振动的频率低,振动停止时蛋白质气泡的变形较小;与蛋白质气泡受压力差作用下的振动特性相比,当流体的压力与外壁面作用力大小相同时,流体中的蛋白质气泡壁面的振动周期增加,频率减小,振动停止时的变形量较大。
     (4)在研究了单个蛋白质气泡在Bingham流体中振动特性的基础上,研究了两个蛋白质气泡在Bingham流体中的振动特性。考虑了其中一个气泡在Bingham流体中振动产生的Bjerknes力对另一个气泡振动特性的影响,建立了两个等径蛋白质气泡在Bingham流体中的非线性振动方程。通过对该方程进行计算分析,并在相同初始和边界条件下与Bingham流体中单个蛋白质气泡的振动特性进行了比较。结果表明,Bingham流体中两个蛋白质气泡比单个气泡不但具有更高的振动频率,而且振幅衰减速率更快;当两个气泡间的距离减小时,气泡振动频率增加,振幅衰减速率加快,而且气泡的半径越小,振动频率的增加和振幅衰减的速率越大。
     (5)为了验证蛋白质气泡的静态变形特性,本文以蛋白质气泡在固井低密度水泥浆体中的应用为例,通过模拟水泥浆中的蛋白质气泡处于不同井深处所承受的压力,测试水泥浆在此压力作用下密度的变化来确定气泡半径的收缩率。结果表明,蛋白质气泡在逐渐增加的压力作用下,实验测得的蛋白质气泡收缩率的变化趋势与数值模拟计算的变化趋势基本一致,说明本文对蛋白质气泡静态变形特性理论研究是正确的。
The protein bubble is being widely used in the fields of biomedicine, chemical industry, material industry, fire protection, oil and gas well cementing. In above engineering applications, the protein bubbles are immersed in fluid or flow with fluid as a whole. Because the protein film of bubble wall is viscoelastic, and the fluid immersing the protein bubble is non-Newtonian fluid in the majority of cases, the study on dynamic performance of protein bubble in fluid is complicated. Further, the dynamic performance of bubble will affect the survival time and the uniformity of bubble in fluid, and also affect the stability of system composed of fluid and protein bubbles. So the comprehensive and in-depth study on the dynamic performance of protein bubble in non-Newtonian fluid would be most meaningful for maximizing its efficiencies.
     Based on the study on the finite deformation of bubble formed by protein film, the equation describing the dynamic performance of protein bubble in non-Newtonian fluid is developed. The effect of viscoelasticity of protein film, the size of bubble, the properties of fluid and the interaction force between bubbles on the finite deformation of bubble are analyzed. These analyses would provide valuable reference for better engineering applications and for expanding the further application fields of protein bubble. The main contents and results in current research are described below.
     (1) According to the energy density function for finite deformation of viscoelastic material, to the relaxation function of Maxwell model and to the deformation gradient tensor of bubble, a nonlinear equation describing the relation between the stress and finite deformation of protein bubble is presented. And then by using above equation and equilibrium equation of bubble, another equation describing the relation between relative deformation ratio of inner radius and time is developed for finite deformation yielded by the pressure difference acted on bubble walls. The numeric results show that, under the action of different load, the radial deformation of protein bubble is nonlinear, the balance size of bubble and the time needed to reach balance state are both different. Increasing the thickness and viscosity of protein film can prolong the time needed to reach balance state, and enhance the load-bearing capacity of protein bubble obviously.
     (2) According to the equation describing the relation between the stress and finite deformation of protein bubble, and to the dynamics equation of bubble, another nonlinear equation describing the bubble wall vibration, which is yielded by the actions of pressure difference, the elastic finite deformation stress and the dissipation stress, is developed for a single bubble. The numeric results show that, under the action of different initial transient pressure difference, the variations of vibration frequency of bubble wall, the decrement velocity of amplitude, and the balance sizes of bubble are all diverse. Increasing the thickness and the viscosity of protein film can prohibit the vibration of bubble wall and thus can enhance the load-bearing capacity of protein bubble. The smaller bubble will vibrate with higher frequency, and the decrement of velocity is slower than that of a bigger one.
