用户名: 密码: 验证码:
多元氧化锆(ZrO_2)基陶瓷的相图计算和材料制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺杂CeO_2、Y_2O_3和Al_2O_3的ZrO_2基结构陶瓷,具有极好的韧性、强度和热稳定性,然而ZrO_2陶瓷的力学性能及显微组织与陶瓷的成分,制备工艺密切相关,特别是原料的成分组成决定了材料的相构成和机械性能。因此研究多元ZrO_2陶瓷的热力学性质,精确的相图计算无疑起着非常重要的作用。鉴于采用普通的实验方法很难获得二元高温氧化物体系的平衡相图,更无法得到高温下三元系的平衡相图,又因为ZrO_2-CeO_2陶瓷在高温和还原性气氛下具有明显的还原现象,材料的相结构和力学性能会出现明显的变化,而目前又缺少外界氧气分压、工作温度和成分对试样相结构的定量关系和对力学性能影响的定性关系。本文将采用当今国际上通用的相图计算方法—CALPHAD,收集大量的实验数据和热力学数据,根据各相的晶体结构,构建适当的热力学模型,利用Thermo-Calc和Lukas程序优化和估算多个三元氧化锆体系的高温平衡相图、ZrO_2-CeO_2陶瓷在不同氧分压下的热力学性质。同时利用估算的相图,指导设计了CeO_2-Y_2O_3-ZrO_2/Al_2O_3复合陶瓷的成分,制备出具有中试意义的氧化锆结构陶瓷。
     首先利用相图计算技术和置换溶液模型重新优化计算了ZrO_2-CeO_2、ZrO_2-Y_2O_3相图、估算了CeO_2-Y_2O_3系的热力学性质,得到与实验数据相吻合的计算相图。根据计算的热力学参数,外推出多个ZrO_2-CeO_2-Y_2O_3系的高温等温截面相图,首次建立了该系的热力学数据库。温度为2073K的等温截面再现了实验信息。利用计算的等温截面相图得到在1723K,成分为12mol%CeO_2-ZrO_2陶瓷为全四方相,而3mol%Y_2O_3-ZrO_2含有11mol%立方相。采用实验分析方法很难定量分析四方相和立方相的含量,传统上认为12mol%CeO_2-3mol%Y_2O_3-ZrO_2陶瓷为全四方相,而本工作相图计算结果则认为该成分陶瓷含有30.9mol%的立方相,为该成分陶瓷极低的韧性提供了合理的理论依据,并建议同行们不必再对该材料进行开发研究。
     基于ZrO_2-CeO_2陶瓷独特的相变特征,分别利用置换溶液模型和化合物能量模型优化和估算了ZrO_2-CeO_2陶瓷在高温或低氧分压还原性气氛下的热力学性质,构建了ZrO_2-CeO_2-CeO_(1.5)系的等温截面,再现了不同氧分压和工作温度下,
    
    CeOZ一Ceol.,中组元CeO:、CeO,:的氧化还原关系。并采用(ZrOZ,CeOZ,CeO,5)和
    (Zr+’,ce十“,ce+3)l(O一,va)2模型外推出非化学计量比相杂赡堋T诠?
