用户名: 密码: 验证码:
糖原合成激酶-3β在胰腺癌分子靶向治疗中的作用及机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的本研究旨在检测胰腺癌中GSK-3β的表达,探讨GSK-3β的表达与胰腺癌临床病理特征的关系,进而深入探讨其在胰腺癌发生、发展中的作用。
     方法运用免疫组织化学SP法检测65例胰腺癌组织及10例癌旁胰腺组织中GSK-3β的表达。
     结果在65例胰腺癌标本中33例出现GSK-3β的阳性表达,而在癌旁胰腺组织未检测到GSK-3β的阳性表达(P<0.01)。GSK-3β蛋白的表达与胰腺癌患者的年龄、性别和肿瘤大小无关,但与胰腺癌的分化程度、转移和临床分期有关(P<0.05)。
     结论GSK-3β的高表达在胰腺癌的发生发展和浸润转移过程中起着重要作用。GSK-3β可能与胰腺癌患者的预后的密切相关。
     目的构建针对人GSK-3β基因的shRNA真核表达质粒,并筛选出基因沉默效果最佳的shRNA质粒表达载体;转染人胰腺癌细胞株PANC-1,建立稳定表达GSK-3βshRNA的细胞模型。
     方法针对GSK-3p基因的mRNA序列设计,分别构建3个shRNA质粒表达载体和1个阴性对照质粒表达载体,经大肠杆菌扩增,酶切,PCR,测序鉴定,转染胰腺癌PANC-1细胞,Real-time PCR检测GSK-3βmRNA被抑制情况。选取效应最强的重组质粒和阴性对照质粒转染的PANC-1细胞,经G418筛选后,建立稳定表达GSK-3βshRNA的PANC-1细胞株(实验组)和稳定表达control shRNA的PANC-1细胞株(阴性对照组),未转染的PANC-1细胞株设为空白对照组。采用荧光显微镜和FCM观察细胞的转染情况;Real-time PCR和Western blot分析GSK-3β的表达。
     结果1、经测序证实,成功构建GSK-3βshRNA真核表达质粒,插入的DNA片段的序列与设计序列完全一致;2、重组质粒瞬时转染PANC-1细胞后,GSK-3βmRNA明显下调(P<0.05),其中以2号重组质粒效应最强;3、重组质粒稳定转染后检测PANC-1细胞中GSK-3β的表达,Real-time PCR和’Western blot结果均提示:与空白对照组和载体对照组比较,实验组中GSK-3βmRNA和蛋白的表达均显著降低(P<0.05)。
     结论本研究成功构建了携带以GSK-3β为靶向的shRNA的重组质粒。经脂质体途径稳定转染的PANC-1细胞,该shRNA能够显著抑制GSK-3β的表达。该实验为进一步研究GSK-3β的功能和以其为靶点的肿瘤的基因治疗提供了基础。
     目的本实验拟在体外观察基因沉默GSK-3β对胰腺癌PANC-1细胞的增殖、凋亡、周期和侵袭能力的影响,并初步探讨相关的分子机制及GSK-3β作为胰腺癌治疗靶点的可能性。
     方法实验分组如下:空白对照组为未转染的PANC-1细胞;载体对照组为稳定转染control shRNA的PANC-1细胞;实验组为稳定转染GSK-3βshRNA的PANC-1细胞。MTT法连续7d检测各组细胞的OD值,并绘制出细胞的生长曲线;FCM检测细胞的凋亡和周期;Transwell侵袭实验检测细胞的侵袭能力;Real-time PCR检测各组细胞中bcl-2、cyclin D1、VEGF、HIF-1αmRNA的表达;Western blot检测各组细胞中bcl-2、cyclin D1、HIF-1α蛋白的表达;ELISA检测PANC-1细胞培养上清中VEGF蛋白的浓度;EMSA检测PANC-1细胞中NF-κB的DNA结合活性。
     结果与对照组比较,转染GSK-3βshRNA的PANC-1细胞生长速度明显减慢;凋亡率明显增加;而且处于G0/G1期细胞比例显著升高,S期细胞比例显著降低,发生明显的G1期阻滞(P<0.05)。实验组PANC-1细胞中bcl-2、cyclin D1、VEGF基因和蛋白的表达显著下调,NF-κB的DNA结合活性降低(P<0.05)。GSK-3p沉默的PANC-1细胞中HIF-1α基因和蛋白的表达出现不一致的变化。
     结论GSK-3β可能在胰腺癌细胞的增殖、存活和侵袭中具有重要作用,阻断GSK-3β的表达可望成为胰腺癌分子靶向治疗的新途径。
     目的探讨基因沉默GSK-3β对人胰腺癌裸鼠移植瘤生长及血管生成的影响。
     方法人胰腺癌PANC-1细胞接种于裸鼠皮下,建立胰腺癌裸鼠移植瘤模型,分为空白对照组(种植未转染的PANC-1细胞)、载体对照组(种植转染control shRNA的PANC-1细胞)和实验组(种植转染GSK-3βshRNA的PANC-1细胞),测量各组移植瘤的重量和体积,并计算抑瘤率;免疫组化SP法检测PCNA和FⅧ蛋白的表达,并计算增殖指数(SPF)和微血管密度(MVD);Real-time PCR和Western blot检测VEGF基因和蛋白的表达。
     结果实验组移植瘤的重量和体积显著低于对照组(P<0.05),抑瘤率为35.27%;实验组SPF和MVD值均小于对照组(P<0.05);实验组移植瘤的VEGF基因和蛋白的表达较对照组显著降低(P<0.05)。
     结论在体内,基因干扰GSK-3β的表达可以显著抑制PANC-1细胞接种的裸鼠皮下移植瘤的生长和新生血管的形成,该效应可能与其下调VEGF的表达有关。
     目的探讨RNA干扰GSK-3β后,人胰腺癌PANC-1细胞对吉西他滨敏感性的改变。
     方法实验分组如下:空白对照组为未转染的PANC-1细胞;载体对照组为稳定转染control shRNA的PANC-1细胞;实验组为稳定转染GSK-3p shRNA的PANC-1细胞。在各组PANC-1细胞中加入不同浓度吉西他滨并作用48h;MTT检测各组细胞的增殖活性;FCM检测各组细胞的凋亡率。
     结果在吉西他滨作用48h后,实验组中PANC-1细胞的生长抑制率、凋亡率均显著高于对照组,而且该效应与剂量成正比,高剂量引起高抑制(P<0.05);
     结论基因干扰GSK-3p的表达可显著增强吉西他滨对胰腺癌PANC-1细胞的杀伤力,并伴有NF-κB活性的降低和抗凋亡基因bcl-2的下调,这表明基因沉默GSK-3β可能通过抑制胰腺癌细胞NF-κB的活性,下调与化疗耐药相关的NF-κB的靶基因bc1-2的表达而增强胰腺癌对化疗的敏感性。因此,阻断GSK-3β的表达有望开辟胰腺癌基因治疗的新途径。
Objective To investigate the relationship between the expression of GSK-3βand clinical features in pancreatic cancer, and determine the role of GSK-3βin the development of pancreatic cancer.
