用户名: 密码: 验证码:
轴流泵内流场的数值模拟与PIV实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴流泵作为叶轮机械的一种,具有低扬程、大流量的特点,在国民经济各部门中占有非常重要的地位,随着国民经济和国防事业的迅速发展,对轴流泵的性能要求越来越高;然而轴流泵叶轮内流场十分复杂,各种三维复杂流动对轴流泵的工作效率和运行稳定性有很大影响。因此,对轴流泵内流场进行深入研究,进一步探索其内部的流动机理,丰富对内流场复杂流动现象的认识,为掌握轴流泵水动力性能及优化,积累关键的实验数据和提供重要的理论依据,对改善轴流泵叶轮乃至泵装置的性能提供有效的方法。
     实验测量和数值模拟是研究叶轮机械内部流场的基本方法。随着科学技术的发展,各类先进的测量技术的不断出现,如粒子图像测速仪,为实验研究提供了新的测量工具;同时计算机性能的飞速提高和计算流体力学技术的日趋完善,基于求解三维粘性Navier-Stokes方程的数值模拟方法为叶轮机械内部流场的研究提供了强大的手段。本文通过实验测量和数值模拟相结合的方法来研究轴流泵叶轮内流场区域的流动。
     本文的主要工作如下:
     1根据国家标准《水泵模型验收试验规程》SL140-97中的方法进行轴流泵性能实验,获得轴流泵的性能曲线,数据上和预期设计相符合。
     2将粒子图像测速仪PIV系统应用于轴流泵旋转叶轮内部流场的测量,通过实践解决了激光测量旋转叶轮流场中存在的一些关键和特殊问题,如测量标定,测量位置相对于旋转叶轮的周向定位,示踪粒子的选择和添加等。PIV实验成功获得叶轮进口、出口以及不同叶高区域的二维速度场,观察得到了叶片尾缘边的分离流动和叶根位置的回流和漩涡的结构。分析了PIV实验的光学误差。
     3基于Navier-Stokes方程组和标准k-ε模型,采用SIMPLEC算法对轴流泵叶轮内流场进行数值模拟。计算得到泵的性能曲线与性能实验的结果比较吻合;将计算得到进口、出口以及不同叶高区域的二维速度场和PIV测量结果进行了比较,两者能较好的符合,证明了数值计算的有效性和准确性,并分析了叶轮90%叶高和出口在不同流量工况下的流动结构及造成效率降低的原因。
     4分析了轴流泵叶轮内流场的压力和速度的分布规律。由压力系数在不同叶高沿叶片表面的分布,得到叶型的做功能力是沿径向增加的。分析了通道涡的在流道中的形成和发展,认为压力面和吸力面的压力差是通道二次流动的主要动力。分析了在50%叶顶弦长处间隙的轴面位置的间隙流动结构,得到间隙的流动有一个分离向上然后再附着的趋势。分析了不同流量工况下汽泡相体积分数的分布,认为随着流量增大,汽蚀现象加剧,在进口和出口附近的低压区容易出现汽化;而在叶顶间隙区域,叶顶间隙流动产生的低压区也导致汽蚀现象。
Axial flow pump, a kind of turbomachine, is widely used in different aspects, and axial flow pump with high performance is needed for the development of civil economy and national defence. However, the flow field of axial flow pump is complex and various three-dimensional flows have a large impact on working performance and stability of axial flow pump. Therefore, the research and cognition on the flow field’s principle of axial flow pump will benefit for understanding hydro-dynamic of axial flow pump, accumulating key experimental data, offering theory and improving design and performance of axial flow pump and pump system.
     Experimental measurement and numerical simulation are both basic ways for research on the flow field of turbomachine. With the development of science and technology, Laser velocimeters, such as particle image velocimeter, provide the powerful tools to measure the flow fields; and also the CFD codes provide the useful methods to simulate the flow field of turbomachine. In this thesis, the flow field of axial flow pump is investigated by both experimental measurement and numerical simulation.
     Main contents of this thesis are described as the following:
     1 Performance test is conducted according the national standard SL140-97, and the performance curves are obtained. The experimental data are coincident with expectant design.
