用户名: 密码: 验证码:
罗格列酮联合雷帕霉素抑制多囊肾囊肿衬里上皮细胞的增殖及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常染色体显性多囊肾病(ADPKD)是人类最常见的单基因遗传性肾病,发病率在1/400-1/1000,我国约有150万患者,占终末期肾衰竭病因5%-10%。ADPKD主要特征表现为双侧肾脏出现许多个进行性增大的液性囊泡,最终破坏肾脏的结构和功能。50%患者在60岁时会进展至终末期肾衰竭。ADPKD除累及肾脏外,还引起肝、胰囊肿、心瓣膜病、结肠憩室和颅内动脉瘤等肾外病变,是一种严重危害人类健康的系统性疾病。
     多年来,肾脏病学者一直致力于寻找治疗多囊肾病的有效方法,基因治疗目前存在许多障碍有待克服,通过药物治疗延缓肾衰竭进展是目前的主要研究方向。多囊肾病治疗需要早期、长期用药,因此药物的安全性成为研究者关注的焦点。由于ADPKD的分子发病及调控机制非常复杂,很多问题尚未阐明,因此针对不同发病环节研发不同药物,联合用于治疗不仅可增强疗效,而且减少不良反应,将具有潜在的的应用前景。
     噻唑烷二酮类PPARy激动剂,如吡格列酮和罗格列酮等,主要用于糖尿病治疗。近年来研究发现,噻唑烷二酮类PPARy激动剂可抑制多种肿瘤细胞的增殖。2001年Muto等首先观察到吡格列酮可延长多囊蛋白1基因敲除小鼠(pkdl-/-)的生存期(通常在胎儿期死亡);我科先前动物实验发现,罗格列酮可抑制Han:SPRD大鼠囊肿的进展,延长大鼠生存期,但其机制尚未完全阐明。
     mTOR信号通路异常激活被认为是多囊肾病发生的重要机制,新生血管的形成也可促进多囊肾病的进展;因此我们探讨罗格列酮对mTOR信号通路的作用,研究其对新生血管形成中起重要作用的血管内皮生长因子(VEGF)的作用;同时观察罗格列酮与mTOR抑制剂雷帕霉素联合应用对延缓ADPKD进展的作用,为治疗多囊肾病寻找新的途径。
     为此,我们首先研究了罗格列酮对多囊肾囊肿衬里上皮细胞增殖、细胞周期及细胞凋亡的作用。多囊肾囊肿衬里上皮细胞系(WT9-12)由美国哈佛大学周晶教授馈赠。培养的WT9-12细胞给予不同浓度的罗格列酮培养24、48、72h,采用MTT法检测结果显示:罗格列酮明显抑制WT9-12细胞的增殖,呈时间、剂量依赖性。预72h时,50%抑制率浓度为100μM。采用流式细胞技术检测细胞周期及凋亡,结果显示罗格列酮明显抑制WT9-12细胞周期,使细胞停滞于G0/G1期,G0/G1期细胞增加30%,与对照组比较有差异有显著性意义(P<0.05),其对细胞凋亡的影响不大,罗格列酮浓度高达200μM时,仅使细胞凋亡增加6%。多囊肾病的发展过程伴有胰岛素生长因子1(IGF-1)表达的增加,我们的研究发现囊肿衬里上皮细胞对IGF-1的刺激反应较其它永生化肾小管上皮细胞(RCTEC)更为明显。IGF-150ng/ml可诱导囊肿衬里上皮细胞增殖增加20%,而对RCTEC无明显影响。罗格列酮可完全抑制IGF-1诱导的WT9-12细胞增殖,该作用在罗格列酮12.5μM时即表现明显的抑制作用。说明罗格列酮在有IGF-1作用下对囊肿衬里上皮细胞的增殖抑制作用更为明显。
     mTOR信号通路异常激活在多囊肾病发病及发展中起重要作用,为多种发病机制的共同环节,抑制mTOR信号通路可明显抑制多囊肾病的进展,p70S6K及4E-Bp1是mTOR两个主要下游底物。用不同浓度的罗格列酮作用WT9-12细胞24h,收集细胞,提取总蛋白,采用Western blot方法检测p-mTOR/mTOR及其下游p-p70S6K/p70S6K、p-4E-Bp1/4E-Bp1。结果显示罗格列酮下调p70S6K磷酸化水平,呈时间及剂量依赖性,而对mTOR及其另一个下游底物4E-Bp1的磷酸化水平无明显影响。mTOR特异性抑制剂雷帕霉素联合罗格列酮抑制p70S6K的磷酸化作用强于单用罗格列酮,不仅表明罗格列酮是不经由mTOR抑制p70S6K的磷酸化,且雷帕霉素联合罗格列酮可对mTOR信号通路下游p70S6K的磷酸化抑制有叠加作用,也为mTOR抑制剂雷帕霉素联合罗格列酮治疗ADPKD提供理论基础。
     罗格列酮的作用有PPARy依赖和非依赖两种途径。为研究罗格列酮对多囊肾囊肿衬里上皮细胞mTOR/p70S6K信号通路的影响是否通过PPARy依赖途径,在给予PPARy特异性抑制剂GW9662预孵后再给予罗格列酮发现:GW9662仅部分抵消了罗格列酮对细胞增殖的抑制作用。同样,在给予GW9662抑制剂后再给予罗格列酮可抑制罗格列酮对p-p70S6K的下调效应,进一步采用siRNA干扰技术,将PPARy siRNA瞬时转染WT9-12细胞后,采用Western blot检测发现,罗格列酮仍部分抑制p70S6K的磷酸化,这些结果表明罗格列酮对细胞增殖抑制以及对mTOR/p70S6K信号通路的抑制作用可能部分通过PPARy依赖性和非依赖性两条途径实现的。
     新生血管的形成是肿瘤进展及转移的重要机制,也是多囊肾病进展的主要因素。VEGF在新生血管形成中起着重要作用。低(缺)氧可诱导低氧诱导因子-1α(HIF1-α)高表达,继而促进VEGF表达。我们对多囊肾病模型Han:SPRD大鼠的观察发现,在4周龄大鼠肾脏,VEGF表达已增加,此时局部缺氧不明显,HIF1-α的表达明显上调。但是,TNF-α表达在早期大鼠肾脏出现增加,表明VEGF的表达上调早于HIF1-α,且与局部的炎症同步。细胞实验进一步证实,TNF-a不仅能诱导多囊肾囊肿衬里上皮细胞表达VEGF,其他炎症因子如LPS也同样可诱导VEGF的表达;说明诱导VEGF的表达并不是TNF-α所特有,是炎症的共有特征。细胞实验还证实TNF-a并不能诱导HIF1-α的表达,也提示TNF-α对VEGF的作用并不通过HIF1-α。因此,早期抑制炎症反应也可减缓多囊肾病的进展。罗格列酮可下调囊肿衬里上皮细胞VEGF的表达,呈剂量依赖性,而且罗格列酮对TNFα诱导的VEGF高表达抑制更明显,可使其下降到应用TNFa前的水平。罗格列酮长期用于糖尿病的治疗,副作用小,因此适用于多囊肾病的早期治疗及长期治疗。
     基于以上结果,我们联合应用罗格列酮和雷帕霉素抑制多囊肾病囊肿衬里上皮细胞的增殖及VEGF的表达,从而为多囊肾病的治疗提供新的方法。我们给予WT9-12细胞不同浓度的罗格列酮、雷帕霉素、罗格列酮+雷帕霉素,作用72h,采用MTT法检测细胞增殖,计算联合用药指数(R值)、流式细胞技术检测细胞周期及凋亡,采用realtime-PCR技术检测VEGFmRNA的表达。结果显示:罗格列酮和雷帕霉素均能抑制囊肿衬里上皮细胞增殖,抑制细胞周期的进程,并且二者联合应用有叠加作用,罗格列酮单独应用对细胞凋亡的作用不明显,但与雷帕霉素联合应用可明显促进凋亡,具有协同效应。二者具有协同效应的机制可能与罗格列酮抑制mTOR下游p70S6K的磷酸化,雷帕霉素抑制mTOR活性,双重阻滞促进了细胞凋亡。我们采取序贯用药的方式研究发现:先用雷帕霉素再序贯应用罗格列酮可增强抑制细胞增殖的作用,具有明显的协同效应(R>1)。雷帕霉素和罗格列酮可分别抑制多囊肾囊肿衬里上皮细胞VEGF的表达(VEGF表达下调30%和18%),但两药联合作用细胞时,二者的作用可明显加强(VEGF下降54%)。一方面可能与罗格列酮及雷帕霉素对mTOR信号通路的共同作用有关,另一方面,罗格列酮可抑制炎症,抑制TNFα的表达,而我们的研究发现VEGF的表达与TNFα有关,因此罗格列酮也可能通过下调TNFα抑制了VEGF的表达,从而通过多途径,不同的信号通路共同作用,抑制多囊肾病的进展。
     总之,本研究表明噻唑烷二酮类PPARy激动剂罗格列酮可通过直接抑制mTOR的下游p70S6K的磷酸化而抑制囊肿衬里上皮细胞的增殖、抑制细胞周期进程及促进细胞凋亡,此作用为PPARy依赖性的。多囊肾囊肿衬里上皮细胞较RCTEC对IGF-1刺激更为敏感,而罗格列酮可完全阻断IGF-1所诱导的囊肿衬里上皮细胞的增殖。罗格列酮可下调囊肿衬里上皮细胞VEGF的表达,从而抑制多囊肾病的血管形成,此作用在有TNFα刺激下更明显,可完全抑制TNFα诱导的VEGF上调。罗格列酮与雷帕霉素联合应用可明显抑制细胞增殖和细胞周期、促进细胞凋亡及VEGF表达,二者联合应用较单药有明显的叠加效应,而序贯用药方式,即先用罗格列酮再序贯应用雷帕霉素,对细胞的增殖有明显的协同效应。
     目前多囊肾病的治疗仍是个难题,我们致力于研究联合用药及不同联合用药方式对多囊肾病的作用,期望通过多种药物的联合应用,减少药物的副作用,增强疗效,将在多囊肾病的治疗中有更好的应用前景。本实验的不足之处在于缺乏动物实验结果的支持,但这项工作已经在进行中。