     Methods The expression of GSK-3βin pancreatic cancer tissue and adjacent normal tissue was detected by SP immunohistochemical technique.
     Results GSK-3βwas expressed in 33 of 65 cases. In contrast, no expression of GSK-3βin adjacent normal tissue was detectable (P<0.01). Expression of GSK-3βhad no relationship with ages, sexes and tumor sizes of pancreatic cancer patient. But the expression was significantly correlated with differentiation level, metastatic status and JPS stage (P<0.05).
     Conclusion High expression of GSK-3βmay play an important role in carcinogenesis and development, invasion and metastasis of pancreatic cancer. Therefore, assessment of GSK-3βexpression might be useful for predicting the prognosis of pancreatic cancer patients.
     Objective To construct three shRNA interference expression plasmid vectors of human GSK-3βgene, detect the expression of GSK-3βin pancreatic carcinoma PANC-1 cells after transfection with recombinant plasmids, and transfect stably the most effective recombinant plasmid into PANC-1 cells.
     Methods Three plasmid expression vectors coding for shRNA targeting GSK-3βand a control vector were designed. The recombinant plasmids were amplified in E. coli. DH5a, and then treated with restriction enzymes, PCR and sequencing. PANC-1 cells stably expressing GSK-3βshRNA and control shRNA were screened with G418, as the experimental group and vector control group. The cells were not transfected as the blank control group. Cells transfection state was observed by fluorescence microscope and FCM. GSK-3βexpression was assayed with Real-time PCR and Western blot.
     Results 1.The successful construction of recombinant plasmids was determined by DNA sequencing.2 GSK-3βexpression was notably down-regulated after transfection of shRNA plasmids in PANC-1 cells. Recombinant plasmid 2 had the strongest effect.3. Compared with the control groups, the expression of GSK-3βshow a significantly down-regulation in experimental group.
     Conclusion Plasmid vector expressing shRNA against GSK-3βand PANC-1 cells with stably expressing GSK-3βshRNA were constructed, which could facilitate further studies on GSK-3βfunction and its application in tumor gene therapy.
     Objective To investigate the effects of GSK-3βRNA interference on pancreatic cancer cell proliferation, apoptosis, cycle and invasive capability and to explore the molecular mechanism involving the procedure and the possibility of targeting GSK-3βfor pancreatic cancer therapy.
     Methods PANC-1 cells stably expressing GSK-3βshRNA and control shRNA were the experimental group and the vector control group. The cells were not transfected as the blank control group. The growth curves of PANC-1 cells were designed by MTT assay. The cells apoptosis and cycle were analyzed by FCM. The invasive capability of PANC-1 cells was detected by Transwell. The expression levels of bcl-2、cyclin D1、VEGF、HIF-1αwere respectively assayed with Real-time PCR, Western blot and ELISA. NF-κB DNA binding activity was detected through EMSA analysis of nuclear extracts. Results Compared with control group, the growth rate and invasive capability of PANC-1 cells in experimental group decreased notably, the apoptotic number of cells increased obviously, and cell cycle was arrest at G0/G1 phase. The expression of bcl-2, cyclin D1, VEGF, and NF-κB DNA binding activity show a significantly down-regulation in experimental group. However, in GSK-3βRNAi PANC-1 cells, the HIF-1αprotein expression was not inconsistent with the gene expression.
     Conclusion GSK-3βmay play an important role in proliferation, survival and invasion of human pancreatic cancer. Blocking GSK-3βin pancreatic cancer cells may offer an avenue for gene therapy.
     Objective To study the effects of GSK-3βRNA interference on the growth and angiogenesis of human pancreatic cancer xenografts in nude mice.
     Methods PANC-1 cells were incubated and were inoculated subcutaneously in athymic nude mice to establish xenograft models. The mice were divided into blank control group, vector control group and experimental group. Tumor volume and weight was measured in nude mice bearing xenografts. The inhibitory rate was calculated according to the weights of xenografts. The proteins of PCNA and FⅧwere assessed by immunohistochemical method. SPF and MVD were respectively counted according to PCNA and FⅧstaining. The expression level of VEGF was detected by Real-time PCR and Western blot.
     Results Compared with control group, the growth rate of human pancreatic cancer xenografts of nude mice in experimental group decreased notably (P<0.05) and the inhibitory rate was 35.17%. The SPF index, MVD count and VEGF expression of xenografts were significantly decreased in experimental group than that in control group (P<0.05).
     Conclusion In vivo GSK-3βRNAi can inhibit the growth and angiogenesis of human pancreatic cancer xenografts in nude mice, which may be related to the downregulation of VEGF.
     Objective To investigate the sensitivity of pancreatic cancer cell to gemcitabine (GE) after GSK-3βRNA interference.
     Methods PANC-1 cells stably expressing GSK-3βshRNA and control shRNA were the experimental group and the vector control group. The cells were not transfected as the blank control group. Different dosages of GE were added into PANC-1 cells. The growth inhibition rates and the apoptosis rates were respectively measured by MTT and FCM.