     (3) Considering the effect of viscosity of non-Newtonian fluid on the action acted on the outside wall of bubble, a nonlinear equation describing the dynamic performance in finite deformation for a single protein bubble in Bingham fluid is developed. The numeric results show that, increasing the plastic viscosity of liquid the protein bubble wall will vibrate with higher decrement velocity of amplitude, and lower frequency and lead to the bigger balance size of bubble. The dynamic performance of above single protein bubble is compared with that of a cavitation bubble in Bingham fluid, the results show that, under the condition of identical liquid pressure and bubble size, the protein bubble wall will vibrate with lower decrement velocity of amplitude, the lower frequency and the final size of bubble is bigger than that of cavitation bubble in the same fluid. The dynamic performance of single protein bubble in Bingham fluid is also compared with that of a single protein bubble, which is yielded by pressure difference. The numeric results show that, if the pressure of liquid is equal to the action on the outside bubble wall, the bubble wall in Bingham fluid will vibrate with a longer period, lower frequency and the balance bubble size is also bigger.
     (4) Based on the study on the dynamic performance of a single protein bubble in Bingham fluid, further study on vibration of two protein bubbles in non-Newtonian fluid is carried out. Considering the Bjerknes force between two vibrating bubbles, the nonlinear vibration equations for two identical size protein bubbles in Bingham fluid are built. The numeric results show that, under the same initial condition and boundary condition, the two bubbles in Bingham fluid will vibrate with higher frequency and higher decrement velocity of amplitude than that of a single bubble. Shortening the distance between bubbles, the bubble wall will vibrate with a higher frequency and decrement velocity of amplitude, further, the smaller the bubble size is, the higher the increment of frequency and decrement velocity of amplitude are.
     (5) To verify the static deformation of protein bubble, an engineering application of protein bubble in cementing slurry is taken as an example. By way of simulating the pressure yielded by the cementing slurry at any position below the wellhead, the density changes are tested and the contraction ratio of bubble is calculated according to density changes. The results show that, increasing the pressure acted on the bubble wall, the tested and numeric variation trends for contraction ratios of inner bubble wall are essentially uniform. It is proved that the theoretical study on the static deformation is correct.
引文
[1]欧阳中灿,刘寄星.从肥皂泡到液晶生物膜[M].湖南:湖南教育出版社,1995:85-99
    [2]武际可.从肥皂泡说起.力学与实践[J],2005,27(6):86-88
    [3]V B Fainerman,R Miller and R Wiistneck.Adsorption of proteins at liquid/fluid interfaces[J].Journal of Colloid and Interface Science,1996,183(12):26-34
    [4]J R Clarkson,Z F Cui and R C Darton.Protein denaturation in foam,Ⅱ.Surface activity and conformation change[J].Journal of Colloid and Interface Science,1999,215(2):333-338
    [5]C J Carrier and G E Inglett.Constructive ananlysis of the nonlinear viscoelastic properties of cellulosic fiber gels produced from corn or oat hulls [J].Food Hydrocolloids,2003,17(5):605-614
    [6]A L Klibanov.Targeted delivery of gas-filled microspheres,contrast agents for ultrasound imaging[J].Advanced Drug Delivery Reviews,1999,37:139-157
    [7]W T Coakley and L N Nyborg.Cavitation:Dynamics of gas bubbles:Application[A].F.J.Frey.Ultrasound:Its Applications in Medicine and Biology:Part 1[M].New York:Elsevier,1978:77-159
    [8]Tsutsui J M,Graybum P A,Xie F,et al.Drug and gene delivery and enhancement of thrombolysis using ultrasound and microbubbles[J].Cardiology Clinics,2004,22(2):299-312
