用户名: 密码: 验证码:
缺氧相关基因单核苷酸多态性与急性高原病易感性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:急性高原病(AMS)严重影响我国青藏高原移居人群的健康,目前尚无有效的防治对策。高原习服和适应过程中个体差异的存在提示AMS的发生可能是环境和遗传因素共同作用的结果。因此推测遗传因素可能与AMS易感性存在关联。本研究通过对AMS易感人群与不易感人群缺氧相关基因的单核苷酸多态性(SNP)进行对比研究,旨在探索SNP与AMS易感者之间的关系。
     方法:以由内地空运急进海拔3658米高原(拉萨)的汉族入伍新兵为研究对象,症状评分法调查AMS发病率,测定SpO2、采集外周静脉血并提取DNA,ELISA测定40名AMS患者和40名未发病人群的血浆VEGF浓度。采用病例对照研究的方法,从AMS患者中随机选取200人作为病例组,从未发病人群中选取匹配的200人作为对照组。以引物延伸结合基质辅助激光解吸附离子化飞行时间质谱技术检测缺氧相关基因不同SNP位点的多态性,这些基因包括血管内皮生长因子(VEGF)、缺氧诱导因子1(HIF1A)、谷胱甘肽过氧化物酶M3(GSTM3),谷胱甘肽过氧化物酶P1(GSTP1)、诱导型一氧化氮合酶(NOS2)、内皮型一氧化氮合酶(NOS3)、血管紧张素转化酶(ACE)和热休克蛋白A4(HSPA4)基因。统计遗传学软件分析其与AMS的关联性。
     结果:入伍新兵急进高原(拉萨)后AMS发病率为35.68%。AMS组SpO2从505米处的98.02±1.69%降至3,658 m处的85.16±5.42%(P<0.01)。对照组SpO2从505米处的98.02±1.40%降至3658米处的86.30±4.63%(P<0.01)。在海拔3658米高原,与对照组比较,AMS组氧饱和度明显下降(P<0.05)。与基线水平比较,海拔3658米高原对照组血浆VEGF浓度从41.03±37.37pg/ml降至16.98±11.61pg/ml(P<0.01),AMS组从79.276±27.48 pg/ml降至55.58±20.19 pg/ml(P<0.01).不论在平原或高原,AMS组血浆VEGF浓度均显著高于对照组(P<0.01)。除HSPA4基因的rs35853823位点外,AMS组与对照组的13个SNP位点均存在SNP,且处于Hardy-Weinberg平衡。VEGF基因rs3025039位点中等位基因T与AMS存在关联(P=0.01,比值比(OR),0.62,95%可信区间(CI)0.43-0.90)。该位点基因型CC、CT和TT频率在AMS组与对照组间存在显著性差异(P=0.0297),等位基因T为加性模式时,CT基因型与AMS存在关联(P=0.010,OR,0.56,95%CI0.36~0.87);等位基因T为显性模式时,CT+TT基因型与AMS存在关联(P=0.008,OR,0.56,95%CI0.37~0.86)。VEGF基因rs3025030位点等位基因C与AMS存在关联(P=0.019,OR,0.64,95%CI0.44~0.93)。该位点等位基因C为显性模式时,CC+CG与AMS显著相关(P=0.0184,OR,1.66,95%CI1.10-2.45)。NOS2基因rs1137933位点等位基因T为加性模式时,TT基因型与AMS显著相关(P=0.049,OR,3.04,95%CI0.96~9.68)。该位点等位基因T为隐性模式时,TT基因型与AMS存在关联(P=0.04,OR,3.13,95%CI0.99-9.87)。ACE基因rs4309位点等位基因C为隐性模式时,CC基因型与AMS存在关联(P=0.049,OR,1.83,95%CI 1.00-3.34)。NOS2基因的rs2297518位点,HIF1A基因的rs8005745、rs2301108和rs10873142位点,GSTP1的rS1695位点,GSTM3的rs7483位点,NOS3的rs1799983. rs3918188和rs7830位点以及HSPA4基因的rs35853823位点等位基因频率和基因型在AMS组和对照组间均不存在显著性差异(P>0.05)。在单体型水平,由VEGFA基因rs3025030(G/C)和rs3025039(C/T)组成的单体型GC/CT频率在AMS组与对照组间存在显著性差异(P=0.029).AMS组与对照组间由HIF1A基因SNP位点rs8005745、rs2301108和rs10873142构成的单体型AGT/TAC/AGC频率分布没有显著性差异(P>0.05)。
     结论:1、入伍新兵急进海拔3658米高原(拉萨)后AMS发病率为35.68%。2、高原低氧条件下人体SpO2和血浆VEGF蛋白浓度明显下降,平原和高原条件下AMS患者血浆VEGF浓度均明显高于未发病人群。3、中国汉族人群VEGF基因的rs3025039和rs3025030位点与AMS发病相关联,等位基因T和C是AMS发生的保护因素;4、NOS2基因的rs1137933位点纯合基因型TT和ACE基因的rs4309位点CC基因型与AMS存在关联。携带这2种基因型的个体发生AMS的风险增加。5. NOS2基因的rs2297518位点,HIF1A基因的rs8005745、rs2301108和rs10873142位点,GSTP1的rs1695位点,GSTM3的rs7483位点,NOS3的rs1799983、rs3918188和rs7830位点以及HSPA4基因的rs35853823位点均与AMS发病无关联的依据。
BACKGROUND AND OBJECTIVE:Acute mountain sickness (AMS) is a potentially serious affliction to health in immigrants to Tibetan Plateau above 2500 m. There are no effective treatment and prevention strategy of AMS now.Interindividual variation in acclimatization and adaptation to high altitude suggest that the probability of developing AMS depends on genetic and environmental factors. So we speculated that genetic factors may be associated with AMS susceptivity. The research aimed to explore the association between single nucleotide polymorphism(SNP) of hypoxic gene and AMS by comparing the difference of hypoxic gene SNP betwween AMS-susceptible and acclimatized individuals.