     Results GE caused a greater increase of the growth inhibition rate and apoptosis rates of PANC-1 cells in experimental group than in control groups in a dose-dependent manner (P<0.05)
     Conclusion Our data demonstrate that GSK-3βRNAi inhibits the NF-κB DNA binding activity and the expression of bcl-2 and enhances the growth inhibition and the apoptosis induced by GE. Thus GSK-3βRNAi could sensitize pancreatic cancer cells to GE. Blocking GSK-3βin pancreatic cancer cells may offer an avenue for gene therapy.
引文
1. Ahmedin J, Rebecca S, Elizabeth W, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008; 58(2): 71-96.
    2. Cameron JL, Crist DW, Sitzmann JV, et al. Factors influencing survival after pancreaticoduodenectomy for pancreatic cancer. Am J Surg. 1991; 161(1): 120-124.
    3. Griffin JF, Smalley SR, Jewell W, et al. Patterns of failure after curative resection of pancreatic carcinoma. Cancer. 1990; 66(1): 56-61.
    4. Makowiec F, Post S, Saeger HD, et al. Current practice patterns in pancreatic surgery: results of a multi-institutional analysis of seven large surgical departments in Germany with 1454 pancreatic head resections, 1999 to 2004. J Gastrointest Surg. 2005; 9(8): 1080-1086.
    5. Niederhuber JE, Brennan MF, Menck HR. The National Cancer Data Base report on pancreatic cancer. Cancer. 1995; 76(9): 1671-1677.
    6. Kitamura Y. Gastrointestinal stromal tumors: past, present, and future. J Gastroenterol. 2008; 43(7): 499-508.
    7. Embin N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle; separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980; 107(2): 519-527.
    8. Javadov S, Rajapurohitam V, Kilic A, et al. Antihypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondria] dysfunction. J Mol Cell Cardiol. 2009; 46(6): 998-1007
    9. Zanhi NE, de Siqueira Filho MA, Lira FS, et al. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3beta and P70S6K levels iri rats. J Mol Cell Cardiol. 2009; 106(3): 415-423.
    10. Morfini G, Szebenyi G, Brown H, et al. A novel CDK52 dependent pathway for regulating GSK-3 activity and kinesin-driven motility in neurons. EMBO J. 2004; 23(11): 2235-2245.
    11. Green JB. Lkb1 and GSK3-beta: kinases at the center and poles of the action. Cell Cycle. 2004; 3(1): 12-14.
    12. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004; 29 (2): 95-102.
    13. Rentzsch F, Hobmayer B, Holstein TW. Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis. Dev Biol. 2005; 278 (1): 12-21.
    14. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003; 116(Pt 7): 1175-1186.
    15. Kannoji A, Phukan S, Sudher Babu V, et al. GSK3beta: a master switch and a promising target. Expert Opin Ther Targets. 2008; 12(11): 1443-1455.
    16. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res. 2002; 84: 203-229.
    17. Lustig B, Behrens J. The Wnt signalling pathway and its role in tumour development. J Cancer Res Clin Oncol. 2003; 129(4): 199-221.
    18. Shakoori A, Ougolkov A, Yu Z W, et al. Deregulated GSK-3beta activity in colorectal cancer: its asscocitation with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005; 334(4): 1365-1373.
    19. Erdal E, Ozturk N, Cagatay T, et al. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer. 2005; 115(6): 903-910.
    20. Beyaert R, Vanhaesebroeck B, Suffys P, et al. Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo. Proc. Natl Acad. Sci. USA 1989; 86(23): 9494-9498.
    21. Liao X, Zhang L, Thrasher JB,et al. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol. Cancer Ther. 2003; 2(11): 1215-1222.
    1. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci.2004; 29 (2):95-102.
    2. Chung YH, Joo KM, Kim DJ, et al. Immunohistochemical study on the distribution of glycogen synthase kinase 3 alpha in the central nervous system of SOD1(G93A) transgenic mice. Neurol Res.2008; 30(9):926-931.
    3. Pekary AE, Stevens SA, Blood JD, et al. Rapid modulation of TRH and TRH-like peptide release in rat brain, pancreas, and testis by a GSK-3beta inhibitor. Peptides. 2010; Mar 23.
    4. Yin L, Wang J, Klein PS, et al. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock Science.2006; 311(5763): 1002-1005.
    5. Yazlovitskaya EM, Edwards E, Thotala D, et al. Yazlovitskaya EM, Edwards E, Thotala D, Cancer Res.2006; 66(23):11179-11186.
    6. Thotala DK, Hallahan DE, Yazlovitskaya EM. Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res.2008; 68(14):5859-5868.
    7. Bilim V, Ougolkov A, Yuuki K, et al. Glycogen synthase kinase-3:a new therapeutic target in renal cell carcinoma. Br J Cancer.2009; 101(12):2005-2014.
    8. Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3beta activity in colorectal cancer:its association with tumor cell survival and proliferation. Biochem Biophys Res Commun.2005; 334(4):1365-1373.
    9. Thiel A, Heinonen M, Rintahanka J, et al. Expression of cycooxy genase-2 is regulated by glycogen synthase kinase-3beta in gastric cancer cells. J Biol Chem.2006; 281(8): 4564-4569.
    10. Aoki M, Yokota T, Sugiura I, et al. Structural insight into nucleotide recognition in tau-protein kinase Ⅰ/glycogen synthase kinase 3 beta. Acta Crystallogr D Biol Crystallogr.2004; 60(Pt 3):439-446.
    11. Dajani R, Fraser E, Roe SM, et al. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001; 105(6):721-732.
    12. Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J.2004; 377(Pt 1):249-255.
    13. Cohen P, Goedert M. GSK3 inhibitors:development and therapeutic potential. Nat Rev Drug Discov.2004; 3(6):479-487.
    14. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.1998; 12(22): 3499-3511.