    [9]Ohl C D.Cavitation inception following shock wave passage[J].Physics of Fluids,2002,4(10):3512-3521
    [10]Zwaan Ed,Le Gac Severine,Tsuji Kinko arid Ohl C D.Controlled cavitation in microfluidic systems[J].Physical Review Letters,2007,98(25),p254501
    [11]Hynynen Kullervo,McDannold Nathan,Jolesz Ferenc A,et al.Large volume blood-brain barrier disruption by low frequency focused ultrasound:A method for targeted drug delivery and molecular imaging[C].2004 IEEE Ultrasonics Symposium:A Conference of the IEEE International Ultrasonics,Ferroelectrics,and Frequency Control Society,UFFC-S,2004,p 994-997
    [12]Choi J J,Pernot M,Brown T R,Small S A and Konofagou E E.Spatio-temporal analysis of molecular delivery through the blood-brain barrier using focused ultrasound [J]. Physics in Medicine and Biology, 2007, 52(18): 5509-5530
    [13] D E Graham and M. C. Phillips. Proteins at liquid interfaces, V. Shear properties [J]. Journal of Colloid and Interface Science, 1980, 76(1):240-250
    [14] McDannold Nathan, Vykhodtseva Natalia and Hynynen Kullervo. Use of Ultrasound Pulses Combined with Definity for Targeted Blood-Brain Barrier Disruption: A Feasibility Study [J]. Ultrasound in Medicine and Biology, 2007, 33(4): 584-590
    [15] Kobayashi N, Yasu T, Yamada S, et al. Endothelial cell injury in venue and capillary induced by contrast ultrasonography [J]. Ultrasound Med Biol, 2002, 28(7):949-956
    [16] Bekeredjian R, Graybum P A, Shohet R. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine [J]. Journal of the American College of Cardiology, 2005, 45(3):329-335
    [17] Maruyama H, Matsutani S, Saiho H, et al. Difference behavior of microbubbles in the liver: time-related quantitative analysis of two ultrasound contrast agents, Levovist and Definity [J]. Ultrasound Med Biol, 2004, 30(8):1035-1040
    [18] Watanabe R, Matsumura M, Chen C J, et al. Characterization of tumor imaging with microbubble-based ultrasound contrast agent, sonazoid, in rabbit liver [J]. Biol Pharm Bull, 2005, 28(6):972-977
    [19] Morawski A M, Lanza G A, Wickline S A. Targeted contrast agents for magnetic resonance imaging and ultrasound [J]. Curt Opin Biotechol, 2005, 16(1):89-92
    [20] Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound [J]. Circulation, 2002, 105(10):1233-1239
    [21] Dijkmans P A, Juffermans L M, Musters R J, et al. Microbubbles and ultrasound: from diagnosis to therapy [J]. European J Echocardiography, 2004, 5:245-256
    [22] Unger E C, Matsunaga T O, McGreery T, et al. Therapeutic application of microbubbles [J]. European Journal of Radiology, 2002, 42(1):160-168
    [23] Miao C H, Brayman A A, Loeb K R, et al. Ultrasound enhance gene delivery of human factor IX plasmid. [J]. Hum Gene Ther, 2005,16(7):893-905
    [24] Van W A, Bouakaz A, Bernard B, et al. Controlled drug delivery with ultrasound and gas microbubbles [J]. J Control Release, 2005, 101(1-3):389-391
    [25] Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infraction by hepatocyte growth factor gene transfer of a "functional" gene using ultrasonic microbubble destruction [J]. J Am Coll Cardiol, 2004, 44(3):644-653
    [26] Clement G T. Perspectives in clinical uses of high-intensity focused ultrasound [J]. Ultrasonics, 2004, 42(10): 1087-1093
    [27] Unger Evan C, Porter Thomas, Culp William, et al. Therapeutic applications of lipid-coated microbubbles [J]. Advanced Drug Delivery Reviews, 2004, 56(9): 1291-1314
    [28] Tao Ye and Joseph L Bull. Microbubble Expansion in a Flexible Tube [J]. Journal of Biomechanical Engineering, 2006,128(4): 554-563
    [29] Maruyama Hideo, Seki Hideshi, Suzuki Akira, Inoue Norio. Batch foam separation of a soluble protein [J]. Water Research, 2007,41(3): 710-718