     2 PIV system is used for the flow field of rotational impeller in axial flow pump, and some practical problems in laser measurement are solved, such as demarcation in measurement, locating the measurement circumference position relative to the rotor, selecting the seeding particles and transmitting as well as receiving the laser light, et al.. Two dimensional flow field in the inlet, outlet and different blade span are obtained, and the separate flow near trailing edge of blade and the flow structure of backflow and vortex are investigated. And optical errors in PIV experiment are analyzed.
     3 Based on the Navier-Stokes equation set, the standard k-εturbulence model and with the use of SIMPLEC method, the numerical simulation of the flow field in axial flow pump is conducted. The pump performance curves resulted from numerical simulation is verified with the experimental results; and furthermore, the computational distribution of relative velocity and streamline in inlet, the discharge region and different blade span is compared with the results measured by PIV in the same positions, and they are in a good agreement, which indicated the validity and correctness of the numerical simulation.
     4 The distribution of pressure and velocity in the flow field of axial flow pump is analyzed. The work of blade increases along radial direction according to the distribution of pressure coefficient. The generation and development of passage vortex are predicted, and the difference between pressure surface and suction surface is the main cause to passage secondary flow. The structure of blade tip flow in 50% chord is analyzed. The distribution of water vapour volume fraction in different flow rate is investigated.
引文
1 关醒凡. 泵的理论与设计. 北京,机械工业出版社,1987.
    2 何希杰,张勇. 轴流泵的现状及发展. 水泵技术,1998(6):29-33.
    3 孙寿. 我国轴流泵的现状及开发分析研究. 水利电力科技,1990(2):6-15.
    4 张光蓉,戴庆忠. 我国轴流泵的发展与开发研究. 东方电气评论,2004,18(1):4-9.
    5 Yu W S, Lakshminarayana B, Thompson D E. Computation of three-dimensional viscous flow in high Reynolds number pump guide vane. Journal of Fluids Engineering, Transactions of ASME, 1996, 118(4):698-705.
    6 Miner Steven M. Evaluation of blade passage analysis using coarse grids. Journal of Fluids Engineering, Transactions of ASME, 2000, 122(2):345-348.
    7 Muggli Felix A, Holbein Peter, Dupont Philippe. CFD calculation of a mixed flow pump characteristic from shutoff of maximum flow, Journal of Fluids Engineering, Transaction of ASME, 2002, 124(3):798-802.
    8 Oh H W, Yoon E S, Kim K S, et al. A practical approach to the hydraulic design and performance analysis of a mixed-flow pump for marine water-jet propulsion. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2003, 217(6):659-664.
    9 Hu Peixin, Zangeneh Mehrdad. CFD calculation of the flow through a water-jet pump. International conference on water-jet propulsion III, RINA, Gothenburg.
    10 Taylor T E, Kerwin J E, Scherer J O. Water-jet Pump Design and Analysis Using a Coupled Lifting-Surface and RANS Procedure, RINA conference water-jet propulsion-latest development, Amsterdam, 1998.
    11 Kimball R W, Scherer J O, Taylor T E. Enhancements to the Design and Analysis of Water-jet Propulsion Using a Coupled Lifting-Surface/RANS Technique and Comparisons with Experiment. International Conference on Water-jet Propulsion III, RINA, Gothenborg, 2001, Paper No.9.
    12 Lan Huntsman. Development of quasi 3D design methods and 3Dflow solvers for the hydrodynamics design of water-jet. International conference on water-jet propulsion III,RINA, Gothenburg, 2001, Paper No.10.
    13 Lee Y T, Hah C, Loellbach J. Flow analysis in a single-stage propulsion pump. Journal of Turbomachinery, Transactions of ASME, 1996, 118(2):240-249.
    14 杨昌明,陈次昌,王金诺等. 轴流泵端壁间隙流动特性的数值研究. 机械工程学报,2003,39(9):49-51.
    15 唐宏芬,张梁,吴玉林. 双级轴流泵内部三维紊动流场CFD分析. 工程热物理学报,2003,24(3):423-425.