    15. Zmijewski JW,Jope RS. Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell.2004; 3(5):309-317.
    16. Cadigan KM, Liu YI. Wnt signaling:complexity at the surface. J Cell Sci.2006; 119(Pt 3):395-402.
    17. Mi K, Dolan PJ, Johnson GV. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem.2006; 281(8):4787-4794.
    18. Tsuchiya K, Nakamura T, Okamoto R, et al. Reciprocal targeting of Hath 1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology.2007; 132(1):208-220.
    19. Thiel A, Heinonen M, Rintahanka J, et al. Expression of cycooxy genase-2 is regulated by glycogen synthase kinase-3beta in gastric cancer cells [J]. J Biol Chem,2006; 281(8):4564-4569.
    20. Li JS, Zhu M, Tian D, et al. Glycogen synthase kinase 3beta induces cell cycle arrest in a cyclin Dl-dependent manner in human lung adenocarcinoma cell line A549. Sheng Li Xue Bao.2007; 59(2):204-209.
    21. Shakoori A, Ougolkov A, Yu Z W, et al. Deregulated GSK-3beta activity in colorectal cancer:its asscocitation with tumor cell survival and proliferation. Biochem Biophys Res Commun.2005; 334(4):1365-1373.
    22. Ougolkov AV, Bone ND, Fernandez-Zapico ME, et al. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood.2007; 110(2): 735-742.
    23. Yamashita K, Ougolkov AV, Nakazato H, et al. Adjuvant immunochemotherapy with protein-bound polysaccharide K for colon cancer in relation to oncogenic beta-catenin activation. Dis Colon Rectum.2007; 50(8):1169-1181.
    24. Ahmedin J, Rebecca S, Elizabeth W et al. Cancer statistics,2008. CA Cancer J Clin. 2008;58(2):71-96.
    1. Embin N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle; separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem.1980; 107(2):519-527.
    2. Shakoori A, Ougolkov A, Yu Z W, et al. Deregulated GSK-3beta activity in colorectal cancer:its asscocitation with tumor cell survival and proliferation. Biochem Biophys Res Commun.2005; 334 (4):1365-1373.
    3. Ougolkov AV, Bone ND, Fernandez-Zapico ME, et al. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood.2007; 110(2): 735-742.
    4. Yamashita K, Ougolkov AV, Nakazato H, et al. Adjuvant immunochemotherapy with protein-bound polysaccharide K for colon cancer in relation to oncogenic beta-catenin activation. Dis Colon Rectum.2007; 50(8):1169-1181.
    5. Dykxhoorn DM, Lieberman J. The silent revolution:RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med.2005; 56:401-423.
    6. Novina CD, Sharp PA. The RNAi revolution. Nature.2004; 430(6996):161-164.
    7. Miyagishi M, Sumimoto H, Miyoshi H, et al. Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med.2004; 6(7):715-723.
    8. Morfini G, Szebenyi G, Brown H, et al. A novel CDK52 dependent pathway for regulating GSK-3 activity and kinesin-driven motility in neurons. EMBO J.2004; 23(11):2235-2245.
    9. Green JB. Lkbl and GSK3-beta:kinases at the center and poles of the action. Cell Cycle.2004; 3(1):12-14.
    10. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci.2004; 29 (2):95-102.
    11. Rentzsch F, Hobmayer B, Holstein TW. Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis. Dev Biol.2005; 278 (1):12-21.
    12. Tsuchiya K, Nakamura T, Okamoto R, et al. Reciprocal targeting of Hath 1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology.2007; 132 (1):208-220.
    13. Erdal E, Ozturk N, Cagatay T, et al. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer.2005; 115(6):903-910.
    14. Beyaert R, Vanhaesebroeck B, Suffys P, et al. Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo. Proc. Natl Acad. Sci. USA 1989; 86(23):9494-9498.
    15. Liao X, Zhang L, Thrasher JB,et al. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol. Cancer Ther.2003; 2(11):1215-1222.
    1. Ahmedin J, Rebecca S, Elizabeth W, et al. Cancer statistics,2008. CA Cancer J Clin. 2008; 58(2):71-96.
    2. Duffy JP, Eibl G, Reber HA, et al. Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer.2003; 2:12.
    3. Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer.2002; 2(11):862-871.
    4. Warshaw AL, Gu ZY, Wittenberg J, et al. Preoperative staging and assessment of resectability of pancreatic cancer. Arch Surg.1990; 125(2):230-233.
    5. Rohan T, McMichael AZ. Alimentary tract cancer mortality in Australia,1908-1978. An epidemiologicl appraisal. Med J Aust.1981; 1(5):232-235.
    6. Imaizumi Y. Longitudinal Gompertzian analysis of mortality from pancreatic cancer in Japan,1955-1993. Mech Ageing Dev.1996; 90(3):163-181.
    7. Levi F, Decarli A, La Vecchia C. Trends in cancer mortality in Switzerland,1951-1984. Rev Epidemiol Sante Publique.1988; 36(1):15-25.
    8. Lillemoe KD, Yeo CJ, Cameron JL. Pancreatic cancer:state-of-the-art care. CA Cancer J Clin.2000; 50(4):241-268.
    9. Kannoji A, Phukan S, Sudher Babu V, et al. GSK3beta:a master switch and a promising target. Expert Opin Ther Targets.2008;12(11):1443-1455.
    10. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer:regulation by Wnts and other signaling pathways. Adv Cancer Res.2002; 84:203-229.
    11. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci.2004; 29(2):95-102..
    12. Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multi-tasking kinase. J Cell Sci.2003; 116(Pt7):1175-1186
    13. Lustig B, Behrens J. The Wnt signalling pathway and its role in tumour development. J Cancer Res Clin Oncol.2003; 129(4):199-221.
    14. Shakoori A, Ougolkov A, Yu Z W, et al. Deregulated GSK-3beta activity in colorectal cancer:its asscocitation with tumor cell survival and proliferation. Biochem Biophys Res Commun.2005; 334 (4):1365-1373.
    15. Cohen Y, Chetrit A, Cohen Y, et al. Cancer morbidity in psychiatric patients:influence of lithium carbonate treatment. Med Oncol.1998; 15(1):32-36.