    [30] Maruyama Hideo, Suzuki Akira, Seki Hideshi, Inoue Norio. Enrichment in axial direction of aqueous foam in continuous foam separation [J]. Biochemical Engineering Journal,2006, 30(3):253-259
    [31] Kruglyakov P M, Khaskova T N. Adsorption accumulation of proteins and dyes in foams of solutions and waste water [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263(1-3):400-404
    [32] Suzuki Yoshihiro, Maruyama Toshiroh. Removal of suspended solids by coagulation and foam separation using surface-active protein [J]. Water Research, 2002, 36(9):2195-2204
    [33] Burapatana Vorakan, Prokop Ales, Tanner Robert D. A comparison of the activity reduction occurring in two detergent-assisted protein (cellulase and lysozyme) foam fractionation processes [J]. Separation Science and Technology, 2005, 40(12): 2445-2461
    [34] Parsons P L. Trials of foam on petrol fires [J]. Fire Engineers Journal, 1977, 37(105): 10-15
    [35] Shiner Andrew. Protect and survive [J]. Fire Prevention and Fire Engineers Journals, 2004, 64(244): 31-34
    [36] Jones J C. The dual importance of fiber proteins in fire safety [J]. Journal of Fire Sciences,2004,22(6):445-447
    [37]Larsen Eric R.Halogenated flame extinguishants Some additional support for the physical mechanism[J].Journal of Fire Sciences,2005,23(2):93-98
    [38]王小强,张丽华,李荣霞.氟蛋白泡沫灭火剂在扑救油罐火灾中的应用[J].内蒙古石油化工,2007,6:146-147
    [39]温雪丽,马海忠,周兵等.防气窜泡沫水泥浆的研究与应用[J].钻井液与完井液,2003,20(4):7-9
    [40]许明标,唐海雄,汪顺文等.海洋深水用双充填低温低密度水泥浆体系研究[J].油田化学,2006,23(3):201-204
    [41]顾军,尹会存,高德利等.泡沫水泥稳定性研究[J].油田化学,2004,21(4):307-309
    [42]张彦平,王学良,田军等.低密度高强度水泥浆固井技术在吐哈油田的应用[J].钻井液与完井液,2005,22(1):41-43
    [43]Olanson Michael T.Application of foam cements in Alberta[J].Journal of Canadian Petroleum Technology,1985,24(5):49-57
    [44]王成文,陈大钧,石中玉等.复杂井固井低密度水泥浆体系研究[J].天然气工业,2004,24(11):64-66
    [45]Nambiar E K Kunhanandan,Ramamurthy K.Sorption characteristics of foam concrete[J],Cement and Concrete Research,2007,37(9):1341-1347
    [46]曹明莉,吕兴军.发泡剂及泡沫混凝土技术现状与展望(一)[J].建材技术与应用,2007,4:7-8
    [47]郑集.蛋白质知识[M].上海:上海科学技术出版社,1980:2-3
    [48]Krister Holmberg,Bo J6nsson,Bengt Kronberg,Bjom Lindman.Surfactants and Polymers in Aqueous Solution,2rid Edition[M].Wiley,New York,2002:24O
    [49]刘程,米裕民.表面活性剂性质理论与应用[M].北京:北京工业大学出版社,2003:116
    [50]J Boyd and P Sherman.Two-dimensional rheological studies on suffactant films at interfaces[J].Journal of Colloid and Interface Science,1970,34(1):76-80
    [51]J Boyd,J R Mitchell,L Irons,P R Musselwhite and P Sherman.The mechanical properties of milk protein films spread at the air-water interface [J].Journal of Colloid and Interface Science,1973,45(3):478-486
    [52]Wu Xiaoyi,Marc E Levenston and Elliot L Chaikof.A constitutive model for protein-based materials[J].Biomaterials,2006,27(30):5315-5334
    [53]Mitchsion J M,Swann M M.The mechanical properties of the red cell surface[J].J Exp Biol,1954,31:443-460
    [54]Rand R P,Burton A C.Mechanical properties of red cell membrane[J].Biophys J,1964,4(2):115-135
    [55]Wang H R,Evans E A.Thermoelasticity of red blood cell membrane[J].Biophys J,1979,26(1):115-132.
    [56]Chien S,Sung K L P,Skalak R,et al.Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane[J].Biophys J,1978,24(2):463-487
    [57]Chabanel A.Viscoelastic properties of red cell membrane in elliptocytosis[J].Blood,1989,73(2):592-597.
    [58]Evans E,Yeung A.Apparent viscosity and cortical tension of blood granulocyts determined by micropipette aspiration[J].Biophys J,1989,56:151-160.
    [59]Yeung A,Evans E.Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipettes[J].Biophys J,1989,56:139-149.
    [60]Sato M,Levesque M J,Nerem R M.An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelialcells[J].ASME J Biomech Eng,1987,109:27-34.