    16 王德军,周惠忠,黄志勇等. 对旋式轴流泵全流道三维定常紊流场. 清华大学学报,2003,43(10):1339-1342.
    17 徐朝辉,吴玉林,陈乃祥等. 高速泵内三维非定常动静干扰流动计算. 机械工程学报,2004,40(3):1-4.
    18 Gao H,Lin W L,Ye F M. CFD investigation of global performance and three dimensional flows in a water-jet axial flow pump. Proceedings of 2005 ASME FEDSM, 2005:1140-1148.
    19 叶方明,高红,林万来. 后置导叶型喷水推进泵总特性及三维流场. 上海交通大学学报,2005, 39(9):1409-1412.
    20 叶方明. 喷水推进泵总特性及三维流场研究. 硕士学位论文,上海交通大学,2005.
    21 Tang F P,Wang G Q. Influence of Outlet Guide Vanes upon Performances of Waterjet Axial-Flow Pump. Journal of Ship Mechanics,2006,10(6):19-26.
    22 马希金,王洪亮,赵学. 轴流式油气混输泵压缩级流场CFD模拟分析. 农业机械学报,2006,37(2):41-43.
    23 杜朝辉,竺晓程. 激光测速技术及其在叶轮机械旋转流动中的应用. 热力透平,2003,32(4):205-211.
    24 Adrian R J. Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry. Applied Optics, 1986, 25(21):3855-3858.
    25 Landreth C C, Adrian R J. Double Pulsed Particle Image Velocimeter with Directional Resolution for Complex’s Flows. Experiments in Fluid, 1988:119-128.
    26 Adrain R J. Particle Imaging Techniques for Experimental Fluid Mechanics. Annual review of Fluid Mechancis, 1991, 23:261-304.
    27 Paone N, Riethmuller M L, Van den Braembussche R A. Application of particle imagedisplacement velocimetry to a centrifugal pump. Fourth International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, 1988
    28 Paone N, Riethmuller M L, Van den Braembussche R A. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry. Experiments in Fluids, 1989,(7).
    29 Dong R. Quantitative Visualization of the Flow with the Volute of a Centrifugal Pump Part A:Technique. Journal of Fluids Engineering, 1992, 114:390-395.
    30 Akin O, Rochwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry. ASME Journal of Fluids Engineering, 1994.
    31 Shepherd I C,La Fontaine R F,Welch L W,et al. Velocity measurement in fan rotors using particle image velocimetry C. In:Laser Anemometry 1994:Advances and Applications ASME FED,New York:1994,191:179-183.
    32 Myers K J,Ward R W,Bakker A. A digital particle image velocimetry investigation of flow field instabilities of axial-flow impellers J. Journal of Fluids Engineering, Transactions of the ASME,1997,119(3):623-632.
    33 Uzol O,Chow Y C,Katz J,et al. Experimental Investigation of Unsteady Flow Flied Within a Two-Stage Axial Turbomachine Using Particle Image Velocimetry J. Journal of Turbomachinery,2002,124:542-552.
    34 Chow Y C, Uzol O, Katz J. Flow Nonuniformities and Turbulent “Hot Spots” Due to Wake-Blade and Wake-Wake Interactions in a Multi-Stage Turbomachine. Journal of Turbomachinery, 2002, 124:553-563.
    35 Kimon R, Peter A M. Measurements of Tip vortex Characteristics and the Effect of an Anti-Caviation Lip on a Model Kaplan Turbine Blade Flow. Turbulence and Combustion, 2000, 64:119-144.
    36 Wernet M P, Bright M M, Skoch G J. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV. Journal of Turbomachinery, 2001, 123:418-428.
    37 Wernet M P. Application of DPIV to Study both Steady State and TransientTurbomachinery Flows. Optics and Laser Technologh, 2000:497-525.
    38 Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions - Part I: Particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements, Journal of Fluids Engineering, Transactions of the ASME, 2003, 125(1):61-72.
    39 Mekhail T, Li Z, Zhaohui D, et al. The application of PIV in the study of impeller-diffuser interaction in centrifugal fan. Part II:Impeller-vaned diffuser interaction, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 2000, 256:243-246.