     METHODS:The study enrolled Chinese ethnicity soldiers that join the army for the first time flew to high altitude(3658m,Lhasa) from lowland (505m). AMS was diagnosed on the basis of the AMS Questionnaire. Venous blood was collected and then analyzed by ELISA for VEGF and for extraction of genomic DNA and peripheral arterial oxygen saturation (SpO2) was recorded at low altitude and after 24h-48h at high altitude. By case-control study method, we selected 200 cases of AMS as AMS group and 200 individuals which not developed AMS as control group randomly from these soldiers respectively. The selected subjects were genotyped for the fourteen polymorphisms of the hypoxic genes by primer extension of multiplex products with detection by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectroscopy. These hypoxic genes include vascular endothelial growth factor (VEGF), hypoxia inducible factor 1 alpha subunit (HIF1A) Glutathione S-transferase mu 3 (GSTM3), Glutathione S-transferase pi 1 (GSTP1), Nitric oxide synthase 2 (NOS 2) nitric oxide synthase 3 (NOS 3), AngiotensinⅠ converting enzyme (ACE) and heat shock 70kDa protein 4(HSPA4). The association between SNP and AMS was analysed by genetic statistical software.
     RESULTS:Morbidity of AMS in the soldiers that join the army for the first time flew to high altitude was 35.68%. SpO2 fell from 98.02±1.69% at 505m to 85.16±5.42% at 3,658 m in subjects with AMS (P<0.01) and from 98.02±1.40% at 505m to 86.30±4.63% at 3,658 m in subjects without AMS (P<0.01). SpO2 in subjects with AMS fell signifcantly compared with those wothout AMS at a height of 3658 m(P<0.05). Plasma VEGF concentration decreased at an altitude of 3658 m (16.98±11.61 pg/ml vs 41.03±37.37pg/ml,P<0.01,in group without AMS; 55.58±20.19 pg/ml vs 79.27±27.48 pg/ml, P<0.01, in group with AMS) compared with the baseline level. The plasma VEGF concentration were significantly higher in group with AMS than in group without AMS at baseline level and at altitude of 3658 m (79.27±27.48 pg/ml vs 41.03±37.37 pg/ml,55.58±20.19 pg/ml vs 16.98±11.61 pg/ml,respectively,P<0.01). All 13 gene locuses exist polymorphisms and were in Hardy-Weinberg equilibrium in both AMS group and controls except for HSPA4 which only have a allelee T. The T allele of rs3025039 of VEGF was significantly associated with AMS(P=0.012, OR=0.62,95% CI 0.43 to 0.90). The rs3025039 of VEGF genotypic frequency distribution differed significantly between AMS and control group (P=0.0297).CT genotype of rs3025039 was significantly associated with AMS (P=0.010, OR=0.56,95% CI 0.36 to 0.87) assuming a additive effect of the T allele; CT+TT genotype of rs3025039 was significantly associated with AMS(P=0.008,OR=0.56,95% CI 0.37 to 0.86) assuming a dominant effect of the T allele. The C allele of rs3025030 of VEGF was significantly associated with AMS (P=0.019,OR=0.64,95% CI 0.44 to 0.93). CC+CG genotype of rs3025030 was significantly associated with AMS (P=0.018, OR=1.66,95% CI 1.10 to 2.45) assuming a dominant effect of the T allele. In terms of NOS2, TT genotype of rs1137933 was significantly associated with AMS (P=0.049,OR=3.045,95% CI 0.96 to 9.68) assuming a additive effect of the T allele. TT genotype of rs1137933 was significantly associated with AMS(P=0.04,OR=3.13,95% CI 0.99 to 9.87) assuming a recessive effect of the T allele. For ACE, CC genotype of rs4309 was significantly associated with AMS (P=0.049, OR=1.83,95% CI 1.00 to 3.34) assuming a recessive effect of the C allele. Genotypic and allelic frequencies of the rs2297518 of NOS2; rs8005745, rs2301108, rs10873142 of HIF1A; rs1695 of GSTP1; rs7483 of GSTM3; rs1799983, rs3918188 and rs7830 of NOS3 and rs35853823 of HSPA4 were not significantly different between AMS and control group (P>0.05). At the haplotype level, a haplotype GC/CT frequencies consisting of rs3025030 (G/C) and rs3025039 (C/T) of VEGF was significantly differences between the AMS group and control group (P=0.029).There were no statistically significant differences in the haplotype AGT/TAC/AGC frequencies consisting of rs8005745,rs2301108 and 10873142 of HIF1A between the AMS group and control group at high altitude (P>0.05).