    [61]Sato M.Application of the micropipette technique to the measurement of the cultured porcine aortic endothelial cell viscoelastic properties[J].ASME J Biomech Eng,1990,112(3):263-268
    [62]徐晋斌.幼鼠成骨细胞的变形观测分析和细胞有丝分裂的大变形力学模拟研究[D].太原:太原理工大学,1998
    [63]宋关斌,赵彦华,龙勉等.微吸管法研究肝癌细胞粘弹性的理论模型[J].重庆大学学报,2003,26(4):104-107
    [64]Sheetz M P.Laser tweezers in cell biology,Introduction[J].Methods in Cell Biology,1998,55:xi-xii
    [65]Yao X C,Li Z L,Chen B Y,et al.Effects of spherical aberration introduction by water solution on trapping force[J].Chinese Physics,2000,9:824-826
    [66]郭红莲,姚新程,李兆霖等.光钳系统中微小颗粒的位移和所受力的测量[J].中国科学,E辑,2002,32(1):97-102
    [67]郭红莲,曹勤红,任东涛等.激光光钳法细胞膜弹性测量技术的建立和白细胞膜弹性的测量[J.科学通报,2003,48(2):246-251
    [68]R M Overney,E Meyer,J Frommer,et al.Force Microscopy Study of Friction and Elastic Compliance of Phase-Separated Organic Thin Films[J].Langmuir,1994,10(4):1281-1286
    [69]M Salmeron,G Neubauer,A Folch,et al.Viscoelastic and electrical properties of self-assembled monolayers on gold films[J].Langmuir,1993,9(12):3600-3611
    [70]Tisato Kajiyama,Keiji Tanaka,Isao Ohki,et al.Imaging of Dynamic Viscoelastic Properties of a Phase-Separated Polymer Surface by Forced Oscillation Atomic Force Microscopy[J].Macromolecules,1994,27(26):7932 7934
    [71]M Radmacher,R W Tillmann,M Fritz and H E Gaub.From Molecules to Cells:Imaging Soft Samples with the Atomic Force Microscope[J].Science,1992,257:1900-1905
    [72]杜滨阳,刘结平.聚合物表面的纳米力学研究[J].高分子通,1999,1:17-23
    [73]Attard Phil.Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope[J].Journal of Physics Condensed Matter,2007,19(47):473201
    [74]华杰,徐盛明,徐景明.等原子力显微镜测定力.距离曲线的原理和应用[J].金属矿山,2003,1:25-30
    [75]屈小中,史皴,金熹高.原子力显微镜在高分子领域的应用[J].功能高分子学报,1999,12(2):218-224
    [76]A E Green and J E Adkins.Large Elastic Deformations(2Rev Ed edition)[M].Oxford University Press,1970
    [77]Alexander H.A constitutive relation for rubberlike materials[J].Int J Eng Sci,1968,6:549-562
    [78]Alexander H.Tensile instability of initially spherical balloons[J].Int J Eng Sci,1971,9:151-162
    [79]Guo Z H,Solecki R.Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material[J].Arch Mech Stos,1963,15:427-433
    [80]郭仲衡.非线性弹性理论[M].北京:科学出版社,1980:1-10
    [81]高玉臣.固体力学基础[M].北京:中国铁道出版社,1999:1-70
    [82]王自强.理性力学基础[M].北京:科学出版社,2000:1-19
    [83]Rivlin R S and Saunders D W.Large elastic deformations of isotropic materials Ⅶ.Experiments on the deformation of rubber[J].Phil Trans Roy Soc Lon,1951,A243:251-285
    [84]J L Ericksen and R S Rivlin.Large elastic deformations of homogeneous anisotropic materials[J].J Rational Mech Anal,1957,3:281-301
    [85]Baker M and Ericksen J L Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids[J].J Wash Acad Sci,1954,44:33-35
    [86]Treloar L R G.The Physics of Rubber Elasticity(3rd Edition)[M].Oxford:Clarendon Press,1975.
    [87]Gent A N and Thomas A G.Forms for the stored(strain) energy function for vulcanized rubber[J].J Polymer Sci,1958,28:625-628
    [88]Knowles J K.Large amplitude oscillations of a tube of incompressible elastic material[J].Q Appl Math,1960,18:71-77
    [89]Knowles J K.On a class of oscillations in the finite deformation theory of elasticity[J].J Appl Mech,1962,29:283-286
    [90]Ogden R W.Large deformation isotropic elasticity-On the correlation of theory and experiment for incompressible rubberlike solids[J].Proc Roy Soc Lon A,1972,326:565-584
    [91]Jones D F and Treloar L R G.The properties of rubber in pure homogeneous strain[J].J Phys D:Appl Phys,1975,8:1285-1304
    [92]Beatty M E Topics in finite elasticity:Hyperelasticity of rubber,elastomers,and biological tissues-With examples[J].Appl Mech Rev,1987,40:1699-1734
    [93]Arruda E and Boyce M.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J].J Mech Phys Solids,1993,41:389-412
    [94]Wang Xinzhi,Ren Dongyun,Wang Linxiang.Non-symmetrical large deformation of a shallow thin spherical shell[J].Applied Mathematics and Mechanics(English Edition),1996,17(7):705-722
    [95]M Destrade and G Saccomnadi.Finite-amplitude inhomogeneous waves in Mooney-Rivlin viscoealstic solids[J].Wave Motion,2004,40:251-262
    [96]Calvisi Michael,Lindau Olgert L,et al.Shape stability and violent collapse of microbubbles in acoustic traveling waves[J].Physics of Fluids,2007,19(4):047101
    [97]Carmen Calderer.The dynamical behavior of nonlinear elastic spherical shells[J].Journal of Elasticity,1983,13:17-47
    [98]Chou-Wang M S,Horgan C O.Cavitation in nonlinear elast dynamic for Neo-Hookean materials[J].Int J of Engng Sci,1989,27:967-973
    [99]Debra A Polignone and Cornelius O Horgan.Cavitation for incompressible anisotropic nonlinearly elastic spheres[J].Journal of Elasticity,1993,33:27-65
    [100]任九生,程昌钧.横观各向同性超弹性球壳的有限振动[J].固体力学与报,2004,25(2):221-224.