    40 Durmus K. Experimental study on regaining the tangential velocity energy of axial flow pump. Energy Conversion and Management, 2003, 44:1817-1829.
    41 Huyer A, Stephen R Snarski. Analysis of a turbulent propeller inflow. Journal of Fluid Engineering, Transaction of ASME, 2003, 125(3):533-542.
    42 Zierke W C, Straka W A, Taylor P D. An experimental investigation of the flow through an axial-flow pump. Journal of fluids engineering, Transaction of ASME, 1995, 117(3):485-490.
    43 Stickland M T, Scanlon T J, Fernandez-Francos J, et al. A numerical and experimental analysis of flow in a centrifugal pump. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 2002, 257(2 B):703-708.
    44 Brzozowski D, Uzol O, Chow Y-C, et al. A comparison of unsteady RANS simulations with PIV data in an axial turbomachine. Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference, 2005, 1 B:1309-1320.
    45 Jung K H, Kim K C, Yoon S Y, et al. Investigation of turbulent flows in a waterjet intake duct using stereoscopic PIV measurements, Journal of Marine Science and Technology, 2006, 11(4):270-278.
    46 朱宏武,薛敦松,董守平. 用 PIV 技术研究离心泵扩散段第八断面内流场. 工程热物理学报,1995,16(4):440-443.
    47 张莉,陈汉平,王启杰. 离心叶轮机械有叶扩压器内部流动的 PIV 测量. 机械工程学报,2002,38(5):105-108.
    48 何培杰,龙新平,梁爱国等. 射流泵流场的 PIV 测量. 水科学进展,2004,15(3):296-299.
    49 Tang F P,Liu C. PIV for propeller pumps applications. In:The Second International Symposium on Fluid Machinery and Fluid Engineering, Tsinghua University, Beijing, 2000.
    50 耿卫明. 轴流泵叶轮出口流场的 3D-PIV 测量. 硕士学位论文,扬州大学,2005.
    51 赵阳. 轴流泵叶轮与导叶轴向间隙内流场的 3D-PIV 测量. 硕士学位论文,扬州大学, 2006.
    52 华中工学院水机教研组. 轴流泵. 北京,机械工业出版社,1976.
    53 张克危. 流体机械原理(上). 北京,机械工业出版社,2000.
    54 杨诗成. 泵与风机(第二版). 北京,中国电力出版社,2004.
    55 吴望一. 流体力学(上,下). 北京,北京大学出版社,1982.
    56 费祥麟,胡庆康,景思睿. 高等流体力学. 西安,西安交通大学出版社,1986.
    57 张兆顺,崔桂香. 流体力学. 北京,清华大学出版社,1999.
    58 White F M. Fluid Mechanics(Fifth Edition). 北京,清华大学出版社,2004.
    59 王仲奇,秦仁. 透平机械原理. 北京,机械工业出版社,1988.
    60 舒士甄,朱力,柯玄龄等. 叶轮机械原理,北京,清华大学出版社,1991.
    61 乐志成,吕文灿. 轴流式压缩机. 北京,机械工业出版社,1980.
    62 吴玉林,陈庆光,刘树红. 通风机和压缩机. 北京,清华大学出版社,2005.
    63 Cumpsty N A. Compressor Aerodynamics. Harlow, Essex, England: Longman Scientific & Technical, New York: J. Wiley, 1989.
    64 Sieverding C H. Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages. ASME J.Engineering. Gas Turbines Power,1985,107:248-257.
    65 唐狄毅. 叶轮机非定常流. 北京,国防工业出版社,1992.
    66 童秉纲. 非定常流与涡运动. 北京,国防工业出版社,1993.
    67 Christopher E B. Hydrodynamics of pumps. Oxford University Press,1994.
    68 Christopher E B. Cavitation and bubble dynamics. Oxford University Press,1995.
    69 陈克城. 流体力学实验技术. 北京,机械工业出版社,1983.
    70 严兆大,王振子,俞小莉. 热能与动力机械测试技术. 北京,机械工业出版社,1999.