     CONCLUSIONS:1、Morbidity of AMS in the soldiers that join the army for the first time flew to high altitude was 35.68%; 2、SpO2 and VEGF is down-regulated significantly in AMS group and control at athigh altitude, but VEGF level of AMS group still higher significantly than control not only at high altitude but also at sea level; 3、Polymorphism of rs3025039 and rs3025030 in VEGF gene were significantly associated with AMS. Individuals carrying the allele T of rs3025039 and C of rs3025030 significantly decrease the risk of AMS in a Chinese population. 4、Polymorphic loci of rs1137933 in NOS2 and rs4309 in ACE were significantly associated with AMS. Individuals carrying the genotypic TT of rs1137933and genotypic CC rs4309 significantly increase the risk of AMS.5. This study did not provide evidence that SNPs of the rs2297518 of NOS2, rsl799983, rs3918188, rs7830 of NOS3, rsl695 of GSTP1, rs7483 of GSTM3, rs8005745, rs2301108, rs10873142 of HIF1A and rs35853823 of HSPA4 gene are associated with susceptibility to AMS in a Chinese population.
引文
[1]John B West.The Physiologic Basis of High-Altitude Diseases. Ann Intern Med,2004; 141(10):789-800.
    [2]Alex D Wright, MB FRC P, Medicine at high altitude.Clin Med,2006,6:604-8.
    【3】王岩飞.急性高原病各型之间的相互关系.西藏医药杂志,2008年,29(3):1-2.
    [4]Peter H. Hackett,Robert C. Roach. High-Altitude Illness. N Engl J Med, 2001,345(2):107-114.
    【5】牛文忠,王毅,张进军等.急性高原病发病率调查及群体预防措施的探讨.高原医学杂志,2002年,12(2):12-14.
    [6]Roach RC, Hackett PH.Frontiers of hypoxia research:acute mountain sickness. J Exp Biol.2001,204(Pt 18):3161-70.
    [7]Buddha Basnyat,David R Murdoch.High-altitude illness The Lancet,2003, 361(9373):1967-1974.
    [8]Leon-Velarde F, Mejia O. Gene expression in chronic high altitude diseases. High Alt Med Biol.2008,9(2):130-9.
    [9]Chandan K Basu, Pratul K Banerjee,William Selvamurthy,et al. Acclimatization to High Altitude in the Tien Shan:A Comparative Study of Indians and kyrgyzis[J]. Wilderness& Environmental Medicine,2007,18, (2):106-110.
    [10]Cheng QH, Ge RL, Wang XZ, W TY, et al. Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and 4,300 m. J Appl Physiol.1997, 83:661-667.
    [11]Jim L. Rupert, Michael S. Koehle.Evidence for a Genetic Basis for Altitude-Related Illness.High Altitude Medicine& Biology.2006,7(2):150-167.
    [12]Wu T, Kayser B.High altitude adaptation in TibetansfJ]. High Alt Med Biol, 2006,7(3):193-208.
    [13 jTianyi Wu, Shupin Li,Michal P Ward. Tibetans at Extreme altitude.Wilderness & Environmental Medicine,2005,16:47-54.
    [14]Cynthia M Beall.High-altitude adaptations.The Lancet,2003,362:S14-15.
    [15]Anthony J. Brookes.The essence of SNPs.Gene,1999,234(2):177-186.
    [16]S. T. Sherry, M.-H. Ward, M. Kholodov, et al. dbSNP:the NCBI database of genetic variation.Nucleic Acids Research,2001,29, (1):308-311.