    [101]杨挺青等.粘弹性理论与应用[M].北京:科学出版社,2004
    [102]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社1989
    [103]Fliigge W.Viscoelasticity(2nd Edition)[M].New York:Springer Verlag,1975
    [104]Christensen R M.Theory of Viscoelasticity[M].New York:Academic Press,1982
    [105]Tobosky A V and Eyring H.Mechanical properties of polymeric materials[J].Journal of Chemical Physics,1943,11(3):125-134
    [106]Aleksey D.Drozdov.A constitutive model for nonlinear viscoelastic media [J].International Journal of Solids and Structures,1997,34(21):2685-2707
    [107]Boltzmann L.Zur Theory der elastischen Nachwirkung[J].PoggAnn Physik,1876(7):624.
    [108]Volterra V.Theory of Functionals and Integral and Integro-Differential Equations[M].New York:Dover,1959.
    [109]Oldroyd J G.On the Formulation of Rheological Equations of State[J].Proc Royal Soc,1950,(A200):523:541.
    [110]Green A E,Rivlin R S.The Mechanics of Nonlinear Materials with Menmory,Part Ⅰ[J].Arch Ration Mech Anal,1957,1:1-21.
    [111]Aleksey D Drozdov.A model for the nonlinear viscoelastic response in polymers at finite strains[J].Int J Solids Structures,1998,35(18):2315-2347
    [112]Simo J C.On a fully three-dimensional finite-strain viscoelastic damage model:formulation and computational aspects[J].Computer Methods in Applied Mechanics and Engineering,1987,60(2):153-173
    [113]刘占芳,励凌峰,胡文军.多孔硅橡胶有限变形的粘弹性行为[J].固体力学学报,2002,23(3):347-352.
    [114]Thomas A and Brash L.Proteins at Interfaces:Current Issues and Future Prospects[A].Brash J L and Herbert T A(eds).Proteins at Interfaces:Physicochemical and Biochemical Studies[C].Washington D C:American Chemical Society,1987:1-33
    [115]S B Rochal,V L Lorman and G Mennessier.Viscoelastic dynamics of spherical composite vesicles[J].Phys Rev E,2005,71(2):021905
    [116]E Heifer,S Harlepp,L Bourdieu,J Robert,et al.Microrheology of Biopolymer-Membrane Complexes[J].Phys Rev Lett,2000,85(2):457-460
    [117]E Heifer,S Harlepp,L Bourdieu,J Robert,et al.Viscoelastic properties of actin-coated membranes[J].Phys Rev E,2001,63(2),021904
    [118]D E Discher,N Mohandas,and E A Evans.Molecular maps of red cell deformation:hidden elasticity and in situ connectivity[J].Science,1994,266(5187):1032-1035
    [119]Scott T Milner and S A Safran.Dynamical fluctuations of droplet microemulsions and vesicles[J].Phys Rev A,1987,36(9):4371-4379
    [120]Hyoungsoo Yoon and J M Deutsch.Conformation fluctuations of polymerized vesicles in the inextensible and flexible limit[J].Phys Rev E,1997,56(3):3412-3420
    [121]Ou-Yang Zhong-can,Liu Ji-xing.Helical structures of tilted chiral lipid bilayers viewed as cholesteric liquid crystals[J].Phys Rev Lett,1990,65(13):1679-1682
    [122]Lord Rayleigh.On the pressure developed in a liquid during the collapse of a spherical cavity[J].Philos Mag,1917,34:94-98
    [123]Plesset M S,Hsieh D Y.Theory of gas bubble dynamics in oscil-lating pressure fields[J].Phys Fluids,1960,3:882-892
    [124]陈伟中,黄威,刘亚楠等,声空化泡动力学及其测量[J].中国科学(G辑),2006,36(2):113-123
    [125]Marinesco N,Trillat J J.Action of supersonic waves upon the photographic plate[J].Proc R Acad Sci.1933,196:858-860
    [126]Hickling R and Plesset M S.Collapse and rebound of a spherical cavity in water[J].Physics of Fluids,1964,7:7-14