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human hereditary kidney diseases with a prevalence of 1/400-1/1000, affecting more than 1.5 million people and accounting for about 5% of end-stage renal disease patients who require renal replacement therapy in China. The disease is characterized by progressive formation of multiple renal cysts affecting all segments of renal tubules. About 50% ADPKD patients eventually develop renal insufficiency in the fifth or sixth decades of life. Renal involvement is often accompanied by extra-renal manifestations, including hepatic and pancreatic cysts, cardiac valvular defects, colonic diverticulosis and intracranial aneurysm. So it is a fatal systematic disease. Great efforts have been attempted for years to find a cure for PKD. Although gene therapy seems to be a candidate, many problems need to be resolved before it could be used clinically. Seeking new drugs remains to be the focus of research at present. Dai Bing etc al from our lab reported that PPARy agonist pioglitazone prolonged survival of spontaneous mutational strain Han:SPRD rats and reduced renal cystogenesis, but the mechanism of TZDs on PKD is unknown. A report suggested mTOR pathway as a converging mechanism leading to renal cyst formation. Knowing that TZDs decrease phosphorylation and activity of p70S6 kinase (a downstream target of mTOR pathway), we hypothesized that TZDs might suppress cyst growth via inhibiting mTOR pathway. Multidrug therapy is usually required for optimal treatment of cancer. It is very likely that the treatment of ADPKD requires the same approach. Thus, we also examined the effect of rosiglitazone plus rapamycin on cystic cell growth. Rosiglitazone is an anti-glycemic agent and used clinically for patients with type 2 diabetes. We showed here for the first time that rosiglitazone decreased the proliferation of cystic epithelial cells. Addition of rosiglitazone to WT9-12 cell, an immortalized cystic epithelial cell line, inhibited cell growth in a dose-and time-dependent manner with an IC50 of 100μM. It was found in our study that 50 and 100μM rosiglitazone did not induce apoptosis in WT9-12 cells, but 200μM rosiglitazone induced an 8.18% increase in apoptotic cell death. As IC50 of growth inhibition by rosiglitazone occurred at a concentration of 100μM, the suppressive effect of rosiglitazone on cystic cell growth seemed to be largely mediated by its inhibition of cell proliferation. This was supported by the result of cell cycle analysis in which we found an increase in the number of cells in G0/G1 phase and a decrease in the number of cells in S phase after 50-100μM rosiglitazone treatment. mTOR pathway plays a critical role in regulating protein synthesis, cell growth and proliferation. The activation of mTOR results in increased p70S6K activity and translation machinery. mTOR pathway is shown to be activated and plays a role in the progression of ADPKD in both patients and mice. We therefore determined whether rosiglitazone would also affect mTOR/p70S6K in ADPKD cells. The result showed that rosiglitazone induced a dose-dependent decrease in p70S6K phosphorylation. The inhibition occurred 1 h after the treatment and was most obvious after 24 h. However, mTOR phosphorylation and 4E-BP1 phosphorylation, another downstream target of mTOR, remained unchanged after rosiglitazone treatment, indicating that the effect of rosiglitazone on p70S6K in ADPKD cells was not likely to be mediated by mTOR. The mechanisms responsible for the effects of rosiglitazone seem to involve both PPARγ-dependent and PPARγ-independent signals. Our study showed that the activation of PPARγmay play an important role in rosiglitazone-induced inhibition of p70S6K phosphorylation in WT9-12 cells, since blocking of PPARy activity by GW9662 or by knocking-down PPARγexpression largely prevented the effect of rosiglitazone.