    71 罗次申. 动力机械测试技术. 上海,上海交通大学出版社,2001.
    72 厉彦忠,吴筱敏. 热能与动力机械测试技术. 西安,西安交通大学出版社,2007.
    73 中国农业机械化科学研究院主编. 水泵模型验收试验规程 SL140-97. 北京,中国水利水电出版社,1997.
    74 范洁川. 近代流动显示技术. 北京,国防工业出版社,2002.
    75 杨小林,严敬. PIV测速原理与应用. 西华大学学报(自然科学版),2005,24(1):19-20.
    76 黄社华,魏庆鼎. 激光测速粒子对复杂流动的响应研究. 水科学进展,2003,14(1):28-35.
    77 MELLING A. Tracer particles and seeding for particle image velocimetry. Meas Sci Technol,1997,8(12):1406-1416.
    78 阮驰,孙传东,白永林等. 水流场 PIV 测试系统示踪粒子特性研究. 实验流体力学,2006,20(2):72-77.
    79 杨小林,严敬,邓万全等. 离心泵叶轮轴向旋涡流的PIV测量. 石油机械,2005,33(7):1-3.
    80 任岩,陈德新. PIV相关法中错误速度矢量的识别与评价. 东北水利水电,2004,22(11):9-13.
    81 董明哲,汪洋,蒋宁涛. PIV系统测量误差的实验评价方法以及实验参数的优化,实验流体力学,2005,19(2):79-83.
    82 郭永康,鲍培谛. 光学教程. 四川,四川大学出版社,1989.
    83 徐峰,郑源,廖锐等. 轴流泵能量特性试验分析. 排灌机械,2004,22(4):35-38.
    84 郭强,竺晓程,胡丹梅,杜朝辉. 采用 PIV 研究轴流风机叶顶泄漏流动. 流体力学实验与测量,2004,18(1):33-37.
    85 Harrison S. Secondary loss generation in a linear cascade of high-turning turbine blades. ASME Journal of Turbomachinery, 1990,112:618-624
    86 邹正平,徐力平. 叶轮机三维非定常流动数值模拟的研究. 航空学报,2001,22(1):10-14.
    87 王仲奇,冯国泰,王松涛等. 透平叶片中的二次流旋涡结构的研究. 工程热物理学报,2002,23(5):553-556.
    88 贾希诚,王正明. 叶轮机械中间隙流与通道二次流相互作用的数值研究. 航空动力学报,2002,17(4):399-403.
    89 袁巍,陆亚钧,李秋实. 叶轮机械内的分离旋涡流动. 工程热物理学报,2002,23(6):711-714.
    90 贾希诚,王正明,王嘉炜. 叶轮机械中的泄漏流与泄漏涡. 工程热物理学报,2003,24(5):753-756.
    91 弗. 亚. 卡列林. 离心泵和轴流泵的汽蚀现象. 北京,机械工业出版社,1985.
    92 朱荣生,付强,李维斌等. 基于混合模型的离心泵叶轮内汽蚀两相流的 CFD 分析. 中国农村水利水电,2006(8):51-53.
    93 谭智勇,李岩,郑洪涛. 翼型的选择对轴流泵抗汽蚀性能的影响. 汽轮机技术,2005,47(3):183-184.
    94 刘仲祥. 叶片的弯扭对轴流泵汽蚀抑制的研究. 硕士学位论文,哈尔滨工程大学,2005.
    95 A J Stepanoff,吴达人. 泵与鼓风机、两相流. 北京,机械工业出版社,1986.
    96 竺晓程,杜朝辉. 带叶顶间隙轴流转子三维流动的数值模拟. 上海交通大学学报,2003,37(9):1480-1483.
    97 杨策,马朝臣,王延生等. 透平机械叶尖间隙流场研究的进展. 力学进展,2001,31(1):70-83.
    98 Sjolander S A,Cao D. Measurements of the flow in an idealized turbine tip gap. ASME Journal of Turbomachinery,1995,117(4):578-584.
    99 梁开洪,张克危,许 丽. 轴流泵叶顶间隙流动的计算流体动力分析. 华中科技大学学报,2004,32(9):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700