    [17]Z Tsuchihashi, NC Dracopoli.Progress in high throughput SNP genotyping methods. The Pharmacogenomics Journal,2002,2:103-110.
    [18]Wise CA., Paris M., Morar L.et al. A standard protocol for single nucleotide primer extension in the human genome using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,Rapid Communications in Mass Spectrometry,2003,17(11):1195-202.
    [19]Sean Mooney.Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Briefings in Bioinformatics,2005,6(1):44-56.
    【20】严卫丽.复杂疾病全基因组关联研究进展——遗传统计分析.遗传,2008年,30(5):543—549.
    【21】中华医学会第三次全国高原医学学术讨论会推荐稿,我国高原病命名、分型及诊断标准.高原医学杂志,1996年,6(1):2-4.
    [22]Sutton JR, Coates G, Houston CS, eds. Lake Louise consensus definition and quantification of altitude illness, in Hypoxia:Mountain Medicine. Burlington, Vermont:Queen City Press,1992.
    【23】高钰琪,高原军事医学.重庆出版社,2005年第1版:563-564.
    [24]P W Barry; A J Pollard.Altitude illness.British Medical Journal,2003, 326(7395):915-919.
    [25]Roger Hainsworth, Mark J. Drinkhill, Maria Rivera-Chira.The autonomic nervous system at high altitude. Clin Auton Res,2007,17:13-19.
    [26]Burtscher M, Szubski C, Faulhaber M.Prediction of the susceptibility to AMS in simulated altitude. Sleep Breath.2008,12(2):103-8.
    [27]Roach RC, Greene ER, Schoene RB, et al.Arterial oxygen saturation for prediction of acute mountain sickness. Aviat Space Environ Med.1998 69(12):1182-5.
    [28]Tissot van Patot MC, Leadbetter G, Keyes LE,et al. Greater free plasma VEGF and lower soluble VEGF receptor-1 in acute mountain sickness. J Appl Physiol. 2005,98(5):1626-9.
    [29]Palma J, Macedonia C, Deuster P, et al.Cerebrovascular dynamics and vascular endothelial growth factor in acute mountain sickness. Wilderness Environ Med. 2006,17(1):1-7.
    [30]James Maloney, Dale Wang, Timothy Duncan, et al.Plasma vascular endothelial growth factor in acute mountain sickness.Chest,2000,118(1):47-52.
    [31]Walter R, Maggiorini M, Scherrer U, et al. Effects of high-altitude exposure on vascular endothelial growth factor levels in man. Eur J Appl Physiol.2001, 85(1-2):113-7.
    [32]Dorward DA, Thompson AA, Baillie JK, et al. Change in plasma vascular endothelial growth factor during onset and recovery from acute mountain sickness. Respir Med.2007,101(3):587-94.
    [33]Pavlicek V, Marti HH, Grad S,et al. Effects of hypobaric hypoxia on vascular endothelial growth factor and the acute phase response in subjects who are susceptible to high-altitude pulmonary oedema. Eur J Appl Physiol.2000, 81(6):497-503.
    [34]James Maloney, Dale Wang, Timothy Duncan, et al.Plasma vascular endothelial growth factor in acute mountain sickness.Chest,2000,118(1):47-52.
    [35]Hanaoka M, Droma Y, Naramoto A, et al.Vascular endothelial growth factor in patients with high-altitude pulmonary edema. J Appl Physiol.2003,94(5):1836-40.
    [36]Jadwiga Josko, Krzysztof Knefel. The role of vascular endothelial growth factor in cerebral oedema formation. Folia Neuropathol.2003,41 (3):161-166.
    [37]Iyer N V, Leung S W, Semenza G L, et al. The human hypoxia-inducible factor 1 alpha gene:HIF1A structure and evolutionary conservation. Genomics 1998, 52(2):159-65.
    [38]Hochachka PW, Rupert JL.Fine tuning the HIF-1 'global' 02 sensor for hypobaric hypoxia in Andean high-altitude natives. Bioessays.2003,25(5):515-9.
    [39]Gregg L Semenza, Involvement of Hypoxia-Inducible Factor 1 in Pulmonary Pathophysiology, Chest,2005,128 (6):592S-594S.
    [40]Otto Appenzeller,Tamara Minko,Clifford Qualls,et al.Gene expression, autonomic function and chronic hypoxia:lessons from the Andes. Clin Auton Res,2006,16:217-222.
    [41]Kiichi Hirota.Hypoxia-inducible factor 1, a master transcription factor of cellular hypoxic gene expression. J Anesth,2002,16:150-159.
    [42]Kyle T S Pattinson, Andrew I Sutherland, Thomas G Smith, et al. Acute Mountain Sickness, Vitamin C, Free Radicals, and HIF-1[alpha][J]. Wilderness Environ Med,2005,16(3):172-173.