     There is angiogenesis in ADPKD. Vascular endothelial growth factor (VEGF) is also known as a potent agent in angiogenesis. VEGF is strongly induced in hypoxic conditions via hypoxia inducible factor (HIF) regulated elements of the VEGF gene. We observed the expression of VEGF, HIFαand TNFαin urine and kidney tissue of Han.SPRD in different stages (4,8,12,16 and 24 weeks) by real-time PCR. The result showed that the expression of VEGF and TNFαmRNA was upregulated in Han:SPRD in the early stage of 4 weeks, but the expression of HIF1αwas normal. The expression of HIF1αbegan increasing from 8 weeks, indicating that VEGF upregulation might be related to TNFa in the early stage. To examine whether TNFαcontributed to the regulation of VEGF, WT9-12 cells were treated with TNFα, and the expression was detected by real-time PCR. TNFα(20ng/ml) led to a 15-fold increase of VEGF mRNA, but TNFαdid not induce increase of HIF1α. To determine whether other cytokines could also upregulate VEGF expression, WT9-12 cells were treated by LPS (20ng/ml), IGF-1(20ng/ml) and TGFβ(20ng/ml). The result showed that VEGF was increased by LPS, but not by IGF-1 and TGFβ, indicating that inflammatory cytokines, but not mitogens, could induce VEGF expression.
     In addition, we investigated whether rosiglitazone could inhibit angiogenesis in ADPKD. WT9-12 cells were treated with different concentrations of rosiglitazone, and the expression of VEGF was detected by real-time PCR. The result showed that rosiglitazone downregulated the level of VEGF, and 50μM rosiglitazone decreased VEGF level by 30%. However, rosiglitazone was able to block TNFa-induced VEGF expression in WT9-12 cells completely. Rosiglitazone has been used to treat diabetes for many years with few reported adverse effects. We supposed that rosiglitazone would also be suitable for ADPKD therapy, especially in the early stages of the disease.
     Since both rosiglitazone and rapamycin are clinical drugs that may have potential for ADPKD therapy, we tested the effects of combined use of the two drugs on cystic cell growth.50ng/ml rapamycin plus 50μM rosiglitazone significantly increased the inhibitory effect on cell growth as compared with either of the two drugs alone (p<0.05). R Value was 1.01, indicating an additive effect. This additive effect was still present when the dosage of rosiglitazone was increased to 100 and 200μM, R value being 1.14 and 1.08 respectively. Knowing that sequence-specific synergism is optimal cancer chemotherapy, we supposed that the same strategy may also be suitable for ADPKD treatment. We therefore further assessed the effect of sequential treatment with rapamycin and rosiglitazone on cystic cell proliferation. Interestingly, combination use in the sequence of rapamycin plus rosiglitazone, the R value was greater than 1 (mean 1.62), indicating that the interaction was synergistic. However, no such a synergistic effect was observed when rapamycin was used after discontinuation of rosiglitazone. Further, we investigated the effect of concomitant use of the two drugs on VEGF. Combination of 50ng/ml rapamycin and 50μM rosiglitazone decreased the expression of VEGF by 54%, as compared with either of the two drugs alone (rosiglitazone 18% and rapamycin 30%).
     In conclusion, rosiglitazone (a thiazolidinedione derivative) suppressed cystic cell growth. This effect was mediated partially via an mTOR-independent inhibition of p70S6K phosphorylation and PPARγ-independent manner. Rosiglitzone also inhibited angiogenesis by downregulating VEGF expression. Combination of rosiglitazone and rapamycin increased the efficiency of cell growth and angiogenesis inhibition, as compared with either of the two drugs alone. As rosiglitazone is an anti-diabetic drug clinically used for long-term treatment, it may have a potential for ADPKD therapy. Combination therapy may be a potential and a trend for ADPKD therapy.
引文
[1]Perrone RD. Extrarenal manifestations of ADPKD. Kidney Int.1997; 51(6): 2022-2036.
    [2]Torres VE. Extrarenal manifestations of autosomal dominant polycystic kidney disease. Am J Kidney Dis.1999;34(6):xlv-xlviii.
    [3]The European Polycystic Kidney Disease Consortium.The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell.1994;77(6):881-894.
    [4]The International Polycystic Kidney Disease Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell.1995;81(2):289-298.
    [5]Mochizuki T, Wu G, Hayashi T, Xenophontos SL, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science.1996;272 (5266):1339-1342.
    [6]Rossetti S, Chauveau D, Walker D, et al. Complete mutation screen of the ADPKD genes by DHPLC. Kidney Int.2002;61(5):1588-1599.
    [7]Zhang S, Mei C, Zhang D, et al. Mutation analysis of autosomal dominant polycystic kidney disease genes in Han Chinese. Nephron Exp Nephrol.2005;100(2):e63-e76
    [8]Torres. VE and Harris.PC. Autosomal dominant polycystic kidney disease:the last 3 years.[J].Kidney Int,2009,20:1-20.
    [9]Shigeo Horie. ADPKD:molecular characterization and quest for treatment. Clin Exp Nephrol,20059:282-291.