    上首次指出在高温,大气气氛下烧结ZrOZ一CeOZ陶瓷时,陶瓷易还原的热力学依据。
    计算结果表明,当CeO:部分还原后,四方相区大大减小,四方相中稳定剂含量也
    随着CeO!.5的生成而降低,使低温下的马氏体相变更易启动,从而为ZrOZ一CeOZ
    陶瓷在还原性气氛具有极高韧性提供理论依据。
     利用置换溶液模型,合理地优化了A12O3一CeO:和A12o3一Zr仇二元系相图,并
    利用几何模型外推,估算了ZrOZ一CeOZ一A12O3系的多个高温等温截面。估算的相图
    与温度为1673K和1873K的实验相图非常吻合。
     基于计算的多个ZrOZ一Ceq一YZO3系截面相图,为获得优化的相组成,选取了
    合理的成分,利用粉末涂层法制备Ceq和YZq液相稳定ZrOZ/A12O〕纳米粉末。
    经冷等静压后,在1450oC下无压烧结1一4小时后,获得高密度结构陶瓷。并利
    用扫描电镜和衍射分析研究材料的显微结构和相组成,采用压痕法测定和计算了
    材料的维氏硬度和断裂韧性。成分为12mol%Ce氏一2.swt%A12O3一ZrOZ陶瓷具有极
    高的韧性,达13.53MPa.m’/2,硬度为847k留mm“,陶瓷由弥散的超细A12o:粒子
    和粒径均匀的等轴四方相晶粒组成。添加A1203后,其强度和韧性明显优于
    12mol%Ce仇一TZP陶瓷。继续添加3mol%YZO3后,材料的韧性急剧降低,只有
    2.02MPa.m’‘“,不具有3Y-TzP陶瓷的高硬度和12ce一TzP陶瓷高韧性的综合性能。
    根据计算相图,该组织中含有30.9%mol的立方相,并且四方相固溶过多的稳定剂,
    相变增韧效益在低温下很难发生。当YZ仇的含量从3mol%降低到lmol%,并加入
    适量的CeO:和2一3诚%A12O3,陶瓷的韧性发生显著改变。稳定剂含量愈低,材料
    的韧性愈好。成分为lmol%CeOZ一Zmol%YZO3一ZrOZ/2喊%A1203陶瓷的韧性为
    5.94MPa.m’‘2,硬度为1126kg/mm,,经高速研磨和长时间热处理后,均没有生成单
    斜相,热稳定性好,该陶瓷的综合性能己经超过商业用陶瓷。继续降低YZO:含量,
    并增加CeO:含量,能获得高韧性和良好热稳定性组合的先进陶瓷。成分为
    4mol%Ce仇一1 mol%YZO3一ZrOZ/2诚%A12O3陶瓷的韧性为14.34MPa.m’2,硬度为
    95Ikg/mmZ,成分为6mol%ce02一lmol%Y203一zr02/2似%A12O3陶瓷的韧性为
    9.12MPa.m’月,硬度为10llkg/mmZ,这些陶瓷的力学都超过了同类商业用陶瓷,具
    有中试意义。
    
     根据计算的ZrOZ一CeOZ一A12O3系相关系,为获得优化的相组成,采用商业用的
    12mol%CeOZ一丁ZP陶瓷粉,掺杂2.5一20叭%A12O3以抑制四方相晶粒的长大,通过
    球磨、压制、烧结后,分析了陶瓷的显微组织和力学性能。超细而弥散分布的A12O3
    粒子,均匀分布在四方相晶界处,有效地抑制了四方相晶粒生长和改善了陶瓷的
    硬度和韧性。在1723K下无压烧结4小时后,1
Ceria-yttria co-doped zirconia-based multi-components ceramics, with superfine alumina dispersed in the matrix, possess excellent fracture toughness, strength and thermal stability. However, the mechanical properties and microstructure are strongly dependent on the composition and the fabrication procedure, especially the composition of zirconia containing multi-component ceramics. Therefore, precise phase diagrams of zirconia-based multi-components systems can be considered as the "map" for the development of advanced ceramics. Due to the experimental difficulties, the phase diagrams and thermodynamic data of zirconia systems are very limited and dispersive. Further more, the constitutes of phases and mechanical properties of ZrO2-CeO2 system change drastically when it is under the reduced atmosphere and elevated temperatures. The thermodynamic properties of ZrO2-CeO2-Ce2O3 system is very important to obtain the quantitative relation among oxygen pressure, temperature, composition, phase constituents and me
    chanical properties. In this paper, with the calculation technique CALPHAD, phase diagrams of ZrO2-CeO2-Y2O3, ZrO2-CeO2-Al2O3, ZrO2-CeO2-Ce2O3 systems are optimized and extraploated by Thermo-Calc and Lukas Programme with suitable thermodynamic models and experimental data. Meanwhile, the thermodynamic properties of ZrO2-CeO2 system under reducing atmosphere is also assessed with substitutional and compound energy model. Based on the calaculated phase diagrams, different compositions of CeO2-Y2O3-ZrO2/Al2O3 are selected and ceramics with commercial meaning are fabricated with the powder coated method.