    【43】李福祥,夏前明.低氧和去铁胺习服对高原肺水肿大鼠的影响及HIF-1表达的研究.第三军医大学硕士学位论文,2004年。
    [44]Hopfl G, Ogunshola O, Gassmann M. Hypoxia and high altitude. The molecular response. Adv Exp Med Biol.2003;543:89-115.
    [45]Suzuki K, Kizaki T, Hitomi Y, et al.Genetic variation in hypoxia-inducible factor lalpha and its possible association with high altitude adaptation in Sherpas. Med Hypotheses.2003,61(3):385-9.
    【46】刘海平,胡杨,汪洪波.低氧诱导因子-1α基因C958G单核苷酸多态性与有氧运动能力关联性研究.体育科学,2008年,28(7):61-65.
    [47]Prior SJ, Hagberg JM, Phares DA, et al.Sequence variation in hypoxia-inducible factor 1 alpha (HIF1A):association with maximal oxygen consumption. Physiol Genomics.2003,15(1):20-6.
    [48]Hong JM, Kim TH, Chae SC,et al.Association study of hypoxia inducible factor 1 alpha (HIF1 alpha) with osteonecrosis of femoral head in a Korean population.Osteoarthritis Cartilage.2007,15(6):688-94.
    [49]Ece Konac, Irem Dogan, Hacer Ilke Onen,et al. Genetic Variations in the Hypoxia-Inducible Factor-la Gene and Lung Cancer. Exp. Biol. Med. 2009;234:1109-1116
    [50]Richard A Gibbs, John W Belmont, Andrew Boudreau, et al. A haplotype map of the human genome. Nature,2005,437(7063):1299-1320.
    [51]Wei MH, Popescu NC, Lerman MI, et al.Localization of the human vascular endothelial growth factor gene, VEGF, at chromosome 6p12. Hum Genet. 1996,97(6):794-797.
    [52]Murohara T, Horowitz JR, Silver M, et al.Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation.1998,97(1):99-107.
    [53]Parveen Bhatti,Deanna M. Church,Joni L. Rutter et al.Candidate Single Nucleotide Polymorphism Selection using Publicly Available Tools:A Guide for Epidemiologists. Am J Epidemiol,2006,164(8):794-804.
    [54]Hanaoka M, Droma Y, Ota M, et al.Polymorphisms of human vascular endothelial growth factor gene in high-altitude pulmonary oedema susceptible subjects. Respirology.2009,14(1):46-52.
    [55]Wilfried Renner; Sabine Kotschan; Christine Hoffmann, et al.A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels.Journal of Vascular Research,2000,37(6):443-448.
    [56]R Zhai, M N Gong, W Zhou, et al. Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS.Thorax,2007,62:718-722.
    [57]Geller DA, Billiar TR. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev.1998,17(1):7-23.
    [58]Marsden PA, Heng HH, Scherer SW, et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem.1993,268(23):17478-88.
    [59]Miyahara K, Kawamoto T, Sase K, et al.Cloning and structural characterization of the human endothelial nitric-oxide-synthase gene. Eur J Biochem. 1994,223(3):719-26.
    [60]Busch T, Bartsch P, Pappert D,et al.Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med.2001,163(2):368-73.
    [61]Duplain H, Sartori C, Lepori M,et al.Exhaled nitric oxide in high-altitude pulmonary edema:role in the regulation of pulmonary vascular tone and evidence for a role against inflammation. Am J Respir Crit Care Med.2000,162(1):221-4.
    [62]Marc M Berger,Christiane Hesse,Christoph Dehnert, et al.Hypoxia Impairs Systemic Endothelial Function in Individuals Prone to High-Altitude pulmonary edema.American Journal of Respiratory and Critical Care Medicine,2005, 172(6):763-767.
    [63]Anand IS, Prasad BA, Chugh SS, et al.Effects of inhaled nitric oxide and oxygen in high-altitude pulmonary edema. Circulation.1998 Dec 1;98(22):2441-5.
    [64]Scherrer U, Vollenweider L, Delabays A,et al.Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med,1996,334(10):624-9.
    [65]Ramesh Natarajan, Drew G Jones, Bernard J Fisher, et al. Hypoxia inducible factor-1:regulation by nitric oxide in posthypoxic microvascular endothelium[J]. Biochem Cell Biol,2005,83(5):597-607.
    [66]Erzurum SC, Ghosh S, Janocha AJ, et al.Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci U S A.,2007,104(45):17593-8.
    [67]Cynthia M Beall, Daniel Laskowski, Kingman P. Strohl,et al。 Pulmonary nitric oxide in mountain dwellers-Populations living at high altitudes have an adaptive mechanism to offset hypoxia. Nature,2001,414:411-412.