    [10]Andrzej Zieleniak, Marzena Wojcik and Lucyna A. Wozniak. Structure and physiological functions of the human peroxisome proliferator-activated receptor y. Arch. Immunol. Ther. Exp.,2008,56,1-15.
    [11]Panchapakesan U, Sumual S, Pollock CA, et al. PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Am J Physiol Renal Physiol.2005; 289(5):F1153-1158.
    [12]Guo B, Koya D, Isono M, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit TGF-beta 1-induced fibronectin expression in glomerular mesangial cells. Diabetes.2004; 53(1):200-208.
    [13]Xiong Z, Huang H, Li J, et al. Anti-inflammatory effect of PPARgamma in cultured human mesangial cells. Ren Fail.2004; 26(5):497-450.
    [14]Zafiriou S, Stanners SR, Saad S, et al. Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol.2005; 16 (3): 638-645.
    [15]Ma LJ, Marcantoni C, Linton MF, et al. Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int.2001;59(5):1899-1910.
    [16]Sivarajah A, Chatterjee PK, Patel NS, et al. Agonists of peroxisome-proliferator activated receptor-gamma reduce renal ischemia/reperfusion injury. Am J Nephrol. 2003 23(4):267-276.
    [17]Yuan J, Takahashi A, Masumori N, et al. Ligands for peroxisome proliferator-activated receptor gamma have potent antitumor effect against human renal cell carcinoma. Urology.2005;65(3):594-599.
    [18]Yang FG, Zhang ZW, Xin DQ, et al. Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol Sin.2005;26(6):753-761.
    [19]Inoue K, Kawahito Y, Tsubouchi Y, et al. Expression of peroxisome proliferator-activated receptor gamma in renal cell carcinoma and growth inhibition by its agonists. Biochem Biophys Res Commun.200128;287(3):727-732.
    [20]Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferators-activated receptor y agonists. Lancet Oncol.2004; 5 (7):419-429
    [21]Michalik,L., Hesvergne,B., and Wahli,W. Peroxisome-proliferator-activated receptors and cancers:complex stories. Nt. Rev. Cancer 2004; 4:61-70.
    [22]ShouWei Han and Jee Roman. Rosiglitazone suppresses human lung carcinoma cell
    growth through PPARy-dependent and PPARy-independent signal pathways. Mol Cancer
    Ther2006; 5(2):430-7.
    [23]Guan Y. Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol.2004; 15 (11):2801-2815
    [24]Muto S, Aiba A, Saito Y, etc. Pioglitazone improves the phenotype and molecular
    defects of a targeted Pkdl mutant. Hum Mol Genet 2002; 11(15):1731-42.
    [25]戴兵.PPARy激动剂治疗常染色体显性多囊肾病的实验研究:[博士学位论文].上海市凤阳路415号:第二军医大学长征医院肾内科中国人民解放军肾脏病研究所,2006年7月。
    [26]Keith E. Mostov. mTOR is out of control in polycystic kidney disease.[J]. Proc Natl Acad Sci USA,2006,103:5247-5248.
    [27]Shilling ford JM, Murcia NS, Larson CH, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA.2006,103:5466-5471
    [28]Josep M. Cruzado. Nonimmunosuppressive effects of mammalian target of rapamycin inhibitors. Transplantation Reviews 22 (2008) 73-81.
    [29]Diane C. Fingar, Celeste J. Richardson, Andrew R. Tee, Lynn Cheatham, Christina Tsou, and John Blenis. mTOR Controls Cell Cycle Progression through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E. MOLECULAR AND CELLULAR BIOLOGY,2004:200-216.
    [30]Elsa Bello-Reuss, Keith Holubec, and Srinivasan Rajaraman. Angiogenesis in autosomal-dominant polycystic kidney disease. Kidney International, Vol.60 (2001), pp. 37-45
    [31]Reiterova J, Obeidova H, Lenicek M et al. Influence of VEGF polymorphism on progression of autosomal dominant polycystic kidney disease. Kidney Blood Press Res 2008; 31:398-403.
    [32]W Weil, V Popov, J A Walocha, J Wen and E Bello-Reuss. Evidence of angiogenesis and microvascular regression in autosomal-dominant polycystic kidney disease kidneys:A corrosion cast study. Kidney International.2006,70:1261-1268.
    [33]OhtaM, Konno H, Tanaka T, et al. The significance of circulating vascular endothelial growth factor p rotein in gastric cancer. Cancer Letters,2003,192:215-225.
    [34]Girnun GD, Naseri E, Vafai SB, etc. Synergy between PPARy ligands and platinum-based drugs in cancer. Cancer cell 2007; 11:395-406.
    [35]Ra]ju C. Reddy, Anjaiah Srirangam,Kaunteya Reddy, Jun Chen, Srinivasareddy Gangireddy, Gregory P. Kalemkerian. Theodore J. Standiford and Venkateshwar G. Keshamouni. Chemotherapeutic Drugs Induce PPAR-y Expression and Show Sequence-Specific Synergy with PPAR-y Ligands in Inhibition of Non-Small Cell Lung Cancer. Neoplasia,2008,10:597-603.
    [36]Loghman-Adham M, Nauli SM, Soto CE, et al. Immortalized epithelial cells from human autosomal dominant polycystic kidney cysts. Am J Physiol Renal Physiol,2003, 285:F397-412.
    [37]Cho DH, Choi YJ, Jo SA, etc. Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition. Am J Physiol Cell Physiol 2006; 291:C317-26.
    [38]Nicholas Lehman, Bill Ledford,Mauricio Di Fulvio, Kathleen Frondorf,Linda C. McPhail,and Julian Gomez-Cambronero.Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. The FASEB Journal.2007,21:1075-1087.
    [39]Tsukasa Nakamura, lsao Ebihara, lsao Nagaoka, Hisahide Takahashi, and Hikaru Koide, Yasuhiko Tomino, Shizuko Nagao. Growth Factor Gene Expression in Kidney of Murine Polycystic Kidney Diseasel, J Am. Soc. Nephrol.1993; 3:1378-1386.
    [40]Aukema HM, Housini I. Dietary soy protein effects on disease and IGF-I in male and female Han:SPRD-cy rats. Kidney Int 2001; 59:52-61.