    First, comprehensive descriptions of experimental information and thermodynamic properties in the binary systems, ZrO2-CeO2, ZrO2-Y2O3, and CeO2-Y2O3 are given and thermodynamic models of these systems are discussed. The calculated phase diagrams of binary systems are consistent with the experimental data. With the substitutional model (ZrO2,CeO2,YO1.5), the thermodynamic databese of ZrO2-CeO2-Y2O3 is constructed, and with muggianu's formula, the isothermal sections are extraploated under different temperatures. The experimental section at 2073K is well reproduced by
    
    
    
    the thermodynamic calcualtion. From the calcuated phase diagrams, 12 mol% CeO2-ZrO2 is in the tetragonal phase range, 3mol%Y2O3-Zr02 is with 11 mol% cubic phase, 12mol%CeO2-3mol%Y2O3-ZrO2 has 30.9mol% cubic phase, which is totally different from the tradional idea that considers it as a full tetragonal phase. The calculated result provides the theoretic basis for the weak fracture toughness of this composition.
    Using compound energy model and substitutional model, the thermodynamic properties of in CeO2-Ce2O3 and in Zr02-CeO2-Ce2O3 system are evaluated. The evaluation is based on the optimization of ZrO2-CeO2 and ZrO2-CeO1.5 systems, as well as the miscibility gap in CeO1.5-CeO2 system. The model parameters are evaluated through fitting the selected experimental data by means of thermodynamic optimization. A set of parameters with thermodynamics self-consistency is obtained that satisfactorily described the complex relation between y in and the partial pressure of oxygen at different temperatures, also the interdependence among miscellaneous factors such as temperature, oxygen partial pressure, the reduction amount of CeO2 as well as the nonstoichiometry in cubic phase The calculated results seem to be reasonable when put into the explanation of pressure-less sintering of CeO2-stabilised ZrO2 powder compacts under a controlled oxygen partial pressure.
    ZrO2-CeO2-Al2O3 system has been assessed with CALPHAD technique using PARROT procedure. The experimental information on the ZrO2-Al2O3, Al2O3-CeO2 systems as well as the isothermal sections of the ternary system at 1673K and 1873K are well reproduced. No alumina dissolves into the tetragonal zirconia phase from the calculated phase diagram.
    Different compositions are selected from the calculated isothermal section at 1723K of ZrO2-CeO2-Y203 system. With
引文
[1] 郭景坤,中国先进陶瓷研究及其展望[J],无机材料学报,1997,11(6):195-200。
    [2] 郭景坤,关于先进结构陶瓷的研究[J],无机材料学报,1999.14(2):193-202。
    [3] 饮征骑,钱杏南,贺盘发,《新型陶瓷材料手册》[M],江苏科学技术出版社,1995:1-5。
    [4] 周洋,袁广江,徐荣九,高温结构陶瓷基复合材料的研究现状与展望[J],硅酸盐通报,2000.4:31-35。
    [5] Evans A. G., Perspective on the development of high-toughness ceramics[J], J Am. Ceram. Soc., 1990, 73 (2): 187-206.
    [6] Lange F. F., Transformation toughening[J], J. Mater Sci., 17 (1982): 247-254.
    [7] 周玉,《陶瓷材料学》[M],哈尔滨工业大学出版社,1995:263-313。
    
    
    [8] Richard H. J. H., Patrick M. K., Barry C. M., Transformation toughening in zirconia-containing ceramics[J], J. Am. Ceram. Soc., 2000, 83 (3): 164-487.
    [9] 闫洪,窦明民,李和平,二氧化锆陶瓷的相变增韧机理和应用[J],陶瓷学报,2000,21(1):46-50。
    [10] Djuricic B., Mcgarry D., The preparation of ultrafine ceria-stabilized zirconia particles coated with yttria[J], J. Mater. Sci. Lett., 1993, 12: 1320-1323.
    [11] Shi, J. L., Li B. S., Ruan M. L., Yen T. S., Processing of nano-Y-TZP/Al_2O_3 composites, I: preparation and characterization of Nano-Y-TZP/Al_2O_3 composites powders[J], J. Euro. Ceram. Soc., 1995, 15: 959-965.
    [12] Yuan Z. X., Vleugels J., Van Der Biest O., Synthesis and charterisation of CeO_2-coated ZrO_2 powder-based TZP[J], Mat. Lett., 2000, 46: 249-254.