    16. Gould TD, Gray NA, Manji HK. Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacol Res.2003; 48(1): 49-53.
    17. Hoeflichh KP, Luo J, Ruble EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and Nf-KappaB activation. Nature.2000; 406(6791):86-89.
    18. Sung B, Pandey MK, Ahn KS, et al. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood.2008; 111(10): 4880-4891.
    19. Manna SK, Aggarwal RS, Sethi G, et al. Morin (3,5,7,2',4'-Pentahydroxyflavone) abolishes nuclear factor-kappaB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-kappaB-regulated gene expression and up-regulation of apoptosis. Clin Cancer Res.2007; 13(7):2290-2297.
    20. Kunnumakkara AB, Diagaradjane P, Guha S, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res.2008; 14(7):2128-2136.
    21. Feinman R, Koury J, Thames M, et al. Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood.1999; 93(9), 3044-3052.
    22. Griffin JD. Leukemia stem cells and constitutive activation of NF-κB. Blood.2001; 98(8):2291.
    23. Kordes U, Krappmann D, Heissmeyer V, et al. Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia.2000; 14(3): 399-402.
    24. Baron F, Turhan AG, Giron-Michel J et al. Leukemic target susceptibility to natural killer cytotoxicity:relationship with BCR-ABL expression. Blood.2002; 99(6): 2107-2113.
    25. Palayoor ST, Youmell MY, Calderwood SK, et al. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene.1999; 18(51): 7389-7394.
    26. Nakshatri H, Bhat-Nakshatri P, Martin DA, et al. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997; 17(7):3629-3639.
    27. Wang W, Abbruzzese JL, Evans DB, et al. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res.1999; 5(1):119-127.
    28. Fujioka S, Sclabas GM, Schmidt C, et al. Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene.2003; 22(9):1365-1370.
    29. Sherr CJ. Cancer cell cycles. Science.1996; 274(5293):1672-1677.
    30. Barnes DM, Gillett CE. Cyclin D1 in breast cancer. Brest Cancer Res Treat.1998; 52(1-3):1-15.
    31. Barbieri F, Lorenzi P, Ragni N, et al. Overexpression of cyclin D1 is associated with poor survival in epithelial ovarian cancer. Oncology.2004; 66(4):310-315.
    32. Utsunomiya T, Doki Y, Takemoto H, et al. Correlation of (3-catenin and cyclin D1 expression in colon cancers. Oncology.2001; 61(3):226-233.
    33. Fu M, Wang C, Li Z, et al. Cyclin D1:normal and abnormal functions. Endocrinology. 2004; 145(12):5439-5447.
    34. Zalatnai A, Molnar J. Molecular background of chemoresistance in pancreatic cancer. In Vivo.2007; 21(2):339-347.
    35. Guttridge DC, Albanese C, Reuther JY, et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol.1999; 19(8):5785-5799.
    36. Hinz M, Krappmann D, Eichten A, et al. NF-kappaB function in growth control: regulation of cyclin Dl expression and G0:G1-to-S-phase transition. Mol Cell Biol 1999; 19(4):2690-2698.
    37. Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Maltl) complex. J Biol Chem.2009; 284(10):6038-6042.
    38. Golovine K, Uzzo RG, Makhov P, et al. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-kappaB-dependent pathway. Prostate.2008; 68(13):1443-1449
    39. Xiong HQ, Abbruzzese JL, Lin E, et al. NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer.2004; 108(2): 181-188.
    40. Fujioka S, Sclabas GM, Schmidt C, et al. Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res.2003; 9(1):346-354.
    41. Samoylenko A, Roth U, Jungermann K et al. The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxiainducible factor-1 binding site. Blood,2001,97(9): 2657-2666.
    42. Wenger RH. Cellular adaptation to hypoxia:O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J, 2002,16(10):1151-1162.
    43. Shibaji T, Nagao M, Ikeda N, et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res,2003,23(6c):4721-4727
    44. Kietzmann T, Samoylenko A, Roth U, et al. Hypoxiainducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood,2003,101(3):907-914
    45. Stiehl DP, Jelkmann W, Wenger RH, et al. Normoxic induction of the hypoxia-inducible factor 1α by insulin and interleukin-1β involves the phosphatidylinositol 3-kinase pathway. FEBS Lett,2002,512(1-3):157-162
    46. Tanaka T, Takabuchi S, Nishi K, et al. The intravenous anesthetic propofol inhibits lipopolysaccharide-induced hypoxia-inducible factor 1 activation and suppresses the glucose metabolism in macrophages. J Anesth.2010; 24(1):54-60.
    47. Regueira T, Lepper PM, Brandt S,et al. Hypoxia inducible factor-1 alpha induction by tumour necrosis factor-alpha, but not by toll-like receptor agonists, modulates cellular respiration in cultured human hepatocytes. Liver Int.2009; 29(10):1582-1592.
    48. Han ZB, Ren H, Zhao H, et al. Hypoxia-inducible factor (HIF)-1 alpha directly enhances the trahscriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis.2008; 29(10):1853-1861.
    49. Dupuy E, Habib A, Lebret M, et al. Thrombin induces angiogenesis and vascular endothelial growth factor expression in human endothelial cells:possible relevance to HIF-1 alpha. J Thromb Haemost.2003; 1(5):1096-1102.
    50. Collado B, Sanchez-Chapado M, Prieto JC, et al. Hypoxia regulation of expression and angiogenic effects of vasoactive intestinal peptide (VIP) and VIP receptors in LNCaP prostate cancer cells. Mol Cell Endocrinol.2006; 249(1-2):116-22.
    51. Gorlach A, Bonello S. The cross-talk between NF-kappaB and HIF-1:further evidence for a significant liaison. Biochem J.2008; 412(3):17-19.
    52. van Uden P, Kenneth NS Rocha S. Regulation of hypoxia-inducible factor-la by NF-κB. Biochem J.2008; 412(3):477-484.
    53. Belaiba RS, Bonello S, Zahringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-la transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Mol Biol Cell.2007; 18(12):4691-4697.