    [41]Nakamura T, Ebihara I, Nagaoka I et al. Growth factor gene expression in kidney of murine polycystic kidney disease. J Am Soc Nephrol 1993; 3:1378-1386.
    [42]Wanke R, Hermanns W, Folger S et al. Accelerated growth and visceral lesions in transgenic mice expressing foreign genes of the growth hormone family:an overview. Pediatr Nephrol 1991; 5:513-521.
    [43]E Parker, LJ Newbyl, CC Sharpe2, S Rossetti, AJ Streets, PC Harris, MJ O'Hare and ACM Ong. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system. Kidney International,2007,72: 157-165.
    [44]Conway EM, Collen D, and Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res,2001,49:507-521.
    [45]Levy AP, Levy NS, Wegner S, and Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem,1995,270:13333-13340.
    [46]Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, and Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol,1996,16:4604-4613.
    [47]Giordano FJ and Johnson RS. Angiogenesis:the role of the microenvironment in flipping the switch. Curr Opin Genet Dev 2001,11:35-40.
    [48]A. F. Karamysheva. Mechanisms of Angiogenesis. Biochemistry,2008; 73; 751-762.
    [49]Bernhardt WM, Wiesener MS, Weidemann A, Schmitt R, Weichert W, Lechler P, Campean V, Ong AC, Willam C, Gretz N, Eckardt KU. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol.2007,170(3):830-42.
    [50]Yoshida T, Kuwahara M, Maita K, Harada T. lmmunohistochemical study on hypoxia in spontaneous polycystic liver and kidney disease in rats. Exp Toxicol Pathol. 2001,53(2-3):123-8.
    [51]Carmi Y, Voronov E, Dotan S, Lahat N, Rahat MA, Fogel M, Huszar M, White MR, Dinarello CA, Apte RN.The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis.J Immunol.2009,183(7):4705-14.
    [52]Matthew T. Holderfield, Christopher C.W. Hughes.Crosstalk Between Vascular Endothelial Growth Factor, Notch, and Transforming Growth Factor-β in Vascular Morphogenesis. Circ. Res.2008,102:637-652.
    [53]Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M, Lecchi S, Tian X, Somlo S, Strazzabosco M. ERKl/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology.2010,138(1): 360-371.
    [54]Tao Y, Kim J, Yin Y, Zafar I, Falk S, He Z, Faubel S, Schrier RW, Edelstein CL. VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int.2007 72(11):1358-66.
    [55]Amura CR, Brodsky KS, Groff R et al. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am J Physiol Cell Physiol,2007,293:C419-C428.
    [56]Mulders P.Vascular endothelial growth factor and mTOR pathways in renal cell carcinoma:differences and synergies of two targeted mechanisms.BJU Int.2009, 104(11):1585-9.
    [57]Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M, Lecchi S, Tian X, Somlo S, Strazzabosco M. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology.2009,23.
    [58]Klos, K.S.,Wyszomierski, S.L., Sun,M., Tan,M., Zhou, X., Li, P., Yang,W., Yin, G, Hittelman, W.N., and Yu, D. (2006). ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mam-malian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res.66,2028-2037
    [59]Dung-Fang Lee,Hsu-Ping Kuo,Chun-Te Chen, etc. IKKβ Suppression of TSC1 Links Inflammation and Tumor Angiogenesis via the mTOR Pathway. Cell,2007,130:440-455.
    [60]Pirson Y.]Does TNF-alpha enhance cystogenesis in ADPKD? Nephrol Dial Transplant.2008 Dec;23(12):3773-5
    [61]Martinez JR, Cowley BD, Gattone VH 2nd, Nagao S, Yamaguchi T, Kaneta S, Takahashi H, Grantham JJ. The effect of paclitaxel on the progression of polycystic kidney disease in rodents. Am J Kidney Dis.1997,29(3):435-44.
    [62]Woo DD, Miao SY, Pelayo JC, Woolf AS. Taxol inhibits progression of congenital polycystic kidney disease. Nature.1994,21:750-3.
    [63]Woo DD, Tabancay AP Jr, Wang CJ. Microtubule active taxanes inhibit polycystic kidney disease progression in cpk mice. Kidney Int.1997,51(5):1613-8.
    [64]Sommardahl CS, Woychik RP, Sweeney WE, Avner ED, Wilkinson JE. Efficacy of taxol in the orpk mouse model of polycystic kidney disease. Pediatr Nephrol,1997, 11(6):728-33.,
    [65]Solak Y, Atalay H, Polat I, Biyik Z. Colchicine treatment in autosomal dominant polycystic kidney disease:many points in common. Med Hypotheses,2010,74(2):314-7.
    [66]Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 2008; 359:1477-1485.
    [67]Everson GT, Helmke SM, Doctor B. Advances in management of polycystic liver disease. Expert Rev Gastroenterol Hepatol 2008; 2:563-576.
    [68]Masoumi A, Reed-Gitomer B, Kelleher C et al. Developments in the management of autosomal dominant polycystic kidney disease. Ther Clin Risk Manag 2008; 4:393-407.
    [69]Zafar I, Tao Y, Falk S et al. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol 2007; 293:F854-F859.
    [70]Nagao S, Nishii K, Yoshihara D et al. Calcium channel inhibition accelerates polycystic kidney disease progression in the Cy/+rat. Kidney Int 2008; 73:269-277.
    [71]Leuenroth SJ, Bencivenga N, Igarashi P et al. Triptolide reduces cystogenesis in a model of ADPKD. J Am Soc Nephrol 2008; 19:1659-1662.
    [72]Leuenroth SJ, Okuhara D, Shotwell JD et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci USA 2007; 104:4389-4394.
    [73]Ohba T, Watanabe H, Murakami M et al. Amlodipine inhibits cell proliferation via PKD1-related pathway. Biochem Biophys Res Commun 2008; 369:376-381
    [74]Yang B, Sonawane ND, Zhao D et al. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 2008,19:1300-1310.
    [75]Takiar V, Nishio S, King JD et al. Metformin activation of AMPK slows renal cystogenesis. J Am Soc Nephrol 2008; 19:26A.
    [76]Sweeney Jr WE, von Vigier RO, Frost P et al. Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol 2008; 19:1331-1341.
    [77]Omori S, Hida M, Fujita H et al. Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol 2006,17: 1604-1614.