    [68]Wang P, Koehle MS, Rupert JL. Genotype at the missense G894T polymorphism (Glu298Asp) in the NOS3 gene is associated with susceptibility to acute mountain sickness. High Alt Med Biol.2009,10(3):261-7.
    [69]Yunden Droma, Masayuki Hanaoka, Masao Ota, et al. Positive assocation of the endothelial nitric oxide synthase gene polymorphisms with high-altitude pulmonary edema. Circulation,2002,106(7):826-830.
    [70]Aarif Ahsan, Ghulam Mohd, Tsering Norboo, et al.Heterozygotes of NOS3 Polymorphisms Contribute to Reduced Nitrogen Oxides in High-Altitude Pulmonary Edema. Chest,2006,130(5):1511-1519.
    [71]A Ahsan, R Charu, M A Q Pasha, et al. eNOS allelic variants at the same locus associate with HAPE and adaptation. Thorax 2004;59:1000-1002.
    [72]Ahsan A, Norboo T, Baig MA, et al.Simultaneous selection of the wild-type genotypes of the G894T and 4B/4A polymorphisms of NOS3 associate with high-altitude adaptation. Ann Hum Genet.2005,69(Pt 3):260-267.
    [73]Droma Y, Hanaoka M, Basnyat B, et al.Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in sherpas. High Alt Med Biol.2006,7(3):209-20.
    [74]Smith EM, Baillie JK, Thompson AA, et al. Endothelial nitric oxide synthase polymorphisms do not influence pulmonary artery systolic pressure at altitude. High Alt Med Biol.2006,7(3):221-7.
    [75]Johanna Weiss, Walter Emil Haefeli, Christiane Gasse, et al. Lack of Evidence for Association of High Altitude Pulmonary Edema and Polymorphisms of the NO Pathway.High Altitude Medicine & Biology,2003,4(3):355-366.
    [76]Anthony J. Turner, Nigel M.Hooper. The angiotensin-converting enzyme gene family:genomics and pharmacology.TRENDS in Pharmacological Sciences, 2002,23(4):177-183.
    [77]Raquel Castellon,Hamdi K. Hamdi.Demystifying the ACE Polymorphism: From Genetics to Biology. Current Pharmaceutical Design,2007,13(2):1191-1198.
    [78]Maria Antonia Nerin, Jorge Palop,Juan Antonio Montano et al.Acute Mountain Sickness:Influence of Fluid Intake.Wilderness & Environmental Medicine, 2006,17(4):215-220.
    [79]Dehnert C, Weymann J, Montgomery HE, et al.No association between high-altitude tolerance and the ACE I/D gene polymorphism. Med Sci Sports Exerc., 2002,34(12):1928-33.
    【80】格桑罗布,岑维浚,刘国仗等.血管紧张素转换酶基因、血管紧张素原基因M235T变异与高原肺水肿的关系.中国循环杂志,2000年,15(1):29-31.
    [81]Hotta J, Hanaoka M, Droma Y, et al. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest,2004,126(3):825-30.
    [82]Kalson NS, Thompson J, Davies AJ, et al.The effect of angiotensin-converting enzyme genotype on acute mountain sickness and summit success in trekkers attempting the summit of Mt. Kilimanjaro (5,895m). Eur J Appl Physiol.2009, 105(3):373-9.
    [83]Koehle MS, Wang P, Guenette JA, et al. No association between variants in the ACE and angiotensin II receptor 1 genes and acute mountain sickness in Nepalese pilgrims to the Janai Purnima Festival at 4380 m. High Alt Med Biol. 2006,7(4):281-9.
    [84]R Charu, T Stobdan, R B Ram, et al. Susceptibility to high altitude pulmonary oedema:role of ACE and ET-1 polymorphisms.Thorax,2006,61:1011-1012.
    [85]Woods DR, Montgomery HE. Angiotensin-converting enzyme and genetics at high altitude. High Alt Med Biol.2001,2(2):201-10.
    [86]Thompson J, Raitt J, Hutchings L, et al.Angiotensin-converting enzyme genotype and successful ascent to extreme high altitude. High Alt Med Biol.2007, 8(4):278-85.
    [87]Tsianos G, Eleftheriou KI, Hawe E, et al.Performance at altitude and angiotensin I-converting enzyme genotype.Eur J Appl Physiol.2005,93(5-6):630-3.
    [88]Qadar Pasha MA, Khan AP, Kumar R, et al.Angiotensin converting enzyme insertion allele in relation to high altitude adaptation. Ann Hum Genet.2001, 65:531-6.
    [89]Droma Y, Hanaoka M, Basnyat B,et al.Adaptation to high altitude in Sherpas:association with the insertion/deletion polymorphism in the Angiotensin-converting enzyme gene. Wilderness Environ Med.2008,19(1):22-9.