    [127] Ivany R D and Hammitt F G. Cavitation bubble collapse in viscous, compressible liquids-numerical analysis [J]. Trans ASME J Basic Eng D, 1965, 87:977-985
    [128] Ivany R D, Hammitt F G and Mitchell T M. Cavitation bubble collapse observations in a venturi [J]. Trans ASME J Basic Eng D, 1966, 88:649-657
    [129] Ivany R D. Collapse of a cavitation bubble in viscous, compressible liquid-numerical and experimental analyses [D]. Michigan:University of Michigan, 1965
    [130] 刘小兵, 程良骏. 空泡在任意流场中的运动研究[J]. 水动力学研究与进展 A辑 1994, 9(2):150-162
    [131] Shima T A. and Tsujino T. The behavior of gas bubble in the Casson fluid [J]. Journal of Applied Mechanics, Transactions ASME, 1978, 45: 37-42
    [132] H S Fogler, J D Goddard. Collapse of spherical cavities in viscoelastic fluids [J]. Phys Fluids, 1970,13:1135-1140
    [133] L Tanasawa, W J Yang. Dynamic behavior of a gas bubble in viscoelastic liquids [J]. J Appl Phys, 1970, 41(11): 4526-4531
    [134] E Zana, L G Leal. Dissolution of a statiomary gas bubble in a quiescent viscoelastic liquid [J]. Ind Eng Chem Fundam, 1975,14(3):175-182
    [135] H J Yoo, C D Han. Oscillatory behavior of a gas bubble growing (or collapsing) in viscoelastic liquids [J]. AIChE J, 1982, 28(6):1002-1009
    [136] C B Park, N P Suh. Filamentary extrusion of microcellular polymers using a rapid decompressive element [J]. Polym Eng Sci, 1996, 36(1):34-48
    [137] Amon M, Demon C D. A Study of the dynamics of foam growth: analysis of the growth of closely spaced bubbles [J]. Polym Eng Sci, 1984, 24(13): 1026-1034
    [138] Arefmanesh A, Advani S G, Michaelides E E. A numerical study of bubble growth during low pressure structural foam molding process [J]. Polym Eng Sci, 1990, 30(20): 1330-1337
    [139] Arefmanesh A, Advani S G. Diffusion-induced growth of a gas bubble in a viscoelastic fluid [J]. Rheologica Acta, 1991, 30(3):274-283
    [140] Arefmanesh A, Advani S G. Nonisothermal bubble growth in polymeric foams [J]. Polym Eng Sci, 1995, 35(3):252-260
    [141] Goel S K, Beckman E J. Nucleation and growth in microcellular materials: supercritical CO_2 as foaming Agent [J]. AIChE J,1995,141(2):357-367
    [142]田森平,吴舜英.塑料加工气泡膨胀过程的数学模型研究[J].昆明理工大学学报(理工版),1999,24(3):107-110
    [143]Gaitan D F,Crum L A,Church C C,et al.Sonoluminescence and bubble dynamics for a single,stable,cavitation bubble[J].J Acoust Soc Am,1992,91:3166-3183
    [144]Barber B P,Putterman S J.Observation of synchronous picosecond sonoluminescence[J].Nature(London).1991,352:318-320
    [145]Li H Z,Mouline Y,Funfschilling D,et al.Evidence for in-line bubble interactions in non-Newtonian fluids[J].Chem Eng Sci,1998,53(12):2219-2230
    [146]Li H Z,Mouline Y,Choplin L,et al.Chaotic bubble coalescence in non-Newtonian fluids[J].Int J Multiphase Flow,1997,23(4):713-723
    [147]Li H Z,Mouline Y,Funfschilling D.Flow of non-Newtonian fluids around bubbles:PIV measurements and birefringence visualization[J].Chem Eng Sci,2001,56(3):1137-1141
    [148]Li H Z,Frank X,Funfschilling D,et al.Towards the understanding of bubble interactions and coalescence in non-Newtonian fluids:A cognitive approach [J].Chem Eng Sci,2001,56(21/22):6419-6425
    [149]Dekee D,Carreau P J,Mordarski J.Bubble velocity and coalescence in viscoelastic liquids[J].Chem Eng Sci,1986,41(9):2273-2283
    [150]Dekee D,Chhabra R P,Dajan A.Motion and coalescence of gas bubbles in non-Newtonian polymer solutions[J].J Non-Newtonian Fluid Mech,1990,37(1):1-18