    54. Flugel D, Gorlach A, Michiels C, et al. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1 alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol.2007; 27(9):3253-3265.
    55. Mottet D, Dumont V, Deccache Y, et al. Regulation of hypoxia-inducible factor-1 alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem. 2003; 278(33):31277-31285.
    1. Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward et al. Cancer statistics,2008. CA Cancer J Clin,2008; 58(2):71-96.
    2. Cameron, JL, Crist DW, Sitzmann JV, et al. Factors influencing survival after pancreaticoduodenectomy for pancreatic cancer. Am J Surg,1991; 161(1):120-124.
    3. Griffin, JF, Smalley SR, Jewell W, et al. Patterns of failure after curative resection of pancreatic carcinoma. Cancer,1990; 66(1):56-61.
    4. Makowiec F, Post S, Saeger HD, et al. Current practice patterns in pancreatic surgery: results of a multi-institutional analysis of seven large surgical departments in Germany with 1454 pancreatic head resections,1999 to 2004 (German Advanced Surgical Treatment study group). J Gastrointest Surg,2005; 9(8):1080-1086.
    5. Niederhuber JE, Brennan MF, Menck HR. The National Cancer Data Base report on pancreatic cancer. Cancer,1995; 76(9):1671-1677.
    6. Javadov S, Rajapurohitam V, Kilic A, et al. Antihypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol.2009; 46(6):998-1007
    7. Zanhi NE, de Siqueira Filho MA, Lira FS, et al. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3beta and P70S6K levels in rats. J Mol Cell Cardiol.2009; 106(3):415-423.
    8. Tsuchiya K, Nakamura T, Okamoto R, et al. Reciprocal targeting of Hath 1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer. Gastroenterology.2007; 132 (1):208-220.
    9. Erdal E, Ozturk N, Cagatay T, et al. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer.2005; 115(6):903-910.
    10. Mazor M, Kawano Y, Zhu H, et al. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene.2004; 23(47): 7882-7892.
    11. Liao X, Zhang L, Thrasher JB,et al. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol. Cancer Ther.2003; 2(11):1215-1222.
    12. Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med.1998; 4(7):844-847.
    13. Paunesku T, Mittal S, Protic M, et al. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol.2001; 77(10):1007-2101.
    14. Lee SH, Hurwitz J. Mechanism of elongation of primed DNA by DNA polymerase delta, proliferating cell nuclear antigen, and activator 1. Proc Natl Acad Sci U S A. 1990; 87(15):5672-5676.
    15. Tanaks S, HalRlnla K, Tatsuta S, et al. Proliferating cell nuclear antigen expression correlates with the metastatic potential of sulymueesal in rasive colorectal carcinoma. Oneology.1995; 52(2):134-139.
    16. AL-Sheneber IF, Shibata HR, Sampalis J, et al. Prognostic significance of proliferating cell nuclear antigen expression in colorectal cancer. Cancer.1993; 71(6):1954-1959.
    17. Ferrara N. VEGF as a therapeutic target in cancer. Oncology.2005; 69 Suppl 3:11-16.
    18. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res.2006; 12(17):5018-5022.
    19. Fujioka S, Sclabas GM, Schmidt C, et al. Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene.2003; 22 (9):1365-1370.
    1. Chua YJ, Zalcberg JR. Pancreatic cancer-is the wall crumbling? Ann Oncol.2008; 19(7):1224-1230.
    2. Pierantoni C, Pagliacci A, Scartozzi M, et al. Pancreatic cancer:Progress in cancer therapy. Crit Rev Oncol Hematol.2008; 67(1):27-38.
    3. Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer:a randomized trial. J Clin Oncol.1997; 15(6):2403-2413.
    4. Plunkett W, Huang P, Xu YZ, et al. Gemcitabine:metabolism, mechanisms of action, and selfpotentiation. Semin Oncol.1995; 22(4):3-10.
    5. Rosenberg L. Treatment of pancreatic cancer. Promises and problems of tamoxifen, somatostatin analogs, and gemcitabine. Int J Pancreatol.1997; 22(2):81-93.
    6. Welch SA, Moore MJ. Combination chemotherapy in advanced pancreatic cancer:time to raise the white flag? J Clin Oncol.2007; 25(16):2159-2161.
    7. Arlt A, Gehrz A, Muerkoster S, et al. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine induced cell death. Oncogene.2003; 22(21):3243-3251.
    8. Ougolkov AV, Bone ND, Fernandez-Zapico ME, et al. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood.2007; 110(2): 735-742.
    9. Hernandez-Vargas H, Rodriguez-Pinilla SM, Julian-Tendero M, et al. Gene expression profiling of breast cancer cells in response to gemcitabine:NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat.2007; 102(2):157-172.
    10. Okamoto T, Sanda T, Asamitsu K. NF-kappa B signaling and carcinogenesis. Curr Pharm Des.2007; 13(5):447-462.
    11. Holcomb B, Yip-Schneider M, Schmidt CM. The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas.2008; 36(3):225-235.
    12. Muerkoster S, Arlt A, Witt M, et al. Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer.2003; 104(4):469-476.
    13. Dong QG, Sclabas GM, Fujioka S, et al. The function of multiple IkappaB:NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene.2002; 21(42):6510-6519.
    14. Ahn KS, Sethi G, Aggarwal BB. Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway. Biochem Pharmacol.2008; 75(4):907-913.
    15. Ouyang W, Li J, Ma Q, et al. Essential roles of PI-3K/Akt/IKKbeta/NFkappaB pathway in cyclin D1 induction by arsenite in JB6 C141 cells. Carcinogenesis.2006; 27(4):864-873.
    16. Xiao G, Rabson AB, Young W, et al. Alternative pathways of NF-kappaB activation:a double-edged sword in health and disease. Cytokine Growth Factor Rev.2006; 17(4): 281-293.
    17. Umezawa K. Inhibition of tumor growth by NF-kappaB inhibitors. Cancer Sci.2006; 97(10):990-995.
    18. Liptay S, Weber CK, Ludwig L, et al. Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer. Int J Cancer.2003; 105(6):735-746.