    [13] 姜斌,李阳,邓宏,纳米ZrO_2粉体的制备[J],功能陶瓷增刊,2001,10:1625-1627。
    [14] Boutz M. M. R., Winnubst A. J. A., Langerak B. V., Olde R. J. M., The effect of ceria co-doping on chemical stability and fracture toughness of Y-TZP[J], J. Mater Sci., 1995, 30: 1854-1862.
    [15] Lawson S., Environmental degradation of zirconia ceramics[J], J. Euro. Ceram. Sot., 1995, 15: 485-502.
    [16] Garvie R. C., Hannink R. H. J., Pasoe R. T., Ceramic steel?[J], Nature (London), 1975, 258: 703-704.
    [17] Heussner K. H., Strengthening of ceria-doped tetragonal zirconia polycrystals by reduction- induced phase transformation[J], J. Am. Ceram. Sot., 1989, 72 (6): 1044-46.
    [18] Lindemer T. B., Chemical thermodynamic representation of very nonstoichiometric phase: J], CALPHAD, 1986, 10 (2): 129-136.
    [19] Zhao C., Vleugels J., Basu B., Van Der Biest O., High toughness Ce-TZP by sintering in an inert atmosphere[J], Scripta Mater, 2000, 43:1015-1020.
    [20] Duh J. G., Wan J. U., Developments in highly toughened CeO_2-Y_2O_3-ZrO_2 ceramic system[J], J. Mater. Sci. Technol., 1992, 27: 6197-6203.
    [21] Duh J. G. Dai H. T., Sintering, microstructure, hardness, and fracture toughness behavior of Y_2O_3-CeO_2-ZrO_2[J], J. Am. Ceram. Soc., 1988, 71 (10): 813-819.
    [22] Lin J. D., Duh J. G., Crystallite size and microstrain of thermally aged low-ceria and low yttria-doped zirconia[J], J. Am. Ceram. Soc., 1998, 81 (4): 853-860.
    [23] Matsui K., Etoh N., Uehara M., Effect of on the sinterability of fine zirconia powder[J], Key Engineering Materials, 2002, 206-213: 345-348.
    [24] Li J. F., Watanabe R., Fracture toughness of A-2O_3-particle dispersed Y_2O_3-partially stabilized zirconia[J], J. Am. Ceram. Soc., 1995, 78 (4): 1079-1082.
    [25] Tani E., Revised phase diagram of the system CeO_2-ZrO_2 Below 1400℃[J]. J. Am. Ceram. Soc., 1983, 66 (7): 506-510.
    [26] Nauer M., Low-temperature sinter forging of nanostructured Y-TZP and Y-Ce-TZP[J], J. Am. Ceram. Soc., 1995, 78: 121-126.
    [27] Meriani S.. Features of the ceria-zirconia system[J], Mater Sci. Eng., 1988, A 109:121-130.
    [28] Masatomo Yashima, Tetragonial-monoclinic phase transtion enthalpy and temperature of ZrO_2-CeO_2 solid solutions[J]. J. Am. Ceram. Soc., 1995, 78 (8): 2225-2228.
    [29] Stubican V. S., Phase equilibria and metastabilities in the systems ZrO_2-MgO, ZrO_2-CaO, and
    
    ZrO_2-Y_2O_3[M], in S. Somiya, Advances in Ceramics, Science and Technology of Zirconia Ⅲ, American Ceramic Society, Columbus, OH, 1988, 24:71-82
    [30] Lin T. S., Yu H. C., Phase equilibriums of systems La_2O_3 (rare earth oxide)-zirconia oxide. Ⅲ. phase equilibrium of the binary system yttria-zirconia[J], J. Chin, Ceram. Soc., 1965, 4 (1): 22-29.
    [31] Rouanet A., High temperature solidification and phase diagrams of the ZrO_2-Er_2O_3, ZrO_2-Y_2O_3, and ZrO_2-Yb_2O_3 systems[J], C.R. Seances Acad. Sci., Ser. C, 1968, 267 (23): 1581-1584.
    [32] Janney M. A., Microwave sintering of solid oxide fuel cell materials zirconia-8 mol%yttria[J]. J. Am. Ceram. Soc., 1992, 75 (2): 341-346.
    [33] 符锡仁,发动机用结构陶瓷研究的发展动向[J],物理,1997,26(2):111-116.