    [151]Zahradnik J,Fialova M,Linek V.The effect of surface-active additives on bubble coalescence in aqueous media[J].Chem Eng Sci,1999,54(21):4757-4766
    [152]Taleyarkhan R P,West C D,Cho J S,et al.Evidence for Nuclear Emissions during Acoustic Cavitation[J].Science,2002,295:1868-1873
    [153]Charles C.Church.The effects of an elastic solid surface layer on the radial pulsations of gas bubbles[J].J.Acoust.Soc.Am.1995,97(3):1510-1521
    [154]N de Jong.Acoustic properties of ultrasound contrast agents[D],Rotterdam:Erasmus University,1993
    [155]P J A Friking and Nico de Jong.Acoustic modeling of shell-encapsulated gas bubbles[J].Ultrasound in Medicine and Biology.1998,24(4):523-533
    [156]P J A Frinking,N de Jong and E I Cespedes.Scattering properties of encapsulated gas bubbles at high ultrasound pressures[J].J Acoust Soc Am,1999,105:1989-1996
    [157]Damir B Khismatullin.Resonance frequency of microbubbles:Effect of viscosity[J].J.Acoust.Soc.Am.2004,116(3):1463-1473
    [158]钱梦脲,程茜,葛曹燕.单泡声致发光中的气泡的动力学特性-振子模型[J].声学学报,2002,27(4):289-294.
    [159]程茜,钱梦脲.超声微泡造影剂的低频动力学行为[J].声学技术,2006,25(4):292-298
    [160]D B Khismatullin and A Nadim.Radial oscillations of encapsulated microbubbles in viscoelastic liquids[J].Phys Fluids,2002,14(10):3534-3557
    [161]S Hilgenfeldt,D Lohse and M Zomack.Response of bubbles to diagnostic ultrasound:a unifying theoretical approach[J].Eur Phys J B,1998,4(2):247-255
    [162]D L Miller.Frequency relationships for ultrasonic activation of free microbubbles,encapsulated microbubbles,and gas-filled micropores[J].J Acoust Soc Am,1998,104:2498-2505
    [163]J S Allen,D E Kruse,P A Dayton,et al.Effect of coupled oscillations on microbubble behavior[J].J Acoust Soc Am,2003,114:1678-1690
    [164]D Chatterjee and K Sarkar.A Newtonian rheological model for the interface of microbubble contrast agents[J].Ultrasound Med Biol,2003,29:1749-1757
    [165]L Van Wijngaarden.Hydrodynamic interaction between gas bubbles in liquid[J].J Fluid Mech,1976,77:27-44
    [166]Anthony Andrew Harkin.Nonlinear dynamics of gas bubbles in liquids[D].Boston:Boston University,2001
    [167]S L Everitt,O G Harlen,H J Wilson.Competition and interaction of polydisperse bubbles in polymer foams[J].J Non-Newtonian Fluid Mech,2006,137:60-71
    [168]黄克智,薛明德,陆明万.张量分析(第二版)[M].北京:清华大学出版社,2003
    [169]Astarita G,Apuzzo G.Motion of gas bubbles in non-Newtonian liquids[J].AIChE J,1965,11(5):815-825
    [170]Rodrigue D,Dekee D,Chan Man Fong C F.An experimental study of the effect of surfactants on the free rise velocity of gas bubbles[J].J Non-Newtonian Fluid Mech,1996,66(2/3):213-232
    [171]Li H Z.Bubbles in non-Newtonian fluids:Formation,interactions and coalescence[J].Chem Eng Sci,1999,54(13/14):2247-2254
    [172]Benjamin T Liu,Susan J Muller and Morton M Denn.Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere[J].Journal of Non-Newtonian Fluid Mechanics,2002,102:179-191
    [173]P.Weiss.On hydrodynamical images:arbitrary irrotational flow disturbed by a sphere[C].Proceedings of the Cambridge Philosophical Society,1944,40:259-261
    [174]朱礼平,刘绘新,杨胜军等.泡沫水泥压力计算分析研究[J].石油钻探技术,2007,35(3):40-42
    [175]顾军,向阳,何湘清等.井下泡沫水泥密度变化规律研究[J].石油与天然气化工,2002,31(1):35-36,46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700