    [78]Bukanov NO, Smith LA, Klinger KW et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006,444:949-952.
    [79]Tao Y, Zafar I, Kim J et al. Caspase-3 gene deletion prolongs survival in polycystic kidney disease. J Am Soc Nephrol 2008; 19:749-755.
    [80]Sankaran D, Bankovic-Calic N, Ogborn MR et al. Selective COX-2 inhibition markedly slows disease progression and attenuates altered prostanoid production in Han:SPRD-cy rats with inherited kidney disease. Am J Physiol-Renal Physiol 2007; 293:F821-F830.
    [81]Nagao S, Nishii K, Katsuyama M et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol 2006,17:2220-2227.
    [82]Wang X, Wu Y, Ward CJ et al. Vasopressin directly regulates cyst growth in the PCK rat. J Am Soc Nephrol 2008; 19:102-108.
    [83]Chang MY, Parker E, El Nahas M et al. Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007,18:560-569.
    [84]Edelstein CL. Mammalian target of rapamycin and caspase inhibitors in polycystic kidney disease. Clin J Am Soc Nephrol 2008; 3:1219-1226.
    [85]Wahl PR, Serra AL, Le Hir M et al. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 2006,21:598-604.
    [86]Wu M, Wahl PR, Le Hir M et al. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 2007; 30: 253-259.
    [87]Berthier CC, Wahl PR, Le Hir M et al. Sirolimus ameliorates the enhanced expression of metalloproteinases in a rat model of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2008,23:880-889
    [88]David H. Kern, Carol R. Morgan, and Susanne U. Hildebrand-Zanki. In Vitro pharmacodynamics of 1-β-D-Arabinofuranosylcytosine:Synergy of antitumor activity with cis-Diamminedichloroplatinum (Ⅱ). Cancer research 1988; 48 January:117-121.
    [89]Kim JE, Chen J. cytoplasimic-nuclear shuttling of RKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translationinitiation. Pro Natl Acad Sci USA,2000,97:14340-14345.
    [90]Wiederrecht G J, Sabers C J, Brunn G J, et al. Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. Prog Cell Cycle Res,1995,1:53-71.
    [91]Edinger A L, Thompson C B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell,2002,13 (7):2276-2288.
    [92].Fischer E, Gresh L, Reimann A, et al. Cystic kidney diseases:learning from animal models. Nephrol Dial Transplant.2004,19(11):2700-2702.
    [93].Guay-Woodford LM. Murine models of polycystic kidney disease:molecular and therapeutic insights. Am J Physiol Renal Physiol.2003,285(6):F 1034-1049.
    [94]Barak Y,Nel son MC,Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cel 1,1999,4 (4):5852595.
    [95]Margeli A, Kouraklis G, Theocharis S. Peroxisome proliferator activated receptor2c (PPAR2c) ligands and angiogenesis. A ngiogenesis,2003,6 (3):1652169.
    [1]ysaght MJ:Maintenance dialysis population dynamics:Current trends and long-term implications. J Am Soc Nephrol 13:S37-S40,2002
    [2]Schieppati A, Perico N, Remuzzi G:Preventing end-stage renal disease:The potential impact of screening and intervention in developing countries. Nephrol Dial Transplant 18:858-859,2003
    [3]Xue JL, Ma JZ, Louis TA, Collins AJ:Forecast of the number of patients with end-stage renal disease in the United States to the year 2010. J Am Soc Nephrol 12:2753-2758, 2001
    [4]Schieppati A, Remuzzi G:Fighting renal diseases in poor countries:Building a global fund with the help of the pharmaceutical industry. J Am Soc Nephrol 15:704-707,
    [5]Zucchelli P, Zuccala A, Borghi M, Fusaroli M, Sasdelli M,Stallone C, Sanna G, Gaggi R. Long-term comparison between captopril and nifedipine in the progression of renal insufficiency. Kidney Int,42:452-458,1992
    [6]Kamper AL, Strandgaard S, Leyssac PP. Effect of enalapril on the progression of chronic renal failure. A randomized controlled trial. Am J Hypertens,5:423-430, 1992
    [7]Lewis,e.J., Hunsicker, L. G., Bain, r. P.& rohde, r. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med.329,1456-1462 (1993).
    [8]Hannedouche T, Landais P, Goldfarb B, el Esper N,Fournier A, GodinM, Durand D, Chanard J,Mignon F, Suo JM, et al. Randomised controlled trial of enalapril and beta blockers in non-diabetic chronic renal failure. BMJ,309:833-837,1994
    [9]Bannister KM, Weaver A, Clarkson AR, Woodroffe AJ. Effect of angiotensin-converting enzyme and calcium channel inhibition on progression of IgA nephropathy. Contrib Nephrol,1995,111:184-192
    [10]Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, Ponticelli C, Ritz E, Zucchelli P. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med,1996,334: 939-945
    [11]The GiseN Group (Gruppo italiano di studi epidemiologici in Nefrologia). Randomised placebo controlled trial of the effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet,1997,349:1857-1863
    [12]van Essen GG, Apperloo AJ, Rensma PL, Stegeman CA,Sluiter WJ, de Zeeuw D, de Jong PE:Are angiotensin converting enzyme inhibitors superior to beta blockers in retarding progressive renal function decline? Kidney Int Suppl,1997,63:58-62
    [13]Marin R, Ruilope LM, Aljama P, Aranda P, Segura J, Diez J; Investigators of the ESPIRAL Study.A random comparison of fosinopril and nifedipine GITS in patients with primary renal disease. J Hypertens.2001 Oct; 19(10):1871-6.