    19. Van Waes C. Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res.2007; 13(4):1076-1082.
    20. Muerkoster S, Arlt A, Witt M, et al. Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer.2003; 104(4):469-476.
    21. Arlt A, Vorndamm J, Breitenbroich M, et al. Inhibition of NF-kappaB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene.2001; 20(7):859-868.
    22. Kunnumakkara AB, Guha S, Krishnan S, et al. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res.2007; 67(8):3853-3861.
    23. Kockeritz L, Doble B, Patel S, et al. Glycogen synthase kinase-3-an overview of an over-achieving protein kinase. Curr Drug Targets.2006; 7(11):1377-1388.
    1. Embin N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle; separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem.1980; 107(2):519-527.
    2. Javadov S, Rajapurohitam V, Kilic A, et al. Antihypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol.2009; 46(6):998-1007
    3. Zanhi NE, de Siqueira Filho MA, Lira FS, et al. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3beta and P70S6K levels in rats. J Mol Cell Cardiol.2009; 106(3):415-423.
    4. Morfini G, Szebenyi G, Brown H, et al. A novel CDK52 dependent pathway for regulating GSK-3 activity and kinesin-driven motility in neurons. EMBO J.2004; 23(11):2235-2245.
    5. Green JB. Lkbl and GSK3-beta:kinases at the center and poles of the action. Cell Cycle.2004; 3(1):12-14.
    6. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci.2004; 29 (2):95-102.
    7. Rentzsch F, Hobmayer B, Holstein TW. Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis. Dev Biol.2005; 278 (1):12-21.
    8. Kannoji A, Phukan S, Sudher Babu V, et al. GSK3beta:a master switch and a promising target. Expert Opin Ther Targets.2008; 12(11):1443-1455.
    9. Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multi-tasking kinase. J Cell Sci.2003; 116(Pt 7):1175-1186.
    10. Aoki M, Yokota T, Sugiura I, et al. Structural insight into nucleotide recognition in tau-protein kinase Ⅰ/glycogen synthase kinase 3 beta. Acta Crystallogr D Biol Crystallogr.2004; 60(Pt 3):439-446.
    11. Dajani R, Fraser E, Roe SM, et al. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001; 105(6):721-732.
    12. Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J.2004; 377(Pt 1):249-255.
    13. Cohen P, Goedert M. GSK3 inhibitors:development and therapeutic potential. Nat Rev Drug Discov.2004; 3(6):479-487.
    14. Diehl JA, Cheng M, Roussel MF, et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.1998; 12(22): 3499-3511.
    15. Zmijewski JW, Jope RS. Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell.2004; 3(5):309-317.
    16. Cadigan KM, Liu YI. Wnt signaling:complexity at the surface. J Cell Sci.2006; 119(Pt 3):395-402.
    17. Mi K, Dolan PJ, Johnson GV. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem.2006; 281(8):4787-4794.
    18. Brion JP, Anderton BH, Authelet M, et al. Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp.2001; 67:81-88.
    19. Kaidanovich O, Eldar-Finkelman H. The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Exp Opin Ther Targets.2002; 6(5):555-561.
    20. Parker PJ, Caudwell FB, Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem.1983; 130(1):227-234.
    21. Martin M, Rehani K, Jope RS, et al. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nature Immunol.2005; 6(8): 777-784.
    22. Dugo L, Collin M, Allen DA, et al. GSK-3(3 inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat. Crit Care Med.2005; 33(9): 1903-1912.
    23. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer:regulation by Wnts and other signaling pathways. Adv Cancer Res.2002; 84:203-229.
    24. Lustig B, Behrens J. The Wnt signalling pathway and its role in tumour development. J Cancer Res Clin Oncol.2003; 129(4):199-221.
    25. Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3(3 in cell survival and NF-κB activation. Nature.2000; 406(6791):86-90.
    26. Ding VW, Chen RH, McCormick F.Differential regulation of glycogen synthase kinase 3beta by insulin and Wnt signaling. J Biol Chem.2000; 275(42):32475-32481.
    27. Patel S, Doble B, Woodgett JR. Glycogen synthase kinase-3 in insulin and Wnt signalling:a double-edged sword? Biochem Soc Trans.2004; 32(Pt 5):803-808.
    28. Altomare DA, Testa JR. Perturbations of the Akt signaling pathway in human cancer. Oncogene.2005; 24(50):7455-7464.
    29. Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad.1996; 93(8):3636-3641.
    30. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, et al. Glycogen synthase kinase-3β participates in nuclear factor-KB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res.2005; 65(6):2076-2081.
    31. Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3β activity in colorectal cancer:Its association with tumor cell survival and proliferation. Biochem Biophys Res Commun.2005; 334(4):1365-1374.
    32. Feinman R, Koury J, Thames M, et al. Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood.1999; 93(9): 3044-3052.
    33. Griffin JD. Leukemia stem cells and constitutive activation of NF-κB. Blood.2001; 98(8):2291.
    34. Palayoor ST, Youmell MY, Calderwood SK, et al. Constitutive activation of IκB kinase a and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene.1999; 18(51): 7389-7394
    35. Nakshatri H, Bhat-Nakshatri P, Martin DA, et al. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol. Cell Biol. 1997; 17(7):3629-3639.
    36. Wang W, Abbruzzese JL, Evans DB, et al. The nuclear factor-KB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin. Cancer Res.1999; 5(1):119-127.
    37. Beg AA, Baltimore D. An essential role for NF-κB in preventing TNF-a-induced cell death. Science.1996; 274(5288):782-784.
    38. Wang CY, Cusack JC Jr, Liu R, et al. Control of inducible chemoresistance:enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Med. 1999; 5(4):412-417.
    39. Pahl HL. Activators and target genes of Rel/NF-KB transcription factors. Oncogene. 1999; 18(49):6853-6866.
    40. Andela VB, Schwarz EM, Puzas JE, et al. Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor κB. Cancer Res. 2000; 60(23):6557-6562.