    [90]F.A. Sayed-Tabatabaei, B.A. Oostra, A. Isaacs, et al. ACE Polymorphisms. Circulation Research.2006,98:1123.
    [91]Forozan Mohammadi, Payman Shahabi, Saeed Zabani et al.Insertion/Deletion Gene Polymorphism and Serum Level of Angiotensin Converting Enzyme. Tanaffos,2008,7(2),18-22.
    [92]Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin Ⅰ-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest.1990,86(4):1343-6.
    [93]Bigham AW, Kiyamu M, Leon-Velarde F, et al.Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol.2008,9(2):167-78.
    [94]Woods DR, Pollard AJ, Collier DJ, et al.Insertion/deletion polymorphism of the angiotensin Ⅰ-converting enzyme gene and arterial oxygen saturation at high altitude. Am J Respir Crit Care Med.2002,166(3):362-6.
    [95]E. W. Askew.Work at high altitude and oxidative stress:antioxidant nutrients.Toxicology,2002,180(2):107-119.
    [96]Dosek A, Ohno H, Acs Z,et al.High altitude and oxidative stress. Respir Physiol Neurobiol.2007,158(2-3):128-31.
    [97]Tibor Bakonyi, Zsolt Radak.high altitude and free radicals. Journal of Sports Science and Medicine,2004,3,64-69.
    【98】姚芹,吴顺华.谷胱甘肽转移酶与砷的关系.中国地方病防治杂志,2009年,24(1):28-31.
    [99]Hayes JD, Strange RC.Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res.1995, 22(3):193-207.
    [100]Daniel W Nebert, Vasilis Vasiliou. Analysis of the glutathione S-transferase (GST) gene family.Human Genomics,2004,1(6):460-464.
    [101]Ian G. C, Kathy H. D, Sally E. P, et al. The structure of the human glutathione S-transferase π gene. Biochem. J.,1988,255:79-83.
    【102】马晴雯,沈建华.人谷胱甘肽S-转移酶P1基因及其人群多态性.卫生毒理学杂志,2000年,14(1):50-51.
    【103】张薇,单可人,任锡麟.人谷胱甘肽S-转移酶P1基因及其多态性的研究进展.中国优生与遗传杂志,2005年,13(12):115-117.
    【104】闫惠琴,孙学川,胡斌等.GSTP1基因在急性低压低氧大鼠模型肺组织中的定量检测.生物医学工程学杂志,2006年,23(2):405-409.
    [105]Gelfi C, De Palma S, Ripamonti M, et al.New aspects of altitude adaptation in Tibetans:a proteomic approach. FASEB J.2004,18(3):612-614.
    [106]Mary A.Watson, Richard K.Stewart, Graeme B.J.Smith, et al.Human glutathione S-transferase PI polymorphisms:relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis,1998,19(2):275-280.
    【107】张慧,闫惠琴,谷胱甘肽S-转移酶P1-105基因多态性与高原环境下人体运动能力的关系。中国组织工程研究与临床康复,2009,13(33):6593-6596.
    【108】蒋长征,李芳泽,何美安等。谷胱甘肽转硫酶M1和T1基因型与高原反应的危险性,中华劳动卫生职业病杂志,2005,23(3):188-190.
    【109】闫惠琴,孙学川,刘坤祥等.西藏登山队员谷胱甘肽硫转移酶基因多态性与低氧反应敏感性关系的研究.中国应用生理学杂志,2006,22(3):334-337.
    [110]Michael Tavaria, Tim Gabriele, Ismall Kola et al.A hitchhiker's guide to the human Hsp 70 family. Cell stress chaperones,1996,1 (1):23-28.
    [111]Wang X, Xu C, Wang X,et al.Heat shock response and mammal adaptation to high elevation (hypoxia).Sci China C Life Sci.2006,49(5):500-12.
    【112】陈威巍,曾平,毛咏秋等,急进高原青年外周血淋巴细胞热休克蛋白70的变化与意义.中华劳动卫生职业病杂志,2003年,21(1):62-63.
    【113】李芳泽,周舫,蒋长征等.热应激蛋白70基因多态性与急性高原反应的关系。中华劳动卫生职业病杂志,2004年,22(6):413-415.
    【114】周舫,李芳泽,蒋长征等.HSP70-hom基因多态性与高原反应易感性的关系.工业卫生与职业病,2005年,31(1):29-31.
    [115]Fathallah DM, Cherif D, Dellagi K, et al.Molecular cloning of a novel human hsp70 from a B cell line and its assignment to chromosome 5. J Immunol.1993, 151(2):810-3.