    [34] Sornakumar T., Krishnamurthy R., Gokularthnam C. V., Machining performance of phase transformation toughened alumina and partially stabilized zirconia composite cutting tools[J]. J. Euro. Ceram. Soc., 1993, 12: 455-560.
    [35] Yamamot O., Takeda Y., Kanno R., Electrical conductivity of polycrystalline tetragonal zirconia ZrO_2-M_2O_3 (M=Sc, Y, Yb)[J], J.. Mater. Sci. Lett., 1989, 8: 198-200.
    [36] Chiou B. S., Dai H. T., Duh J. G., Electrical behavior of ceria-stbilized zirconia with rare-earth oxide additives[J], J. Am. Ceram. Soc., 1990, 73 (4): 866-871.
    [37] Hirano M., Watanabe S., Kato E., Fabrication, Electrical conductivity and mechanical properties of Sc_2O_3-doped tetragonal zirconia ceramics[J], Solid State Ionics, 1998, 111: 161-169.
    [38] 唐竹君,《陶瓷相图的优化估算》[D],[硕士论文],上海大学,1998:3-20。
    [39] 陆学善,《相图与相变》(M],中国科学技术大学出版社,1990:145-200。
    [40] Saunders N., Miodownik A.P., 《CALPHAD (calculation of phase diagram): a comprehensive guide》[M], university of Cambridge, UK: Robert W. Cahn FRS: Elsevier Science, 1998: 7-30.
    [41] Kaufman L., Bernstain H., 《Computer Calculation of Phase Diagrams》[M], New York and London: Academic Press, 1970:1-100.
    [42] 马兹.希拉特(Hillert M.),《合金扩散和热力学》[M],冶金工业出版社,1984:1-100。
    [43] Dinsdal, A. T., Kaufman L, 《 CALPHAD-Computer Coupling of Phase Diagram & Thermochemistry》[M], USA: Pergoman Press, 1977~ present.
    [44] Ansara I.registration of (S.G.T.E) under ordinance 9-821, Domaine Universitaire, Frane, 1983
    [45] Sundman B., Jansson B., Andersson J. -O., the thermo-calc database system[J]. CALPHAD, 1985, 9: 153-190.
    [46] Bale C. W., Pelton A. D., FACT (Facility for the Analysis of Chemical Thermodynamics). Version 2.1-User Manual[C], Ecole Plytechnique de Montreal/Royal Military College, Canada, 1996, July.
    [47] Lukas H.L., 《Manual of Computer Programs: BINGSS, BINFKT, TERGSS and. TERFKT》[M], 91-3, Germany, 1991 : 3-55.
    [48] Davies R. H., Dinsdale A. T., Gisby J.A., 《Application of thermodynamics in the synthesis and processing of materials》[M], Nash P., Sundman B.m TMS, Warrendale, PA, 1995: 371-384.
    [49] Pelton, A. D. and Blander, M. in 2nd Int. Symp. on Metallurgical Slags & Fluex[C]. In H and Gaskell, D. R. (Met. Soc. AIME, Warrendale, PA), Fine, A. 1984: 281-286.
    [50] Sundman B., An assessment of the Fe-O System[J]. Journal of Phase Equilibria, 1991, 12 (1): 127-140.
    
    
    [51] Grundy A. N., Hallstedt B., Gauckler L. J., Thermodynamic assessment of the lanthanumoxygen system[J]. Journal of Phase Equilibria, 2001, 22 (2): 105-113.
    [52] Hillert M., Jonsson S., An assessment of the Al-Fe-N system[J], Metallurgical Transformation, 1992, 23A: 3141-3149.
    [53] Yamashita T., Okuda K., Obara T., Application of thermo-calc to the developments of high-performance steels[J]. Journal of Phase Equilibria, 1999, 20 (3): 231-237.
    [54] Du H., Morral J. E., Prediction of the lowest melting point eutectic in the Fe-Cr-Mo-V-C system[J]. Journal of Alloys and Compounds, 1997, 247 (1-2): 122-127.
    [55] Hillert M., Predicting carbides in alloy steels by computer[J]. ISIJ International, 1990, 30 (7): 559-566.