    41. Aggarwal BB. Nuclear factor-kB:the enemy within. Cancer Cell.2004; 6(3):203-208.
    42. Hoeflichh KP, Luo J, Ruble EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and Nf-KappaB activation. Nature.2000; 406(6791):86-89.
    43. Deng JS, Miller HY, Wang W, et al. Beta-catenin interacts and inhibits NF-kappaB in human colon and beast cancer. Cancer Cell.2002; 2(4):323-334.
    44. Demarchi F, Bertoli C, Sandy P, et al. Glycogen synthase kinase-regulates NF-kappaB/p105 stability. J Biol Chem.2003; 278(41):39583-39590.
    45. Buss H, Dorrie A, Schmitz M, et al. Phosphorylation of Serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem.2004; 279(48): 49571-49574.
    46. Schawabe RF, Brenner DA. Role of glycogen synthase kinase-3 in TNF-alpha induced NF-kappaB activation and apoptosis in hepatocytes. Am J Physiol Gastrointest Liver Physiol.2002; 283(1):G204-G211.
    47. Gould TD, Gray NA, Manji HK. Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacol Res.2003; 48(1): 49-53.
    48. Cohen Y, Chetrit A, Modan B, et al. Cancer morbidity in psychiatric patients:influence of lithium carbonate treatment. Med Oncol.1998; 15(1):32-36.
    49. Erdal E, Ozturk N, Cagatay T, et al. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer.2005; 115(6):903-910.
    50. Beyaert R, Vanhaesebroeck B, Suffys P, et al. Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo. Proc. Natl Acad. Sci. USA 1989; 86(23):9494-9498.
    51. Mazor M, Kawano Y, Zhu H, et al. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene.2004; 23(47): 7882-7892.
    52. Liao X, Zhang L, Thrasher JB,et al. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol. Cancer Ther.2003; 2(11):1215-1222.
    53. Ghosh JC, Altieri DC. Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3β in colorectal cancer cells. Clin Cancer Res.2005; 11(12): 4580-4588.
    54. Collett GP, Campbell FC. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis.2004; 25(11): 2183-2189.
    55. Thisse C, Perrin-Schmitt F, Stoetzel C, et al. Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell.1991; 65(7):1191-1201.
    56. Tergaonkar V, Pando M, Vafa O, et al. p53 stabilization is decreased upon NFκB activation:a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell. 2002; 1(5):493-503.
    57. Warburg O. The metabolism of tumors. Constable Press, London.1930.
    58. Warburg O:On the origin of cancer cells. Science.1956; 123(3191):309-314.
    59. Garber K. Energy boost:The Warburg effect returns in a new theory of cancer. J Natl Cancer Inst.2004; 96(24):1805-1806.
    60. Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion:insights through mathematical models. Cancer Res.2003; 63(14): 3847-3854.
    61. Namiot Z, Stasiewicz J, Szalaj W, et al. Gastric cancer with special references to WHO and Lauren's classifications:glycogen and triacylglycerol concentrations in the tumor. Neoplasma.1989; 36(3):363-368.
    62. Takahashi S, Satomi A, Yano K, et al. Estimation of glycogen levels in human colorectal cancer tissue:relationship with cell cycle and tumor outgrowth. J Gastroenterol.1999; 34(4):474-480.
    63. Rask K, Nilsson A, Brannstrom M, et al. Wnt-signalling pathway in ovarian epithelial tumours:increased expression of β-catenin and GSK3(3. Br J Cancer.2003; 89(7): 1298-1304.
    64. Bilim V, Ougolkov A, Yuuki K, et al. Glycogen synthase kinase-3:a new therapeutic target in renal cell carcinoma. Br J Cancer.2009; 101(12):2005-2014.
    65. Gotoh J, Obata M, Yoshie M, et al. Cyclin D1 overexpression correlates with β-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3 β and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis.2003; 24(3):435-442.
    66. Beals CR, Sheridan CM, Turck CW, et al. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science.1997; 275(5308):1930-1934.
    67. Wei W, Jin J, Schlisio S, et al. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 2005; 8(1):25-33.
    68. De Ketelaere A, Vermeulen L, Vialard J, et al. Involvement of GSK-3β in TWEAKmediated NF-κB activation. FEBS Lett.2004; 566(1-3):60-64.
    69. Martinez A, Castro A, Dorronsoro I, et al. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer and inflammation. Med Res Rev.2002; 22(4):373-384.
    70. Chen G, Huang LD, Jiang YM, et al. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem.1999; 72(3):1327-1330.
    71. Meijer L, Thunnissen AM, White AW, et al. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdesine, a marine sponge constituent. Chem Biol. 2000; 7(1):51-63.
    72. Lahusen T, de Siervi A, Kunick C, et al. Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential. Mol Carcinog.2003; 36(4):183-194.
    73. Senderowicz AM. Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther.2003; 2(4 Suppl.1):S84-S95.
    74. Leclerc S, Gamier M, Hoessel R, et al. Indirubins inhibit glycogen synthase kinase-3(3 and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem.2001; 276(1):251-260.
    75. Kim DM, Koo SY, Jeon K et al. Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF)-a or TNF-related apoptosisinducing ligand in human cancer cell lines. Cancer Res.2003; 63(3):621-626.
    76. Schwabe RF, Brenner DA. Role of glycogen synthase kinase-3 in TNF-a-induced NF-kB activation and apoptosis in hepatocytes. Am J Physiol Gastrointest Liver Physiol.2002; 283(1):G204-G211.
    77. Kitada S, Zapata JM, Andreeff M, et al. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood.2000; 96(2):393-397.
    78. Wittmann S, Bali P, Donapaty S, et al. Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res.2003; 63(1):93-99.
    79. Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol.1998; 16(3): 1207-1217.
    80. Joseph B, Marchetti P, Formstecher P, et al. Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene.2002; 21(1):65-77.
    81. Liao X, Zhang L, Thrasher JB, et al. Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer. Mol Cancer Ther.2003; 2(11):1215-1222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700