    [116]Harm H. Kampinga,Jurre Hageman,Michel J. Vos et al.Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones,2009, 14:105-111.
    [117]Lucia Conde, Juan M. Vaquerizas, Carles Ferrer-Costa, et al.PupasView:a visual tool for selecting suitable SNPs, with putative pathological effect in genes, for genotyping purposes. Nucleic Acids Research,2005,33:W501-W505.
    【118】方福德.基因多态性与疾病相关性的遗传分析中某些值得注意的问题.中华医学杂志,2004年,84(10):796-798.
    [119]Kristin G. Ardlie, Leonid Kruglyak, Mark Seielstad. Patterns of linkage disequilibrium in the human genome.genetics nature reviews,2002,3:299-309.
    1. Brugnlaux JV, Hodges AN, Hanly PJ, et al.Cerebrovascular responses to altitude[J].Respir Physiol Neurobiol,2007,158(2-3):212-23.
    2. Schoonman GG, Sandor PS, Nirkko AC, et al.Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema:a 3 T magnetic resonance imaging study[J]. J Cereb Blood Flow Metab,2008, 28(1):198-206.
    3. Wright AD, Frcp MB, Medicine at high altitude[J]. Clin Med,2006,6:604-608.
    4. Burtscher M, Brandstter E, Gatterer H. Preacclimatization in simulated altitudes[J]. Sleep Breath,2008,12(2):109-14.
    5. Chandan K B, Pratul K B,William S, et al. Acclimatization to High Altitude in the Tien Shan:A Comparative Study of Indians and kyrgyzis[J]. Wilderness & Environmental Medicine,2007,18, (2):106-110.
    6. Wu T, Li S, Ward MP.Tibetans at extreme altitude[J].Wilderness Environ Med,2005,16(1):47-54.
    7. Wu T,Kayser B. High altitude adaptation in Tibetans[J]. High Alt Med Biol, 2006,7(3):193-208.
    8. Rupert JL, Koehle MS. Evidence for a genetic basis for altitude-related illness[J]. High Alt Med Biol,2006,7(2):150-67.
    9. Zhou F, Wang F, Li FZ,et al.Association of hsp70-2 and hsp-hom gene polymorphisms with risk of acute high altitude illness in a Chinese population[J]. Cell Stress & Chaperones,2005,10(4):349-356.
    10. Semenzy G L. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology[J].Chest,2005,128(6):592S-594S.
    11. Arieli R, Vitenstein A, Peled E. Acclimation to hypoxia does not improve hypoxic survival of the immature pig in confined atmosphere[J]..Military Medicine,2008,173(1):107-111.
    12. Pattinson K T S, Sutherland Al, Smith T G, et al. Acute mountain sickness, vitamin C,free radicals, and HIF-1 [alpha][J]. Wilderness Environ Med,2005, 16(3):172-173.
    13. Peter J R. HIF-1 and HIF-2:working alone or together in hypoxia? [J]. J Clin Invest,2007,117(4):862-865.
    14. Tissot Vanpatot MC, Leadbetter G, Keyes LE, et al.Greater free plasma VEGF and lower soluble VEGF receptor-1 in acute mountain sickness[J]. J Appl Physiol,2005-98(5):1626-9.
    15. Palma J, Macedola C, Deuster P, et al.Cerebrovascular dynamics and vascular endothelial growth factor in acute mountain sickness[J]. Wilderness Environ Med,2006,17(1):1-7.
    16. Dorwardd DA, Thompson AA, Baillie JK, et al.Change in plasma vascular endothelial growth factor during onset and recovery from acute mountain sickness[J].Respir Med.2007,101(3):587-94.
    17. Droma Y, Hanaoka M, Basnyat B,et al.Adaptation to high altitude in Sherpas:association with the insertion/deletion polymorphism in the Angiotensin-converting enzyme gene[J]. Wilderness Environ Med.2008, 19(1):22-9.
    18. Ramesh N, Dreww G J, Bernard J F, et al. Hypoxia inducible factor-1: regulation by nitric oxide in posthypoxic microvascular endothelium[J]. Biochem Cell Biol,2005,83(5):597-607.
    19. Droma Y, Hanaoka M, Basnyat B, et al.Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in sherpas[J]. High Alt Med Biol,2006,7(3):209-20.
    20. Kanazawa F, Nakanishi K, Osada H, et al. Expression of endothelin-1 in the brain and lung of rats exposed to permanent hypobaric hypoxia[J]. Brain Res, 2005,1036(1-2):145-54.
    21. Rajput C, Najib S, Norboo T, et al. Endothelin-1 gene variants and levels associate with adaptation to hypobaric hypoxia in high-altitude natives[J]. Biochem Biophys Res Commun,2006,341(4):1218-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700