    [14]Porter AM. Ramipril in non-diabetic renal failure (REIN study) Ramipril Efficiency in Nephropathy Study. Lancet 1998 Jan 3;351(9095):70
    [15]Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, Maschio G, Brenner BM, Kamper A, Zucchelli P, Becker G, Himmelmann A, Bannister K, Landais P, Shahinfar S, de Jong PE, de Zeeuw D, Lau J, Levey AS:Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med,2001,135:73-87,
    [16]Schrier RW, Estacio RO:The effect of angiotensin-converting enzyme inhibitors on the progression of nondiabetic renal disease:A pooled analysis of individual-patient data from 11 randomized, controlled trials. Ann Intern Med,2001,135:138-139
    [17]Maki DD, Ma JZ, Louis TA, Kasiske BL:Long-term effects of antihypertensive agents on proteinuria and renal function. Arch Intern Med,1995,155:1073-1080
    [18]Kshirsagar AV, Joy MS, Hogan SL, Falk RJ, Colindres RE. Effect of ACE inhibitors in diabetic and nondiabetic chronic renal disease:A systematic overview of randomized placebo-controlled trials. Am J Kidney Dis.2000,35:695-707
    [19]Prasad Bichul, Ravi Nistalal, Asma Khan, James R Sowers, Adam Whaley-Connell. Angiotensin receptor blockers for the reduction of proteinuria in diabetic patients with overt nephropathy:results from the AMADEO study. Vascular Health and Risk Management,2009,5:129-140
    [20]Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med.345,861-869 (2001).
    [21]Brenner B, Cooper M, Zeeuw D, et al. RENAAL Study Investigators. Losartan in patients with type 2 diabetes and proteinuria:Observations from the RENAAL Study. N Engl J Med.2001;345(12):861-869
    [22]Viberti G, Wheeldon NM, et al. MicroAlbuminuria Reduction With VALsartan (MARVAL) Study Investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus:a blood pressure-independent effect. Circulation.2002; 106:672-678.
    [23]Cortinovis M, Cattaneo D, Perico N, et al. Investigational drugs for diabetic nephropathy. Expert Opin Investig Drugs,2008,17(10):1487-1500
    Nakao, N. et al. Combination treatment of angiotensin-11 receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPerATe): a randomised controlled trial. Lancet 361,117-124 (2003).
    [24]Barnett AH, Bain SC, Bouter P, et al. Diabetics Exposed to Telmisartan and Enalapril Study Group. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med.2004;351(19):1952-1961
    [25]Bakris G, Burgess E, Weir M, et al. Telmisartan is more effective than losartan in reducing proteinuria in patients with diabetic nephropathy. Kidney Int.2008,74 (3): 364-369.
    [26]Carl Erik Mogensen, Steen Neldam, Ilkka Tikkanen, Shmuel Oren, Reuven Viskoper, Richard W Watts, Mark E Cooper for the CALM study group. Randomised controlled trial of dual blockade of rennin-angiotensin system in patients with hypertension, microalbuminuria, and nominsulin dependent diabetes:the candesartan and lisinopril microalbuminuria (CALM) study. BMJ,2000,321:1440-4
    [27]Bjorn Dahlof, Peter S Sever, Neil R Poulter, Hans Wedel, D Gareth Beevers, Mark Caulfield, Rory Collins, Sverre E Kjeldsen, Arni Kristinsson, Gordon T McInnes, Jesper Mehlsen, Markku Nieminen, Eoin O'Brien, Jan Ostergren, for the ASCOT investigators. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA):a multicentre randomized controlled trial Lancet 2005; 366:895-906
    [28]Naoyuki Nakao, Ashio Yoshimura, Hiroyuki Morita, Masyuki Takada, Tsuguo Kayano, Terukuni Ideura. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE):a randomised controlled trial. Lancet.2003,361:117-24
    [29]Mann, J. F. e. et al. renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET STUDY):a multicentre randomised controlled trial. Lance,2008,372:47-553
    [30]Catapano, F. et al. Anti-proteinuric response to dual blockade of renin-angiotensin system in primary glomerulonephritis:meta-analysis and metaregression. Am. J. Kidney Dis.2008,52:475-485.
    [31]Parving HH, Persson F, Lewis JB, et al. AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy.N Engl J Med.2008, 358(23):2433-2446.
    [32]Zhou X, Ono H, Frohlich E, et al. Aldosterone antagonism ameliorates proteinuria and nephrosclerosis independent of glomerular dynamics. Am J Nephrol.2004;24:242-249.
    [33]Soloni A, Vergnani L, Ricci F, et al. Glycosaminoglycans delay the progression of nephropathy in NIDDM. Diabetes Care,1997,20:819-823.
    [34]Dedov I, Shestakova M, vorontzov A, et al. A randomized, controlled study of sulodexide therapy for the treatment of diabetic nephropathy. Nephrol Dial Transplant, 1997,12:2295-2300.
    [35]Gambaro G, Kinalska I, Oksa A, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients:the Di.N.A.S. randomized trial. J Am Soc Nephrol,2002,13:1615-1625.
    [36]Heerspink HL, Greene T, Lewis JB, et al. Effects of sulodexide in patients with type 2 diabetes and persistent albuminuria. Nephrol Dial Transplant,2008,23:1946-1954.
    [37]Kanwar YS, Rosenzweig LJ, JakubowskiML. Distribution of de novo synthesized sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Lab Invest,1983,49:216-225.
    [38]Maxhimer JB, Somenek M, Rao G, et al. Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells:a potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes,2005,54:2172-2178.
    [39]Soma J, Sugawara T, Huang YD, et al. Tranilast slows the progression of advanced diabetic nephropathy. Nephron,2002,92:693-698.
    [40]Soma J, Sato K, Saito H, et al. Effects of tranilast in early stage diabetic nephropathy. Nephrol Dial Transplant,2006,21:2795-2799.
    [41]Holmes DR Jr, Savage M, LaBlanche JM, et al. Results of Prevention of restenosis with Tranilast and its Outcomes(PRESTO) trial. Circulation,2002,106:1243-1250.
    [42]Forbes JM, Cooper ME, Oldfield MD,et al. Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol,2003,14:S254-S258.
    [43]Miyata T, van Ypersele de Strihou C, Ueda Y, et al. Angiotensin II receptor antagonists and angiotensin converting enzyme inhibitors lower in vitro formation of advanced glycation end products:biochemical mechanisms. J Am Soc Nephrol, 2002,13:2478-2487.
    [44]Forbes JM, Cooper ME, Thallas VForbes, et al. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy. Diabetes,2002,51:3274-3282.
    [45]Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol,2004,24:32-40.
    [46]Williams ME, Bolton WK, Khalifah RG, et al. Effects of pyridoxamine in combined phase 2 studies ρf patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol,2007,27:605-614.
    [47]6-Month safety and efficacy study of TTP488 in patients with type 2 diabetes and persistent albuminuria [online] http://clinicaltrials.gov/ct2/show/NCT00287183
    [48]Peppa M, Brem H, Cai W, et al. Prevention and reversal of diabetic nephropathy in db/db mice treated with Alagebrium (ALT-711). Am J Nephrol,2006,26:430-436.