    [56] Hillert M., Escape of carbon from ferrite plates in austentite[J], Acta Metallurgica et Materialia 1993, 41 (7): 1951-1957.
    [57] Won J. S., Effect of Si and Mn on ferrite and austenite phase fractions in 25Cr-7Ni-1.5Mo-3W base super duplex stainless steels[J]. Z Metallkd, 2000, 91 (6): 494-499.
    [58] Zackrisson J., Jansson B., WC-Co based cemented carbides with large Cr_3C_2 additions[J], Int. J. Refr. Met. Hard Mater, 1998, 16 (4-6): 417-422.
    [59] Zackrisson J., Rolander U., Jansson B., Microstructure and performance of a cermet material heat-treated in nitrogen[J], Acta Materialia, 2000, 48 (17): 4281-4291.
    [60] Frykholm R., Ekroth M., Jansson B., Effect of cubic phase composition on gradient zone formation in cemented carbides[J], Int. J Refi. Met. Hard Mater, 2001, 19 (4-6): 527-538.
    [61] Frisk K., Dumitrescu L., Ekroth M., Jansson B., Development of a database for cemented carbides: thermodynamic modeling and experiments[J], Journal of Phase Equilibria, 2001, 22 (6): 645-655.
    [62] Borgenstam A. Hillert M., Driving force for fcc→bcc martensites in Fe-X alloys[J], Acta Mater, 1997, 45: 2079-2091.
    [63] Joachim Kunze, Bodo Beyer, Thermodynamics of the martensitic transformation in Fe-C and Fe-N Alloys[J], Z. Metallkd. 2000, 91 (1): 10-16.
    [64] Ghosh G., Olson G. B., Computional thermodynamics and the kinetics of martensitic transformation[J], Journal of Phase Equilibria, 2001, 22 (3): 199-207.
    [65] Huang W. M., Hillert M., Thermodynamic assessment of the CaO-MgO-SiO_2 system[J], Metallurgical Materials Transformations A, 1995, 26A: 2293-2310.
    [66] Hallstedt B., Thermodynamic assessment of the system MgO-Al_2O_3[J], J. Am. Ceram. Soc., 1992, 75 (6): 1497-1507.
    [67] Du Y., Yashima M., Koura T., Kakihana M., Thermodynamic assessment of the ZrO_2-LaO_1.5 system[J], J. Euro. Ceram. Soc., 1995, 15: 503-511.
    [68] Hsu T. Y., Li L. Jiang B. H., Thermodynamic calculation of the equilibrium temperature between the tetragonal and monoclinic phase in CeO_2-ZrO_2[J], Materials Transformation, JIM, 1996, 37 (6): 1281-1283.
    [69] 乔芝郁,许志宏,刘洪霖,《冶金和材料计算物理化学》[M],冶金工业业出版社,1999:1-50。
    [70] Kumar K. C. H., Wollants E, Some guidelines for thermodynamic operation of phase diagrams, Journal of Alloys and Compounds, 2001, 320: 50-61.
    [71] 李麟,徐祖耀,《材料热力学》[M],第二版,科学出版社,1999:138-161.
    [72] M. Hillert. The Compound Energy Formalism[J], Journal of Alloys and Compounds, 2001, 320:
    
    161-176.
    [73] Karin Frisk, Malin Selldby, The compound energy formalism: applications[J], Journal of Alloys and Compounds, 2001, 320:177-188.
    [74] Barry T. I., Dinsdale A. T., Gisby J. A., The compound energy model for ionic solutions with applications to solid oxides[J], Journal of Phase Equilibria, 1992, 13 (5): 459-474.
    [75] Du, Y., Yashima, M., Koura, T., Kakihana, M. and Yoshimura, M., Thermodynamic evalution of the ZrO_2-CeO_2 System[J]. Scripta Metall. Mater, 1994, 31 (3): 327-332.
    [76] Li, L., Xu, Z. Y., Ao, Q., Optimization of the phase diagram of CeO_2-ZrO_2 system[J]. J. Mater Sci. Technol., 1996, 12: 159-160.
    [77] Hillert M., How to select axes for a phase diagram[J], Journal of Phase Equilibria, 1997, 18 (3): 249-263.
    [78] 刘立斌,金展鹏,状态图与状态函数[J],中南工业大学学报,1998,29(3):252-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700