    [49]Coughlan MT, Forbes JM, Cooper ME. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes. Kidney Int,2007,72:s54-s60.
    [50]Burns WC, Twigg SM, Forbes JM, et al. Connective tissue growth factor plays an important role in advanced glycation end product induced-tubular epithelial-to-mesenchymal transition:implications for diabetic renal disease. J Am Soc Nephrol,2006,17:2484-2494.
    [51]Adler SG, Schwartz S, Williams ME, et al. Dose-escalation phase 1 study of FG-3019, anti-CTGF monoclonal antibody, in subjects with type i/ii diabetes mellitus and microalbuminuria. J Am Soc Nephrol,2006,17:157A.
    [52]Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J,2000,14:439-447.
    [53]Tuttle KR, Bakris GL, Toto RD, et al. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care,2005,28:2686-2690.
    [54]The PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy:initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes,2005,54:2188-2197.
    [55]Tuttle, K. r. et al. Kidney outcomes in long-term studies of ruboxistaurin for diabetic eye disease. Clin J Am Soc Nephrol,2007,2:631-636.
    [56]Zhiguo Mao, Albert CM Ong. Peroxisome Proliferator-Activated Receptor Gamma Agonists in Kidney Disease-Future Promise, Present Fears. Nephron Clin Pract, 2009,112:c230-c241.
    [57]Agarwal R, Saha C, Battiwala M, et al. A pilot randomized controlled trial of renal protection with pioglitazone in diabetic nephropathy. Kidney Int,2005,68:285-292.
    [58]Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens,2006,24:2047-2055.
    [58]Kincaid-Smith P, Fairley KF, Farish S,et al. Reduction of proteinuria by rosiglitazone in non-diabetic renal disease. Nephrology (Carlton),2008,13:58-62.
    [60]Joy MS, Gipson DS, Dike M, et al. Phase I trial of rosiglitazone in FSGS:I. Report of the FONT Study Group. Clin J Am Soc Nephrol,2009,4:39-47.
    [61]Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (prospective pioglitazone clinical trial in macrovascular events):a randomised controlled trial. Lancet,2005,366:1279-1289.
    [62]Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med,2007356:2457-2471.
    [63]Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes-an interim analysis. N Engl J Med,2007,357:28-38.
    [64]Chen YM, Lin SL, Chiang WC, et al. Pentoxifylline ameliorates proteinuria through suppression of renal monocyte chemoattractant protein-1 in patients with proteinuric primary glomerular diseases. Kidney Int,2006,69:1410-1415.
    [65]Navarro JF, Mora C, Muros M, et al. Additive anti-proteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin-2 receptor blockade:a short-term, randomized, controlled trial. J Am Soc Nephrol,2005,16:2119-2126.
    [66]Lin SL, Chen YM, Chiang WC, et al. Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD:a 12 month randomized trial. Am J Kidney Dis,2008, 52:464-474.
    [67]McCormick BB, Sydor A, Akbari A, et al. The effect of pentoxifylline on proteinuria in diabetic kidney disease:a meta-analysis. Am J Kidney Dis,2008,54:454-463.
    [68]Barton, M. Reversal of proteinuric renal disease and the emerging role of endothelin. Nat Clin Pract Nephrol,2008,4:490-501.
    [69]Opocensky M, Kramer HJ, Backer A, et al. Late onset endothelin-A receptor blockade reduces podocyte injury in homozygous ren-2 rats despite severe hypertension. Hypertension,2006,48:965-971.
    [70]Honing ML, Hijmering ML, Ballard DE, et al. Selective ETA receptor antagonism with ABT-627 attenuated all renal effects of endothelin in humans. J Am Soc Nephrol 2000,11:1498-1504.
    [71]Wenzel RR, Littke T, Kuranoff S, et al. Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol,2009,20:655-664.
    [72]Viberti G. sPP301 (avosentan) AsCeND clinical results [online] www.speedel. com/ assets/2008_sPP301AsCeNDstudy.pdf/ (2008).
    [73]Black HR, Bakris GL, Weber MA, et al. Efficacy and safety of darusentan in patients with resistant hypertension:results from a randomized, double-blind, placebo-controlled dose-ranging study. J Clin Hypertens(Greenwich),2007,9: 760-769.
    [74]Zhou MS, Schuman IH, Jaimes EA, et al. Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-beta, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol Renal Physiol,2008, 295(1):F53-9
    [75]Sandhu S, Wiebe N, Fried LF, et al. Statins for improving renal outcomes:a meta-analysis. J Am Soc Nephrol,2006,16:2006-2016.
    [76]Strippoli GF, Navaneethan SD, Johnson DW, et al. Effects of statins in patients with chronic kidney disease:Meta-analysis and meta-regression of randomised controlled trials. BMJ,2008,336:645-651.
    [77]Szeto CC, Chow KM, Kwan BC,et al. Oral calcitriol for the treatment of persistent proteinuria in IgA nephropathy:an uncontrolled trial. Am J Kidney Dis,2008, 51:724-731.
    [78]Agarwal R, Acharya M, Tian J, et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int,2005,68; 2823-2828.
    [79]Alborzi P, Patel NA, Peterson C, et al. Paricalcitol reduces albuminuria and inflammation in patients with chronic kidney disease:a randomized double-blind pilot trial. Hypertension,2008,52:249-255.
    [80]Shoben AB, Rudser KD, de Boer IH, et al. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol,2008,19:1613-1619.
    [81]Torres VE, Harris PC. Autosomal dominant polycystic kidney disease:the last 3 years. Kidney Int,2009,20:1-20.
    [82]Shillingford JM, Murcia NS, Larson CH, et al. The m-TOR pathway is regulated by polycystin-1 and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA,2006,103:5466-5471.
    [83]Qian Q, Du H, King BF, et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol,2008,19; 631-638.
    [84]Gattone,VH, Wang X, Harris PC, et al. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med,2003,9: 1323-1326.
    [85]Ruggenenti P, Remuzzi A, Ondei P, et al. Safety and efficacy of long-acting somatostatin treatment in autosomal dominant polycystic kidney disease. Kidney Int, 2005,68(1):206-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700